Function forecasting::ExponentialSmoothingTrendSeasonalityTune(dataValues, noObservations, alpha, beta, gamma, periodLength, alphaLow, alphaUpp, betaLow, betaUpp, gammaLow, gammaUpp)

forecasting::ExponentialSmoothingTrendSeasonalityTune

The forecasting::ExponentialSmoothingTrendSeasonalityTune() procedure is a time series forecasting helper procedure of forecasting::ExponentialSmoothingTrendSeasonality() by computing the \(\alpha\), \(\beta\), and \(\gamma\) for which the mean squared error is minimized.

Function Prototype

forecasting::ExponentialSmoothingTrendSeasonalityTune(
! Provides the alpha for which the mean squared error is minimized.
        dataValues,      ! Input, parameter indexed over time set
        noObservations,  ! Scalar input, length history
        alpha,           ! Scalar output,
        beta,            ! Scalar output,
        gamma,           ! Scalar output,
        periodLength,    ! Scalar input, length of season
        alphaLow,        ! Optional input, default 0.01
        alphaUpp,        ! Optional input, default 0.99
        betaLow,         ! Optional input, default 0.01
        betaUpp,         ! Optional input, default 0.99
        gammaLow,        ! Optional input, default 0.01
        gammaUpp)        ! Optional input, default 0.99

Arguments

dataValues

A one dimensional parameter containing the observations for the first \(T\) elements of the time set.

noObservations

Specifies the number of elements that belong to the history of the time set. This parameter corresponds to \(T\) in the notation presented in Time Series Forecasting Notation.

alpha,

beta, gamma, i.e. \(\alpha\), \(\beta\), and \(\gamma\) are scalar output parameters of this procedure. The values for \(\alpha\), \(\beta\), and \(\gamma\) are such that the mean squared error of the estimates returned by forecasting::ExponentialSmoothingTrendSeasonality() are minimized.

periodLength

Specifies the period length.

alphaLow

Lowerbound on \(\alpha\), default 0.01.

alphaUpp

Upperbound on \(\alpha\), default 0.99.

betaLow

Lowerbound on \(\beta\), default 0.01.

betaUpp

Upperbound on \(\beta\), default 0.99.

gammaLow

Lowerbound on \(\gamma\), default 0.01.

gammaUpp

Upperbound on \(\gamma\), default 0.99.

Note

In order to use this function, the Forecasting system library needs to be added to the application.

Please note that this function performs an optimization step; a nonlinear programming solver should be available and, in an AIMMS PRO environment, it should be run server side.

Example

To further understand about this procedure and library, please use the Demand Forecasting example.