AIMMS

The Function Reference

AIMMS AIMMS 4

September 16, 2019

Contents

Contents ii
PartI Elementary Computational Operations 2
1 Arithmetic Functions 2

AbS . e e e 4
ATCCOS & v v i o e e e e e e e e e e e 5
ArcCosh e 6
ATCSIN . . o e e e e e e e e e 7
ArcSinh e 8
ArcTan o e e e e e e e 9
ArcTanh e 10
Ceil e e 11
COS v e e e e 12
Cosh e e 13
Cube e e 14
Degrees e e 15
DIV . e e e e e e e 16
ErrorF o e 17
EXD o oo o e e e e e e 18
Floor e e e e e 19
Log . .. o e 20
LoglO. . . o i e e 21
MapVal e e e 22
MaX . . e e e e e e e e e e e e e 23
Min .. e e e e e e e e 24
Mod e e e e e e 25
Power e e e 26
Precision o e e 27
Radians i 28
Round e 29
ScalarValue e 30
1.8 31

2

3

Contents

SIN . . e e e e e 32
Sinh . .. e e 33
1) 34
16) o 35
Tan . .. e e e e e e 36
Tanh e 37
Trunc o e e e 38
Val .. e e e e 39
Set Related Functions 40
ActiveCard e e e 41
Card e e 42
CloneElement ittt 44
Element 47
ElementCast. i ittt it e e e 48
ElementRange ue... 49
FindUsedElements 50
First. . . . e e e e e e 51
Last . . . o o e e 52
Ord e e e e e e e 53
RestorelnactiveElements 54
RetrieveCurrentVariableValues 55
SetAddRecursive 56
SetElementAdd 57
SetElementRenamet 58
StringToElement, 59
SubRange e 60
String Manipulation Functions 61
Character it i it e e e e e 62
CharacterNumber, 63
FindNthString 64
FindReplaceNthString 66
FindReplaceStrings 68
FindString e 69
FormatString e e 70
GarbageCollectStrings 71
RegexSearch. i 72
StringCapitalize 74
Stringlength 75
StringOCCuUITenCesS v v v v i e e e e e 76
StringToOLOwWer e e e e 77
StringToUpper e e e 78
SubString 79

iii

Contents

4 Unit Functions 80
AtomicUnit 0 e e e e e e e 81
ConvertUnit vttt e e e e e e e e e e e e 82
EvaluateUnit 83
StringToUnit it 84
Unit . .. e e e e 85

5 Time Functions 86
AZEregate . . .o e e e e e e e e e e e 87
ConvertReferenceDate 88
CreateTimeTable 89
CurrentToMoment v i i i it e e e e ettt e e 90
CurrentToString v i i i e e e e e 91
CurrentToTimeSlot 92
DaylightSavingEndDate 93
DaylightSavingStartDate 94
DisAggregate e 95
MomentToStringt 96
MomentToTimeSlot 97
PeriodToString 98
StringToMoment 99
StringToTimeSlot 100
TestDate oo e e e e e 101
TimeSlotCharacteristic 102
TimeSlotToMoment eunn... 103
TimeSlotToString 104
TimeZoneOffSet, 105

6 Financial Functions 106

6.1 General Conversionst 107
PriceDecimal 108
PriceFractional 109
RateEffective 110
RateNominal 111

6.2 Day Count Basesand Dateso ... 112
Format of date arguments 112
Daycountbases 112
Date differences 113
DateDifferenceDays 114
DateDifferenceYearFraction 115

6.3 Depreciations 116
DepreciationLinearLife 118
DepreciationLinearRate 120
DepreciationNonLinearSumOfYear 122
DepreciationNonLinearLife 124

DepreciationNonLinearFactor 126

6.4

6.5

Contents

DepreciationNonLinearRate
DepreciationSum,

Investments i i e e e e e e e e e e

InvestmentConstantPresentValue
InvestmentConstantFutureValue
InvestmentConstantPeriodicPayment
InvestmentConstantInterestPayment
InvestmentConstantPrincipalPayment.
InvestmentConstantCumulativelnterestPayment . . .
InvestmentConstantCumulativePrincipalPayment

InvestmentConstantNumberPeriods
InvestmentConstantRateAll
InvestmentConstantRate
InvestmentVariablePresentValue
InvestmentVariablePresentValuelnPeriodic.
InvestmentSingleFutureValue
InvestmentVariableInternalRateReturnAll
InvestmentVariableInternalRateReturn
InvestmentVariableInternalRateReturnInPeriodicAll .
InvestmentVariableInternalRateReturnInPeriodic . . .
InvestmentVariableInternalRateReturnModified. . . .

SeCUIITIeS & v v v s e e s s s e e e e e e e e e

SecurityDiscountedPrice
SecurityDiscountedRedemption
SecurityDiscountedYield
SecurityDiscountedRate
TreasuryBillPrice
TreasuryBillYield.
TreasuryBillBondEquivalent
SecurityMaturityPrice o ...
SecurityMaturityCouponRate
SecurityMaturityYield
SecurityMaturityAccruedInterest
SecurityCouponNumber
SecurityCouponPreviousDate
SecurityCouponNextDate
SecurityCouponDays
SecurityCouponDaysPreSettlement
SecurityCouponDaysPostSettlement
SecurityPeriodicPrice
SecurityPeriodicRedemption.
SecurityPeriodicCouponRate
SecurityPeriodicYieldAll
SecurityPeriodicYield
SecurityPeriodicAccruedInterest
SecurityPeriodicDuration

Contents

SecurityPeriodicDurationModified 204

7 Distribution and Combinatoric Functions 206
Binomial e 208
GeOMEeTIiC . . . v i vttt e e e e e e e e e e e e e 209
HyperGeometric it ii . 210
NegativeBinomial 211
Poisson. e 212
Beta e 213
Exponential, 214
ExtremeValue, 215
L 10110 = 216
Logistic. . . . o v v i i i e e e 217
LogNormal0 eeo... 218
Normal e e e 219
Pareto e 220
Triangular e e 221
Uniform e e 222
Weibull 223
DistributionCumulative 224
DistributionlnverseCumulative 225
DistributionDensityt 226
DistributionInverseDensity 227
DistributionMean 228
DistributionDeviation 229
DistributionVariance 230
DistributionSkewness 0 oL 231
DistributionKurtosis 232
Combinationttt 233
Factorial e 234
Permutation. e 235
8 Histogram Functions 236
HistogramAddObservation 237
HistogramAddObservations 238
HistogramCreate i ittt i i 239
HistogramDelete, 240
HistogramGetAverage.o it v it i e e 241
HistogramGetBounds 242
HistogramGetDeviation. 243
HistogramGetFrequencies 244
HistogramGetKurtosis 245
HistogramGetObservationCount 246
HistogramGetSkewness, 247

HistogramSetDomain 248

Contents

9 Forecasting Functions 250
9.1 Introduction e 250
9.2 Time series forecasting 251
9.2.1 Notational conventions time series forecasting 251
forecasting:MovingAverage 253
forecasting::WeightedMovingAverage 256
forecasting::ExponentialSmoothing 259
forecasting::ExponentialSmoothingTrend 262
forecasting::ExponentialSmoothingTrendSeasonality 265
forecasting::ExponentialSmoothingTune 268
forecasting::ExponentialSmoothingTrendTune 269
forecasting::ExponentialSmoothing TrendSeasonalityTune 271
9.3 Simple Linear Regression 273
9.3.1 Notational conventions for simple linear regression . 273
forecasting::SimpleLinearRegression. 276
Partl Algorithmic Capabilities 281
10 Constraint Programming Functions 281
cpzAllDifferent L e 282
cp:BinPacking 284
cp:xCardinalityo e e 288
cpxChannel 290
CPiCoUNT . . . v s e e e e e e e 292
cp:Lexicographic e 294
cp::ParallelSchedule 297
CPESEQUENCE + v v v e e v e e e e e e e e e e e e e e e e 299
cp:SequentialSchedule oo oL, 302
11 Scheduling Functions 305
cp:rActivityBegin . .. L L L L L 306
cpxActivityEnd . . L. L L L e 307
cprActivityLength & . o . L o oL e 308
Cp:ACtivitySize o e e e e 309
cp:xAlternative L. e e e 310
cp:BeginAtBegin L 312
cpiBeginAtEnd 313
cp:BeginBeforeBegin 314
cp:BeginBeforeEnd 315
cp:BeginOfNext i 316
cp:BeginOfPrevious e 317
cp:EndAtBegin e 318

cpsEndAtENd e 319

Contents

cp:EndBeforeBegin 0., 320
cp:EndBeforeEnd 321
cpEndOfNext e 322
cp=EndOfPrevious i 323
cp:GroupOfNexto e e e e 324
cp:GroupOfPrevious i e 325
cp:LengthOfNext i 326
cp:LengthOfPrevious o 0 v i it i i e 327
cp:SizeOfNext e e 328
cp:SizeOfPrevious e 329
[0 B 0) 330
cp:iSynchronize 331
12 The GwmP library 332
12.1 GMP::Benders Procedures and Functions 333
GMP::Benders::AddFeasibilityCut 334
GMP::Benders::AddOptimalityCut. 337
GMP::Benders::CreateMasterProblem. 339
GMP::Benders::CreateSubProblem. 341
GMP::Benders::UpdateSubProblem 343

12.2 GMP::Coefficient Procedures and Functions 345
GMP::Coefficient:Get 346
GMP::Coefficient::GetQuadratic 347
GMP::Coefficient:Set 348
GMP::Coefficient:SetMulti 350
GMP::Coefficient::SetQuadratic 352

12.3 GMP::Column Procedures and Functions 353
GMP::Column:Add 354
GMP::Column::Delete 355
GMP::Column::Freeze 356
GMP::Column::FreezeMulti 357
GMP::Column::GetLowerBound 359
GMP::Column::GetName 361
GMP::Column::GetScale 362
GMP::Column::GetStatus 363
GMP::Column:GetType 364
GMP::Column::GetUpperBound 365
GMP:Column::SetAsMultiObjective 367
GMP::Column::SetAsObjective 369
GMP::Column::SetDecomposition 370
GMP::Column::SetDecompositionMulti 373
GMP::Column::SetLowerBound 375
GMP::Column::SetLowerBoundMulti 377
GMP::Column::SetType vi .. 379
GMP::Column::SetUpperBound 380

GMP::Column::SetUpperBoundMulti 382

viii

Contents

GMP::Column::Unfreeze. 384
GMP::Column::UnfreezeMulti 385
12.4 GMP::Event Procedures and Functions 387
GMP::Event::Create 388
GMP::Event:Delete 389
GMP::Event::Reset 390
GMP:Event::Set e 391
12.5 GMP:Instance Procedures and Functions 392
GMP::Instance::AddIntegerEliminationRows 394
GMP::Instance::CalculateSubGradient 397
GMP:Instance:Copy .+« v v v v v e e e e 399
GMP::Instance::CreateDual 400
GMP::Instance::CreateFeasibility 403
GMP::Instance::CreateMasterMIP 406
GMP::Instance::CreatePresolved 407
GMP::Instance::CreateProgressCategory 409
GMP::Instance::CreateSolverSession 410
GMP:Instance::Delete 411
GMP:Instance::DeletelntegerEliminationRows 412
GMP::Instance::DeleteMultiObjectives 413
GMP::Instance::DeleteSolverSession 414
GMP::Instance::FindApproximatelyFeasibleSolution . 415
GMP::Instance::FixColumns 418
GMP::Instance::Generate 420
GMP::Instance::GenerateRobustCounterpart 422
GMP::Instance::GenerateStochasticProgram 424
GMP::Instance::GetBestBound 426
GMP::Instance::GetColumnNumbers 427
GMP::Instance::GetDirection 429
GMP::Instance::GetMathematicalProgrammingType. . 430
GMP::Instance::GetMemoryUsed 431
GMP::Instance::GetNumberOfColumns 432
GMP::Instance::GetNumberOfIndicatorRows 433
GMP:Instance:GetNumberOfintegerColumns 434
GMP::Instance::GetNumberOfNonlinearColumns ... 435
GMP::Instance::GetNumberOfNonlinearNonzeros . . . 436
GMP::Instance::GetNumberOfNonlinearRows 437
GMP::Instance::GetNumberOfNonzeros 438
GMP::Instance::GetNumberOfRows 439
GMP::Instance::GetNumberOfSOS1Rows 440
GMP::Instance::GetNumberOfSOS2Rows 441
GMP:Instance:GetObjective 442
GMP::Instance::GetObjectiveColumnNumber 443
GMP:Instance:GetObjectiveRowNumber 444
GMP::Instance::GetOptionValue 445
GMP::Instance::GetRowNumbers 447

Contents

GMP::Instance:GetSolver 449
GMP:Instance:GetSymbolicMathematicalProgram .. 450
GMP::Instance::MemoryStatistics 451
GMP:Instance::Rename 453
GMP::Instance::SetCallbackAddCut 454
GMP::Instance::SetCallbackAddLazyConstraint 455
GMP::Instance:SetCallbackBranch 457
GMP::Instance::SetCallbackCandidate 459
GMP::Instance::SetCallbackHeuristic 461
GMP::Instance:SetCallbackIncumbent 462
GMP::Instance::SetCallbackIterations. 463
GMP:Instance::SetCallbackStatusChange 465
GMP::Instance::SetCallbackTime 466
GMP:Instance:SetCutoff 468
GMP::Instance::SetDirection 469
GMP::Instance::SetlterationLimit 470
GMP::Instance::SetMathematicalProgrammingType . . 471
GMP::Instance::SetMemoryLimit. 472
GMP::Instance::SetOptionValue 473
GMP::Instance:SetSolver 475
GMP:Instance::SetStartingPointSelection 476
GMP::Instance:SetTimeLimit. 477
GMP:Instance:Solve oL 478
12.6 GMP::Linearization Procedures and Functions 479
GMP::Linearization:Add 480
GMP::Linearization::AddSingle 482
GMP::Linearization::Delete 485
GMP::Linearization::GetDeviation 486
GMP::Linearization::GetDeviationBound 487
GMP::Linearization::GetLagrangeMultiplier 488
GMP::Linearization:GetType 489
GMP::Linearization:GetWeight 490
GMP::Linearization::RemoveDeviation 491
GMP::Linearization::SetDeviationBound 492
GMP::Linearization:SetType 493
GMP::Linearization:SetWeight. 494
12.7 GMP::ProgressWindow Procedures and Functions. 495
GMP::ProgressWindow::DeleteCategory 496
GMP::ProgressWindow::DisplayLine 497
GMP::ProgressWindow::DisplayProgramStatus 498
GMP::ProgressWindow::DisplaySolver 499
GMP::ProgressWindow::DisplaySolverStatus 500
GMP::ProgressWindow::Freezeline 501
GMP::ProgressWindow:Transfer 502
GMP::ProgressWindow:UnfreezeLine 504

12.8 GMP::QuadraticCoefficient Procedures and Functions 505

Contents

GMP::QuadraticCoefficient:Get 506
GMP::QuadraticCoefficient:Set 507
12.9 GMP::Robust Procedures and Functions 508
GMP::Robust::EvaluateAdjustableVariables 509
12.10 GMP::Row Procedures and Functions 511
GMP::Row::Activate i 512
GMP:Row:zAdd o 513
GMP::Row::Deactivate 514
GMP::Row:Delete. 515
GMP::Row::DeletelndicatorCondition. 516
GMP::Row::Generate 517
GMP:Row:GetConvex v v v i i i i i 519
GMP::Row::GetIndicatorColumn 520
GMP::Row::GetlndicatorCondition 521
GMP::Row::GetLeftHandSide 522
GMP:Row::GetName 524
GMP::Row::GetRelaxationOnly 525
GMP:Row::GetRightHandSide 526
GMP::Row::GetScale 528
GMP::Row::GetStatus 529
GMP:Row::GetType 530
GMP::Row:SetConvex i i i i i .. 531
GMP::Row::SetIndicatorCondition 532
GMP::Row::SetLeftHandSide 533
GMP::Row::SetPoolType v v i i v i e 535
GMP::Row::SetPoolTypeMulti. 537
GMP::Row::SetRelaxationOnly 539
GMP:Row::SetRightHandSide 540
GMP:Row::SetRightHandSideMulti 542
GMP::Row::SetType. oo i i 544
12.11 GMP::Solution Procedures and Functions 545
GMP::Solution::Check 547
GMP::Solution::ConstraintListing 548
GMP::Solution::ConstructMean 553
GMP::Solution::Copy + « v v v v v i e e e e e 554
GMP::Solution::Count 555
GMP::Solution::Delete 556
GMP::Solution::DeleteAll 557
GMP::Solution::GetBestBound 558
GMP::Solution::GetColumnValue 559
GMP::Solution::GetDistance 560
GMP::Solution::GetFirstOrderDerivative 561
GMP::Solution::GetlterationsUsed 562
GMP::Solution::GetMemoryUsed 563
GMP::Solution::GetNodesUsed 564
GMP::Solution::GetObjective 565

Contents

GMP::Solution::GetPenalizedObjective
GMP::Solution::GetProgramStatus
GMP::Solution::GetRowValue
GMP::Solution::GetSolutionsSet
GMP::Solution::GetSolverStatus
GMP::Solution::GetTimeUsed
GMP::Solution::IsDualDegenerated
GMP::Solution:IsInteger
GMP:Solution::IsPrimalDegenerated
GMP::Solution:z:Move,
GMP::Solution::RandomlyGenerate
GMP::Solution::RetrieveFromModel
GMP::Solution::RetrieveFromSolverSession
GMP::Solution::SendToModel
GMP::Solution::SendToModelSelection
GMP::Solution::SendToSolverSession
GMP::Solution::SetColumnValue
GMP::Solution::SetlterationCount
GMP::Solution::SetMIPStartFlag
GMP::Solution::SetObjective
GMP::Solution::SetProgramStatus
GMP::Solution::SetRowValue
GMP::Solution::SetSolverStatus
GMP::Solution::UpdatePenaltyWeights

12.12 GMP::Solver Procedures and Functions

GMP::Solver::FreeEnvironment.
GMP::Solver::GetAsynchronousSessionsLimit
GMP::Solver::InitializeEnvironment

12.13 GMP::SolverSession Procedures and Functions

GMP::SolverSession::AddBendersFeasibilityCut
GMP::SolverSession::AddBendersOptimalityCut
GMP::SolverSession::AddLinearization.
GMP::SolverSession::AsynchronousExecute
GMP::SolverSession::CreateProgressCategory
GMP::SolverSession:Execute
GMP::SolverSession::ExecutionStatus
GMP::SolverSession::GenerateBinaryEliminationRow .
GMP::SolverSession::GenerateBranchLowerBound . . .
GMP::SolverSession::GenerateBranchRow
GMP::SolverSession::GenerateBranchUpperBound . . .
GMP::SolverSession::GenerateCut
GMP::SolverSession::GetBestBound
GMP::SolverSession::GetCallbackInterruptStatus .
GMP:SolverSession::GetCandidateObjective
GMP::SolverSession::Getlnstance
GMP::SolverSession::GetlterationsUsed

Contents

GMP::SolverSession::GetMemoryUsed 630
GMP::SolverSession::GetNodeNumber 631
GMP::SolverSession::GetNodeObjective 632
GMP::SolverSession::GetNodesLeft 633
GMP::SolverSession::GetNodesUsed 634
GMP::SolverSession::GetNumberOfBranchNodes . .. 635
GMP::SolverSession::GetObjective. 636
GMP::SolverSession::GetOptionValue. 637
GMP:SolverSession::GetProgramStatus 638
GMP::SolverSession::GetSolver 639
GMP::SolverSession::GetSolverStatus 640
GMP::SolverSession::GetTimeUsed 641
GMP::SolverSession:Interrupt 642
GMP::SolverSession::Rejectincumbent 643
GMP::SolverSession::SetObjective 644
GMP::SolverSession::SetOptionValue 645
GMP::SolverSession::Transfer 647
GMP::SolverSession::WaitForCompletion 648
GMP::SolverSession::WaitForSingleCompletion.. 649

12.14 GMP::Stochastic Procedures and Functions 650
GMP::Stochastic::AddBendersFeasibilityCut 651
GMP::Stochastic::AddBendersOptimalityCut 652
GMP::Stochastic::BendersFindFeasibilityReference .. 654
GMP::Stochastic::BendersFindReference 655
GMP::Stochastic::CreateBendersRootproblem 656
GMP::Stochastic::GetObjectiveBound 657
GMP::Stochastic::GetRelativeWeight 658
GMP::Stochastic::GetRepresentativeScenario 659
GMP::Stochastic::MergeSolution 660
GMP::Stochastic::UpdateBendersSubproblem. 661

12.15 GMP::Tuning Procedures and Functions 662
GMP::Tuning::SolveSingleMPS 663
GMP::Tuning::TuneMultipleMPS 665
GMP:Tuning:TuneSingleGMP 667

PartIll Model Handling 670
13 Model Query Functions 670
AttributeToString, 672
CallerAttributeo i e e e 673
CallerLine it it e e e e 674
CallerNodet e 675

CallerNumberOfLocationso v v v v i v v v v v 676

Contents

ConstraintVariables, 677
DeclaredSubset e 679
Domainlndex 681
IdentifierAttributes 682
IdentifierDimension 683
IdentifierShowAttributes 684
IdentifierShowTreeLocation 685
IdentifierElementRange, 686
IdentifierText it i it e e i 687
IdentifierType i i i 688
IdentifierUnit 689
IndexRangeottt e 690
IsRuntimeldentifier 691
Referencedldentifiers 692
Sectionldentifiers 693
VariableConstraints, .. 694
14 Model Edit Functions 695
me::AllowedAttributeo o oL oL 696
me::ChangeType ittt e e 697
me::ChangeTypeAllowed 698
me::ChildTypeAllowed 699
me:Children 700
me:Compile. e 701
me:Create o i e e e e e e 702
me::Createlibrary 703
me:Delete e e e 704
me:ExportNode e e 705
me:GetAttribute L L L 706
me:ImportLibrary o 707
me:ImportNode e 708
me:IsRunnable, 709
me:MOVe. . . . e e e e e e e 710
me:Parent L. L e e e e e e 711
me:Rename e 712
me:SetAttribute L. 713
PartIV Data Management 715
15 Case management 715
CaseFileLoad 717
CaseFileMerge @it 718
CaseFileSavet 719

CaseCompareldentifier 720

Contents

CaseCreateDifferenceFile 721
CaseFileGetContentType v v v it it v it e e e e e 723
CaseFileSectionEXists i i i 724
CaseFileSectionGetContentType 725
CaseFileSectionLoad 726
CaseFileSectionMerge 727
CaseFileSectionRemove, 728
CaseFileSectionSave 729
CaseFileURLtoElement 730
CaseFileSetCurrent 732
CaseCommandLoadAsActive 733
CaseCommandLoadIntoActive 734
CaseCommandMergelntoActive 735
CaseCommandNewt unennnn 736
CaseCommandSave 737
CaseCommandSaveAs 738
CaseDialogConfirmAndSave 739
CaseDialogSelectForLoad 740
CaseDialogSelectForSave 741
CaseDialogSelectMultiple. 742
DataManagementExit 743
16 Data Change Monitor Functions 744
DataChangeMonitorCreateot v i v v .. 745
DataChangeMonitorDelete 747
DataChangeMonitorHasChanged 748
DataChangeMonitorReset 749
17 Database Functions 750
CloseDataSource i it ittt et e it e 751
CommitTransaction ittt nenn 752
DirectSQL e e e e 753
LoadDatabaseStructure 754
RollbackTransaction 755
SaveDatabaseStructure 756
StartTransaction v v v v v it e e e e e e e e e 757
TestDataSource. i i it i 758
TestDatabaseTable 759
TestDatabaseColumn 760
GetDataSourceProperty v v v i i i i e e e e 761
SOLNumberOfColumns v v v v i ittt e e e e e e e e e 762
SOLNUmMberOfDIIVeTS . . v v v v e e e e e e e e e e e e e e e 763
SOLNumberOfTablesttt et e oo e e 764
SOLNumberOfViews v v i it e e e e e e e e e 765
SOLCOIumMMDAata . . v v v v v et e e e e e e e e e e e e e e 766

SQLDriverName i it e e e e e e e e 768

Contents

SQLTableName o i it e e e e e e 769
SOQLViewName v it ittt e e it e e e 770
SQLCreateConnectionString 771
18 Spreadsheet Functions 773
Spreadsheet::ColumnName 774
Spreadsheet::ColumnNumber 775
Spreadsheet::SetVisibility 776
Spreadsheet::SetActiveSheet 777
Spreadsheet::SetUpdateLinksBehavior. 778
Spreadsheet::SetOption it 780
Spreadsheet:AssignValue 781
Spreadsheet::RetrieveValue 782
Spreadsheet::AssignSet 0., 783
Spreadsheet::RetrieveSet 784
Spreadsheet::AssignParameter 785
Spreadsheet::RetrieveParameter 787
Spreadsheet::AssignTable 789
Spreadsheet::RetrieveTable 792
Spreadsheet::ClearRange 794
Spreadsheet::CopyRange 795
Spreadsheet::AddNewSheet 797
Spreadsheet::DeleteSheet 798
Spreadsheet::GetAllSheets 799
Spreadsheetz:RUnMacro. v v v v v v i vt i e e e e 800
Spreadsheet::CreateWorkbook 802
Spreadsheet::SaveWorkbook 803
Spreadsheet::CloseWorkbook 804
Spreadsheet:Print 805
19 XML Functions 807
GenerateXML e 808
ReadGeneratedXML 809
ReadXML o v it e e e e e e 810
WriteXML . . . o e e e e 811
PartV User Interface Related Functions 813
20 Dialog Functions 813
DialogAsKk e e e 814
DialogError e 815
DialogGetColor o i it i e 816
DialogGetDate ittt e 817
DialogGetElementByData 818

Contents

DialogGetElement 00.... 819
DialogGetElementByTexto i it n ot 820
DialogGetNumber 821
DialogGetPasswordt 822
DialogGetString 823
DialogMessage e 824
DialogProgress e e e 825
StatusMessageo e e e 826
21 Page Functions 827
PageClose e 828
PageCopyTableToClipboard 829
PageCopyTableToExcel 830
PageGetActive e e 832
PageGetAll. 833
PageGetChild 834
PageGetFocus e 835
PageGetNext it 836
PageGetNextInTreeWalk 837
PageGetParent 838
PageGetPrevious e 839
PageGetTitle i 840
PageGetUsedIdentifiers 841
PageOpen 842
PageOpenSingle 843
PageRefreshAll, 844
PageSetCursor i e 845
PageSetFocus e 846
PivotTableDeleteState 847
PivotTableReloadState 848
PivotTableSaveState 850
PrintEndReport v i i e e e e 852
PrintPage e e 853
PrintPageCount.ot 855
PrintStartReport 856
PrinterGetCurrentName 857
PrinterSetupDialog 858
ShowMessageWindow 859
ShowProgressWindow 860
22 User colors 861
UserColorAdd, 862
UserColorDelete 863
UserColorGetRGB ittt 864

UserColorModify o it e 865

Contents

Part VI Development Support

23 Profiler and Debugger

DebuggerBreakPoint.
ProfilerStart
ProfilerPause
ProfilerContinue
ProfilerRestart
ProfilerCollectAllData

24 Application Information
IdentifierGetUsedInformation

IdentifierMemory
IdentifierMemoryStatistics
ListExpressionSubstitutions
MemorylnUse
MemoryStatistics
ShowHelpTopic.

Part VI System Interaction

25 Error Handling Functions

errhi:Adapt
errh::Attribute
errh::Category
errhiz:Code
errh:Column
errh::CreationTime
errh::Filename
errh:InsideCategory
errh::IsMarkedAsHandled
errhiline
errh:Message
errh::MarkAsHandled
errhz:Multiplicity
errthzNode
errh::NumberOfLocations
errhz:Severity o o ...

xviii

Contents

26 Option manipulation 903
OptionGetDefaultString 904
OptionGetKeywords i 905
OptionGetString v v i i e e e e e e 906
OptionGetValue 907
OptionSetString v v i e e e e e e e 908
OptionSetValue i 909

27 Licensing Functions 910
LicenseExpirationDate 911
LicenseMaintenanceExpirationDate 912
LicenseNumber it it i 913
LicenseStartDate 914
LicenseType i i i i e 915
ProjectDeveloperMode 916
SecurityGetGroups . « v v v v i e e e e e e e e e e e e e e e 917
SecurityGetUsSers v v v v i e e e e e e e e e 918
SolverGetControl i e 919
SolverReleaseControl 920

28 Environment Functions 921
AimmsRevisionStringo oo oo 922
EnvironmentGetString 923
EnvironmentSetString oo 925
GeoFindCoordinates.t i i v it 926
TestinternetConnection 928

29 Invoking actions 929
Delay e e e e 930
Execute. e 931
ExitAimms 932
OpenDoCument. v v v ittt e e e e e e e e e e e 933
ScheduleAt e 934
SessionArgumentl e 935

30 File and Directory Functions 936
DirectoryCopy .« . v v v v e e e e e e e e e e e e e 937
DirectoryCreate v ittt e 938
DirectoryDelete. e 939
DirectoryExists 940
DirectoryGetCurrent 941
DirectoryGetFiles 942
DirectoryGetSubdirectories 944
DirectoryMove 946
DirectorySelect e 947
FileAppend e 948

FilleCopy . . v v i i i e e e e e 949

Contents

FileDelete i i e 950
FileEdit o e e e 951
FileEXiStS . . . o o v i e e e e e 952
FileGetSize i e 953
FileMove i e e 954
FilePrint e 955
FileRead i e 956
FileSelect. o it e e 957
FileSelectNew i it i e e 958
FileTime e e 960
FileTouch i i 961
FileView e e 962
Part VIII Predefined Identifiers 964
31 System Settings Related Identifiers 964
AllAuthorizationlLevels 965
AllAvailableCharacterEncodings 966
ASCIICharacterEncodings 967
ASCIIUnicodeCharacterEncodings 968
UnicodeCharacterEncodings 969
AllCharacterEncodings 970
ANCOIOTS . . . v o e e e 973
ANINTTINSICS & . . . v o e e e e e e e e e e 974
AllKeywords i i e e 975
AllOPLIONS . . . v o e e e e e 976
AllPredeclaredldentifiers 977
AllSolvers e e 978
AllSymbols e 979
ProfilerData it e e 980
CurrentAuthorizationLevel 981
CurrentGroup . .« . v o v v i e e e e e e e e e e e e e 982
CurrentSolvero e 983
CurrentUsSer o i i e e e e e 984
AllAimmsStringConstantElements 985
AimmsStringConstants oo 986
32 Language Related Identifiers 987
AggregationTypes e 989
AllAttributeNames i e 990
AllBasicValues i 991
AllCaseComparisonModes v v v v i v v e v n e .. 992
AllColumnTypes e e e 993

AllDataColumnCharacteristics 994

Contents

AllDataSourceProperties 995
AllDifferencingModes 996
AllExecutionStatuses 997
AIIGMPEXtensions 998
AllldentifierTypes i it it i it e e et e 999
AlllsolationLevels 1001
AllFileAttributes e 1002
AllMathematicalProgrammingTypes 1003
AllMatrixManipulationDirections 1004
AllMatrixManipulationProgrammingTypes 1005
AllProfilerTypes i it it et e e e 1006
AIIROWTYPES . v v v v e e e e e e e e e e e 1007
AllConstraintProgrammingRowTypes 1008
AllMathematicalProgrammingRowTypes 1009
AllSolutionStatesttt 1010
AllSolverInterrupts @i ... 1011
AllStochasticGenerationModes 1012
AllSuffixNames it 1013
AllValueKeywords o it i it 1014
AllViolationTypes 1015
ContinueAbort i e 1016
DiskWindowVoid, 1017
Integers i e e 1018
MaximizingMinimizing 1019
MergeReplace e 1020
OnOff e 1021
TimeSlotCharacteristics 1022
YesNO . .. e e e e e e e 1023
33 Model Related Identifiers 1024
AlIASSEItiONS i i i e e e e e e e e e 1025
AllConstraints ittt it e 1026
AllConventions ittt e 1027
AllDatabaseTables 1028
AllDefinedParameters. i 1029
AllDefinedSets 1030
AllFiles e 1031
AllFunctions i it e e e 1032
AlIGMPEVENtS i e e e e e e e e 1033
Allldentifiers 1034
Alllndices e 1035
AlllntegerVariables 1036
AlIMaCros e e e e e e 1037
AllMathematicalPrograms 1038
AllNonLinearConstraints 1039

AllParameters. v v v i e e e e e e e e e e e 1040

Contents

AllProcedures. e e 1041
AllQuantities i i it e e 1042
AllSections e 1043
AllSets e e e 1044
AllSolverSessionCompletionObjects 1045
AllSolverSessions 1046
AllStochasticConstraints 1047
AllStochasticParameters uuo... 1048
AllStochasticVariables 1049
AllUpdatableldentifiers 1050
AllVariables o 1051
AllVariablesConstraints 1052
34 Execution State Related Identifiers 1053
AllGeneratedMathematicalPrograms 1054
AllProgressCategories. oo i it i i .. 1055
AllStochasticScenarios 1056
CurrentAutoUpdatedDefinitions 1057
CurrentErrorMessage v v v v i i i e e e e 1058
CurrentFile e e 1059
CurrentFileName ittt 1060
Currentlnputsottt e e e 1061
CurrentMatrixBlockSizes, 1062
CurrentMatrixColumnCount 1063
CurrentMatrixRowCounto it i i 1064
CurrentPageNumber. 1065
ODBCDateTimeFormat 1066
35 Case Management Related Identifiers 1067
AllCases i e e e e e 1068
AllCaseTypPeS . v v v v i e e e e e e 1070
AllDataCategories 1071
AllDataFiles e e 1072
AllDataSets i e e e e 1073
CurrentCase v v i it e e e e e e e e e e e e e e e e 1074
CurrentCaseSelection 1075
CurrentDataSet i i i it e e e 1076
CurrentDefaultCaseType i i i it i e 1077
CurrentCaseFileContentType 1078
AllCaseFileContentTypes ¢ ot i v i it i e i e e e 1079
CaseFileURL it e e e s et e e e it e e 1080
36 Date-Time Related Identifiers 1081
AllAbbrMonths 1082
AllAbbrWeekdays 1083
AllMonths e 1084

AllTIMeZones v v i i e e e e e e e e e e e e e 1085

AllWeekdays
LocaleAllAbbrMonths
LocaleAllAbbrWeekdays
LocaleAllMonths
LocaleAllWeekdays
LocaleLongDateFormat
LocaleShortDateFormat.
LocaleTimeFormat
LocaleTimeZoneName
LocaleTimeZoneNameDST

37 Error Handling Related Identifiers

errh::PendingErrors
errhz:ErrorCodes
errh:AllErrorCategories
errh::AllErrorSeverities

Contents

Part IX Suffices

38 Common Suffices

38.1 Example
dm. ..o

39 Horizon Suffices

Past ..
planning L oo oo
Jbeyond ... oo oo o

40 Variable and Constraint Suffices

Jower e
Stochastic.
Upper .o e e e e e e
Niolation
.ExtendedConstraint.
.ExtendedVariable

Contents

41 Variable Suffices 1121
ReducedCost i e 1122
NOnvVar. . . .o i it i e e e e e e e e e e e e e e 1123
Relax e e 1124
Complementt e 1125
DefinitionViolation 1126
Derivative L e e e e e e 1127
Priority oL 1128
SmallestCoefficient 1129
NominalCoefficient 1130
LargestCoefficient 1131
SmallestValue, 1132
JLargestValue L 1133
42 Constraint Suffices 1134
ShadowPrice e 1135
0] 2 17/ 1136
RelaxationOnly 1137
SmallestShadowPrice 1138
LargestShadowPrice 1139
SmallestRightHandSide 1140
.NominalRightHandSide 1141
LargestRightHandSide 1142
43 Mathematical Program Suffices 1143
bratio ... 1145
cutoff ... e 1146
domlim e 1147
iterlim 1148
Hmrow e e e e 1149
nodlim. e e 1150
OPICA . & vt o e e e e e e e e e e e 1151
0 01 ol 1152
reslim e 1153
dolinfrep. . o . o e e 1154
Workspace e e e 1155
SolverStatus L e e e 1156
ProgramStatus L e 1157
SolverCalls o e 1158
.objective ... L L e e e 1159
ncumbent 1160
BestBound 1161
Nodes e e 1162
GenTime e e e e e 1163
SolutionTime e 1164

Jterations e e e e e e 1165

Contents

NumberOfBranches 1166
NumberOfConstraints 1167
NumberOfFails., 1168
NumberOfNonzeros 1169
NumberOfVariables. 1170
NumberOfinfeasibilities 1171
SumOfinfeasibilities 1172
.CallbackProcedure00 .co... 1173
.CallbackIterations, 1174
.CallbackTime., 1175
.CallbackStatusChange 1176
.CallbackIncumbent 1177
.CallbackReturnStatus 0., 1178
.CallbackAOA e 1179
.CallbackAddCut i i 1180
44 File Suffices 1181
AD e 1183
blank zeros 1184
0 1 1185
PageNumber 1186
PageMode L. 1187
PageSize . .. e 1188
Pagewidth L 1189
JopMargin 1190
LeftMargin e e 1191
BottomMargin e e e e 1192
BodyCurrentColumn 1193
BodyCurrentRow 1194
BodySize ... e 1195
FooterCurrentColumn 1196
JFooterCurrentRow, 1197
JFooterSize 1198
HeaderCurrentColumn 1199
HeaderCurrentRowo, .. 1200
HeaderSize e 1201
1 1202
IW . e e e 1203
15T 1204
5 1205
5] 1206
51 1207
15/ 1208
S 1209
SW i i e 1210

Contents

L 1212

W o e e e e e 1213

Part X Deprecated 1215
45 Deprecated Language Elements 1215
45.1 Deprecated keywords oo 1215
The deprecated keyword abort 1216

The deprecated keywords yesandno 1216

The deprecated keyword system 1216

45.2 Deprecated intrinsic procedures and functions 1217
45.3 Deprecated suffixes o o, 1217

46 Matrix Manipulation Functions 1220
MatrixActivateRow oo o 1222
MatrixAddColumn i e e 1223
MatrixAddROW o e e 1224
MatrixDeactivateRow L. 1225
MatrixFreezeColumn, 1226
MatrixGenerate e e e e 1227
MatrixModifyCoefficient 1228
MatrixModifyColumnType i .. 1229
MatrixModifyDirection, 1230
MatrixModifyLeftHandSide 1231
MatrixModifyLowerBound 1232
MatrixModifyQuadraticCoefficient 1233
MatrixModifyRightHandSide 1234
MatrixModifyRowTypettt i i ie e 1235
MatrixModifyType v v v i e e s e e 1236
MatrixModifyUpperBound 1237
MatrixRegenerateRow o o . 1238
MatrixRestoreStatettt 1239
MatrixSaveState e 1240
MatrixSolve e 1241
MatrixUnfreezeColumn 1242
GenerateCut.o e e 1243

47 Outer Approximation Functions 1244
MasterMIPAddLinearizations 1246
MasterMIPDeleteIntegerEliminationCut 1247
MasterMIPDeleteLinearizations 1248
MasterMIPEliminatelntegerSolution 1249
MasterMIPGetCPUTime 1250

MasterMIPGetlterationCount 1251

Contents

MasterMIPGetNumberOfColumns 1252
MasterMIPGetNumberOfNonZeros 1253
MasterMIPGetNumberOfRows 1254
MasterMIPGetObjectiveValue 1255
MasterMIPGetProgramStatus 1256
MasterMIPGetSolverStatus 1257
MasterMIPGetSumOfPenalties 1258
MasterMIPIsFeasible 1259
MasterMIPLinearizationCommand 1260
MasterMIPSetCallback 1262
MasterMIPSolve e 1263
MINLPGetlncumbentObjectiveValue 1264
MINLPGetOptimizationDirection 1265
MINLPIncumbentIsFeasible 1266
MINLPIncumbentSolutionHasBeenFound 1267
MINLPSetIncumbentSolution 1268
MINLPSetlterationCount, 1269
MINLPSetProgramsStatus 1270
MINLPSolutionDelete 1271
MINLPSolutionRetrieve 1272
MINLPSolutionSaveo uueo... 1273
NLPGetCPUTImMe ittt e e it e e e ie e e 1274
NLPGetlterationCount. it n .. 1275
NLPGetNumberOfColumns. 1276
NLPGetNumberOfNonZeros 1277
NLPGetNumberOfRows 1278
NLPGetObjectiveValue 1279
NLPGetProgramStatus. i i i i i v e 1280
NLPGetSolverStatus 1281
NLPIsFeasible 1282
NLPLinearizationPointHasBeenFound 1283
NLPSolutionlsInteger 1284
NLPSolve e e e e 1285
48 Data management via a single data manager file 1286
481 CASES v v v i i e e e e e e e e e e e e e e e e e e e 1286
CaseCreate i i it iiinnn 1287
CaseDelete uiee... 1288
CaseFind, 1289
CaseGetChangedStatus 1290
CaseGetDatasetReference 1291
CaseGetType i i i it et e e i e 1292
CaseLoadCurrent. 1293
CaseLoadIntoCurrent 1295
CaseMerget i e 1297

CaseNeW it e e e e e e e e 1299

xxvii

Contents

CaseSave i e e e e 1300
CaseSaveAll 1301
CaseSaveAs i i e e e e 1302
CaseSelect 1303
CaseSelectMultiple 1304
CaseSelectNew, 1305
CaseSetChangedStatus 1306
CaseSetCurrent vttt i i i i 1307
CaseReadFromSingleFile 1308
CaseWriteToSingleFile 1309
48.2 DataSelS . v v i i i i i e e e e e e e e e e e e e e e e e e 1310
DatasetCreate. it i i it i i i e e 1311
DatasetDelete, 1312
DatasetFind 1313
DatasetGetCategoryo v i v i it i et 1314
DatasetGetChangedStatus 1315
DatasetLoadCurrent 1316
DatasetLoadIntoCurrent 1317
DatasetMergeo i e 1318
DatasetNew i i ittt ittt et 1319
DatasetSave 1320
DatasetSaveAll 1321
DatasetSaveAst 1322
DatasetSelect 1323
DatasetSelectNew 1324
DatasetSetChangedStatus 1325
DatasetSetCurrent, 1326
48.3 DataManagerfiles 1327
CaseTypeCategories v v v v v i v v v e v 1328
CaseTypeContents v i v, 1329
DataCategoryContents 1330
DataFileCopy ittt it 1331
DataFileExists 1332
DataFileGetAcronym 1333
DataFileGetComment 1334
DataFileGetDescription 1335
DataFileGetGroup 1336
DataFileGetName. 1337
DataFileGetOwner 1338
DataFileGetPath 1339
DataFileGetTime 1340
DataFileReadPermitted 1341
DataFileSetAcronym 1342
DataFileSetComment 1343
DataFileWritePermitted 1344

Datalmport220 i 1345

Contents

DataManagerFileNew 1346
DataManagerFileOpen. 1347
DataManagerFileGetCurrent 1348
DataManagerExport, 1349
DataManagerlmport 1350

49 Deprecated AIMMS 220 Functions 1351
ListingFileCopy « « v v v v v v i et e e e e e 1352
ListingFileDelete 1353

Part XI Appendices 1355

Index 1355

Part 1

Elementary Computational
Operations

Chapter 1

Arithmetic Functions

AimMs supports the following arithmetic functions:

Abs
ArcCosh
ArcCos
ArcSin
ArcSinh
ArcTanh
ArcTan
Ceil
Cos
Cosh
Cube
Degrees
Div
ErrorF
Exp
Floor
Log
Log10
MapVal
Max

Min

Mod
Power
Precision
Radians
Round
ScalarValue
Sign
Sin
Sinh
Sqr
Sqrt
Tan
Tanh

Chapter 1. Arithmetic Functions

m Trunc
m Val

Chapter 1. Arithmetic Functions

Abs

Abs(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Abs returns the absolute value of x.

Remarks:

The function Abs can be used in constraints of nonlinear mathematical
programs. However, nonlinear solvers may experience convergence
problems if the argument assumes values around O.

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the
Language Reference.

Chapter 1. Arithmetic Functions

ArcCos
ArcCos(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range [—1,1].

Return value:
The ArcCos function returns the arccosine of x in the range 0 to 1 radians.
Remarks:

m A run-time error results if x is outside the range [-1, 1].
m The function ArcCos can be used in constraints of nonlinear
mathematical programs.

See also:

The functions ArcSin, ArcTan, Cos. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions

ArcCosh

ArcCosh(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range [1, o).

Return value:

The ArcCosh function returns the inverse hyperbolic cosine of x in the
range from 0 to .

Remarks:

m A run-time error results if x is outside the range [1, o].
m The function ArcCosh can be used in constraints of nonlinear
mathematical programs.

See also:

The functions ArcSinh, ArcTanh, Cosh. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions

ArcSin

ArcSin(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range [—1,1].

Return value:

The ArcSin function returns the arcsine of x in the range —7r/2 to /2
radians.

Remarks:

m A run-time error results if x is outside the range [-1,1].
m The function ArcSin can be used in constraints of nonlinear
mathematical programs.

See also:

The functions ArcCos, ArcTan, Sin. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions

ArcSinh
ArcSinh(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The ArcSinh function returns the inverse hyperbolic sine of x in the range
from —oo to oo,

Remarks:

The function ArcSinh can be used in constraints of nonlinear mathematical
programs.

See also:

The functions ArcCosh, ArcTanh, Sinh. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions

ArcTan

ArcTan(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The ArcTan function returns the arctangent of x in the range —1/2 to /2
radians.

Remarks:

The function ArcTan can be used in constraints of nonlinear mathematical
programs.

See also:

The functions ArcSin, ArcCos, Tan. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions

ArcTanh

ArcTanh(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range (-1, 1).

Return value:
The ArcTanh function returns the inverse hyperbolic tangent of x.
Remarks:

m A run-time error results if x is outside the range (-1, 1).
m The function ArcTanh can be used in constraints of nonlinear
mathematical programs.

See also:

The functions ArcCosh, ArcSinh, Tanh. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

10

Chapter 1. Arithmetic Functions

Ceil

Ceil(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Ceil returns the smallest integer value > x.
Remarks:

m The function Ceil will round to the nearest integer, if it lies within the
equality tolerances equality_absolute_tolerance and
equality_relative_tolerance.

m The function Ceil can be used in the constraints of nonlinear
mathematical programs. However, nonlinear solvers may experience
convergence problems around integer values.

m When the numerical expression contains a unit, the function Ceil will
first convert the expression to the corresponding base unit, before
evaluating the function itself.

See also:

The functions Floor, Round, Precision, Trunc. Arithmetic functions are
discussed in full detail in Section 6.1.4 of the Language Reference.
Numeric tolerances are discussed in Section 6.2.2 of the Language
Reference.

11

Chapter 1. Arithmetic Functions

Cos

Cos(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in radians.

Return value:

The Cos function returns the cosine of x in the range —1 to 1.

Remarks:

The function Cos can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Sin, Tan, ArcCos. Arithmetic functions are discussed in full
detail in Section 6.1.4 of the Language Reference.

12

Chapter 1. Arithmetic Functions

Cosh

Cosh(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The Cosh function returns the hyperbolic cosine of x in the range 1 to oo.

Remarks:

The function Cosh can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Sinh, Tanh, ArcCosh. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

13

Chapter 1. Arithmetic Functions

Cube

Cube(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Cube returns x3.

Remarks:

The function Cube can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Power, Sqr, and Sqrt. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

14

Chapter 1. Arithmetic Functions

Degrees

Degrees(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Degrees returns the value of x converted from radians to
degrees.

Remarks:

The function Degrees can be used in constraints of linear and nonlinear
mathematical programs.

See also:

The function Radians. Arithmetic functions are discussed in full detail in
Section 6.1.4 of the Language Reference.

15

Chapter 1. Arithmetic Functions

Div
Div(
X, I (input) numerical expression
y I (input) numerical expression
)
Arguments:
X
A scalar numerical expression.
y

A scalar numerical expression unequal to 0.
Return value:
The function Div returns x divided by y rounded down to an integer.
Remarks:
A run-time error results if y equals 0.
See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the
Language Reference.

16

Chapter 1. Arithmetic Functions

ErrorF

ErrorF(
X I (input) numerical expression
)

Arguments:

X
A scalar numerical expression.

Return value:
2
The function ErrorF returns the error function value —— [* e‘% dt.
Vam J-e
Remarks:

The function ErrorF can be used in constraints of nonlinear mathematical
programs.

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the
Language Reference.

17

Chapter 1. Arithmetic Functions

Exp

Exp(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Exp returns the exponential value e*.

Remarks:

The function Exp can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Log, Log10. Arithmetic functions are discussed in full detail
in Section 6.1.4 of the Language Reference.

18

Chapter 1. Arithmetic Functions

Floor

Floor(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Floor returns the largest integer value < x.
Remarks:

m The function Floor will round to the nearest integer, if it lies within the
equality tolerances equality_absolute_tolerance and
equality_relative_tolerance.

m The function Floor can be used in the constraints of nonlinear
mathematical programs. However, nonlinear solvers may experience
convergence problems around integer values.

m When the numerical expression contains a unit, the function Floor will
first convert the expression to the corresponding base unit, before
evaluating the function itself.

See also:

The functions Ceil, Round, Precision, Trunc. Arithmetic functions are
discussed in full detail in Section 6.1.4 of the Language Reference.
Numeric tolerances are discussed in Section 6.2.2 of the Language
Reference.

19

Chapter 1. Arithmetic Functions

Log

Log(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range (0, o).

Return value:
The function Log returns the natural logarithm In(x).
Remarks:

m A run-time error results if x is outside the range (0, o).
m The function Log can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Exp, Logl0. Arithmetic functions are discussed in full detail
in Section 6.1.4 of the Language Reference.

20

Chapter 1. Arithmetic Functions

Logl0
Log10¢(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range (0, o).

Return value:
The function Logl0 returns the base-10 logarithm of x.
Remarks:

m A run-time error results if x is outside the range (0, o).
m The function Logl0 can be used in constraints of nonlinear
mathematical programs.

See also:

The functions Exp, Log. Arithmetic functions are discussed in full detail in
Section 6.1.4 of the Language Reference.

21

Chapter 1. Arithmetic Functions

MapVal

MapVal(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function MapVal returns the (integer) mapping value of any real or
special number X, according to the following table.

Value x | Description MapVal
value
number | any valid real number 0
UNDF undefined (result of an arithmetic error) 4
NA not available 5
INF +00 6
-INF —0o0 7
ZERO numerically indistinguishable from 8
zero, but has the logical value of one.

See also:

Special numbers in AIMMS and the MapVal function are discussed in full
detail in Section 6.1.1 of the Language Reference.

22

Chapter 1. Arithmetic Functions

Max
Max (
x1, I (input) numerical, string or element expression
X2, I (input) numerical, string or element expression
)
Arguments:
x1,x2,...

Multiple numerical, string or element expressions.

Return value:

The function Max returns the largest number, the string highest in the
lexicographical ordering, or the element value with the highest ordinal
value, among x1, x2,...

Remarks:

The function Max can be used in constraints of nonlinear mathematical
programs. However, nonlinear solvers may experience convergence
problems if the first order derivatives of two arguments between which
the Max function switches are discontinous.

See also:

The function Min. Arithmetic functions are discussed in full detail in
Section 6.1.4 of the Language Reference.

23

Chapter 1. Arithmetic Functions

Min
Min(
x1, I (input) numerical, string or element expression
X2, I (input) numerical, string or element expression
)
Arguments:
x1,x2,...

Multiple numerical, string or element expressions.

Return value:

The function Min returns the smallest number, the string lowest in the
lexicographical ordering, or the element value with the lowest ordinal
value, among x1, x2,...

Remarks:

The function Min can be used in constraints of nonlinear mathematical
programs. However, nonlinear solvers may experience convergence
problems if the first order derivatives of two arguments between which
the Min function switches are discontinous.

See also:

The function Max. Arithmetic functions are discussed in full detail in
Section 6.1.4 of the Language Reference.

24

Chapter 1. Arithmetic Functions

Mod
Mod(
X, I (input) numerical expression
y I (input) numerical expression
)
Arguments:
X
A scalar numerical expression.
y

A scalar numerical expression unequal to 0.

Return value:

The function Mod returns the remainder of x after division by |y |. For

vy > 0, the result is an integer in the range 0,...,y — 1 if both x and y are
integers, or in the interval [0, y) otherwise. For y < 0, the result is an
integer in the range v — 1,...,0 if both x and y are integers, or in the
interval (y, 0] otherwise.

Remarks:

= A run-time error results if y equals 0.

m The function Mod can be used in constraints of mathematical programs.
However, nonlinear solver may experience convergence problems if x
assumes values around multiples of y.

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the
Language Reference.

25

Chapter 1. Arithmetic Functions

Power
Power(
X, ! (input) numerical expression
y I (input) numerical expression
)
Arguments:
X

A scalar numerical expression.

A scalar numerical expression.

Return value:

The function Power returns x raised to the power y.
Remarks:

m The following combination of arguments is allowed:
-x>0
-x=0andy >0
- x <0 and y integer
In all other cases a run-time error will result.
m The function can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Cube, Sqr, and Sqrt. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

26

Chapter 1. Arithmetic Functions

Precision

Precision(

X, I (input) numerical expression
y I (input) integer expression
)
Arguments:
X
A scalar numerical expression.
y

An integer expression.

Return value:

The function Precision returns x rounded to y significant digits.
Remarks:

m The function Precision can be used in constraints of nonlinear
mathematical programs. However, nonlinear solvers may experience
convergence problems around the discontinuities of the Precision
function.

m When the numerical expression contains a unit, the function Precision
will first convert the expression to the corresponding base unit, before
evaluating the function itself.

See also:

The functions Round, Ceil, Floor, Trunc. Arithmetic functions are discussed
in full detail in Section 6.1.4 of the Language Reference.

27

Chapter 1. Arithmetic Functions

Radians

Radians(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Radians returns the value of x converted from degrees to
radians.

Remarks:

The function Radians can be used in constraints of linear and nonlinear
mathematical programs.

See also:

The function Degrees. Arithmetic functions are discussed in full detail in
Section 6.1.4 of the Language Reference.

28

Chapter 1. Arithmetic Functions

Round
Round(
X, I (input) numerical expression
decimals ! (optional) integer expression
)
Arguments:
X

A scalar numerical expression.

decimals (optional)
An integer expression.

Return value:

The function Round returns the integer value nearest to x. In the presence
of the optional argument n the function Round returns the value of x
rounded to n decimal places left (decimals < 0) or right (decimals > 0)
of the decimal point.

Remarks:

m The function Round can be used in constraints of nonlinear
mathematical programs. However, nonlinear solvers may experience
convergence problems around the discontinuities of the Round function.

m When the numerical expression contains a unit, the function Round will
first convert the expression to that unit, before evaluating the function
itself. See also the option rounding compatibility in the option category
backward compatibility.

See also:

The functions Precision, Ceil, Floor, Trunc. Arithmetic functions are
discussed in full detail in Section 6.1.4 of the Language Reference.

29

Chapter 1. Arithmetic Functions

ScalarValue

ScalarValue(
identifier, ! (input) element expression into AllIdentifiers
suffix ! (optional) element expression into A11SuffixNames

)
Arguments:

identifier
A scalar element expression into Al1Identifiers

suffix

A scalar element expression into A11SuffixNames

Return value:

The function ScalarValue returns the value contained in the scalar
identifier identifier or scalar reference identifier.suffix.

Remarks:

When identifier or identifier.suffix is not a scalar numerical valued
reference, the function ScalarValue returns 0.0.

See also:

The function Val.

The ScalarValue function is a function that operates on subsets of
Al1Identifiers. Other functions that operate on subsets of Al1Identifiers
are referenced in Section 25.4 of the Language Reference.

30

Chapter 1. Arithmetic Functions

Sign
Sign(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Sign returns +1 if x > 0, -1 if x <0 and 0 if x = 0.

Remarks:

The function Sign can be used in constraints of nonlinear mathematical
programs. However, nonlinear solver may experience convergence
problems round 0.

See also:

The function Abs. Arithmetic functions are discussed in full detail in
Section 6.1.4 of the Language Reference.

31

Chapter 1. Arithmetic Functions

Sin
Sin(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in radians.

Return value:

The Sin function returns the sine of x in the range —1 to 1.

Remarks:

The function Sin can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Cos, Tan, ArcSin. Arithmetic functions are discussed in full
detail in Section 6.1.4 of the Language Reference.

32

Chapter 1. Arithmetic Functions

Sinh
Sinh(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The Sinh function returns the hyperbolic sine of x in the range —oo to .

Remarks:

The function Sinh can be used in the constraints of nonlinear
mathematical programs.

See also:

The functions Cosh, Tanh, ArcSinh. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

33

Chapter 1. Arithmetic Functions

Sqr
Sqr(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Sqr returns x2.

Remarks:

The function Sqr can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Power, Cube, and Sqrt. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

34

Chapter 1. Arithmetic Functions

Sqrt
Sqrt(

X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in the range [0, o).

Return value:
The function Sqrt returns the ./x.
Remarks:

m A run-time error results if x is outside the range [0, o).
m The function Sqrt can be used in the constraints of nonlinear
mathematical programs.

See also:

The functions Power, Cube, and Sqr. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

35

Chapter 1. Arithmetic Functions

Tan

Tan(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression in radians.

Return value:

The Tan function returns the tangent of x in the range —o to co.

Remarks:

The function Tan can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Cos, Sin, ArcTan. Arithmetic functions are discussed in full
detail in Section 6.1.4 of the Language Reference.

36

Chapter 1. Arithmetic Functions

Tanh

Tanh(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The Tanh function returns the hyperbolic tangent of x in the range —1 to 1.

Remarks:

The function Tanh can be used in constraints of nonlinear mathematical
programs.

See also:

The functions Cosh, Sinh, ArcTanh. Arithmetic functions are discussed in
full detail in Section 6.1.4 of the Language Reference.

37

Chapter 1. Arithmetic Functions

Trunc

Trunc(
X I (input) numerical expression

)
Arguments:

X
A scalar numerical expression.

Return value:

The function Trunc returns the truncated value of x: Sign(x)-Floor(Abs(x)).
Remarks:

m The function Trunc will round to the nearest integer, if it lies within the
equality tolerances equality_absolute_tolerance and equality_relative_
tolerance.

m The function Trunc can be used in the constraints of nonlinear
mathematical programs. However, nonlinear solver may experience
convergence problems around integer argument values.

m When the numerical expression contains a unit, the function Trunc will
first convert the expression to the corresponding base unit, before
evaluating the function itself.

See also:

The functions Ceil, Floor, Round, Precision. Arithmetic functions are
discussed in full detail in Section 6.1.4 of the Language Reference.
Numeric tolerances are discussed in Section 6.2.2 of the Language
Reference.

38

Chapter 1. Arithmetic Functions

Val

Val(
str I (input) string or element expression

)
Arguments:

str
A scalar string or element expression.

Return value:

The function Val returns the numerical value represented by the string or
element str.

Remarks:

If str cannot be interpreted as a numerical value, a runtime error may
occur, see option suppress error messages of val function.

See also:

The Val function is discussed in full detail in Section 5.2.1 of the Language
Reference.

39

Chapter 2

Set Related Functions

AimMs supports the following set related functions:

ActiveCard

Card

CloneETement

Element

ElementCast
ElementRange
FindUsedETements

First

Last

Ord
RestorelInactiveElements
RetrieveCurrentVariableValues
SetAddRecursive
SetETlementAdd
SetElementRename
StringToETement
SubRange

Chapter 2. Set Related Functions

ActiveCard

The function ActiveCard returns the cardinality of active elements in its
identifier argument, or the cardinality of active elements of a suffix of that
identifier.
Card(
Identifier, I (input) identifier reference

[Suffix] I (optional) element in the set A11SuffixNames
)

Arguments:

Identifier

A reference to a set or an indexed identifier.
Suffix

An element in the predefined set AT1SuffixNames.

Return value:

If Identifier is a set, the function ActiveCard returns the number of active
elements in Identifier. If Identifier is an indexed identifier, the function
ActiveCard returns the number of nondefault values stored for Identifier.
If Suffix is given, the number of nondefault values stored for the given
suffix of Identifier.

Remarks:

The ActiveCard function cannot be applied to slices of indexed identifiers.
In such a case, you can use the Count operator to count the number of
nondefault elements.

See also:

The function Card and Count operator (see also Section 6.1.6 of the
Language Reference).

41

Chapter 2. Set Related Functions

Card

The function Card returns the cardinality of its identifier argument, or of the
cardinality of a suffix of that identifier.

Card(
Identifier, I (input) identifier reference
[Suffix] ! (optional) element in the set Al1SuffixNames
)

Arguments:

Identifier
A reference to a set or an indexed identifier.
Suffix
An element in the predefined set of A11SuffixNames.

Return value:

If Identifier is a set, the function Card returns the number of elements in
Identifier. If Identifier is an indexed identifier, the function Card returns
the number of nondefault values stored for Identifier. If Suffix is given, the
number of nondefault values stored for the given suffix of Identifier.

Remarks:

m The Card function cannot be applied to slices of indexed identifiers. In
such a case, you can use the Count operator to count the number of
nondefault elements.

m When the Card function is used inside the definition of a parameter or a
set and the first argument is an index or element parameter into the set
A11Identifiers then the definition depends on all identifiers that can
appear on the left hand side of an assignment (sets without a definition,
parameters without a definition, variables and constraints). The
cardinality will be computed for all identifiers, including those with a
definition. These definitions will not be made up to date, however. This
is illustrated in the following example.

Parameter A;
Parameter B {

Definition : A + 1;
}
Parameter TheCards {
IndexDomain : IndexIdentifiers;
Definition : Card(IndexIdentifiers, ’Level’);
}
Body:
A:=1;

display TheCards;

42

Chapter 2. Set Related Functions

Here TheCards is computed in the display statement because A just
changed. The definition of TheCards, that is made up to date by the
display statement, will, however, not invoke the computation of B,
although it is not up to date. This is done in order to avoid circular
references while making set and parameter definitions up to date. In
order to make B up to date consider using the Update statement, see also
Section 7.3 of the Language Reference.

See also:

The function ActiveCard and the Count operator (see also Section 6.1.6 of
the Language Reference).

43

Chapter 2. Set Related Functions

CloneElement

The procedure CloneElement copies the data associated with a particular
element to another element.

CloneETement(
updateSet, ! (input, output) a set identifier
originalElement, I (input) an element in the set
cloneName, I (input) a string that is the name of the clone
cloneElement, ! (output) an element parameter

includeDefinedSubsets) ! (optional) an integer, default 0.

The procedure CloneETlement performs the following actions:

1.

It creates or finds an element with name cloneName: cloneETement. The
element cloneETement is inserted into updateSet if it is not already there.
This insertion is only permitted if updateSet does not have a definition.

. For each domain set of updateSet, say insertDomainSet, the element

cloneETement is inserted into insertDomainSet if it is not already there.
Such an insertion is only permitted if insertDomainSet does not have a
definition.

. For each subset of updateSet, say insertSubset in which originalElement

is an element, cloneETement is also inserted into insertSubset. If
includeDefinedSubsets is 0, then insertSubset is skipped if it is a defined
subset.

The domain sets of steps 1 and 2, and the sets modified in step 3 form a
set, say modifiedSets.

. Identifiers declared over a set in modifiedSets that meet one of the

following criteria, are selected:

m It is a non-local multi-dimensional set without a definition.

m It is a non-local parameter without a definition.

m It is a variable.

m [t is a constraint.
These identifiers form the set modifiedIdentifiers.
For each identifier in the set modifiedIdentifiers, and all suffixes of this
identifier, the data associated with element originalElement is copied to
cloneElement.

Arguments:

updateSet

A one-dimensional set.

originalElement

An element valued expression that should result in an element in
updateSet.

cloneName

A string expression that should result in a name that is in the set
updateSet or can be added to that set.

44

Chapter 2. Set Related Functions

cloneElement
An element parameter, in which the resulting element is stored.

includeDefinedSubsets
When non-zero, defined subsets are included in the modifiedSets as
well. When these defined subsets are evaluated thereafter again, this
may result in the creation of inactive data. Inactive data can be
removed by a CLEANUP or CLEANDEPENDENTS statement, see Section 25.3
of the Language Reference. Defined subsets that are defined as an
enumeration are never included.

Return value:
The procedure returns 1 if successful and 0 otherwise. Possible reasons
for returning O are:

m originalElement is not in updateSet.
m cloneName equals name of originalETement.
m There are no identifiers modified.

Remarks:

If you want to make sure that the string cloneName is not yet an element in
updateSet, use a statement like:

if (not (cloneName in updateSet)) then
CloneETement(...);
endif ;

Example:

With the following declarations (and initial data):

Set S {
Index i, 3
Parameter :oep;
InitialData : data { a };
}
Parameter P {
IndexDomain : 1i;
InitialData : data {a:1};
}
Parameter Q {
IndexDomain : (i,j);
InitialData : data { (a, a) : 11}
}

the statement

CloneElement(S, 'a’, "b", ep);

results in S, P, Q and ep having the following data:

S:=data { a, b} ;

P data {a:1, b:1};

Q data { (a,a):1, (a,b):1, (b,a):1, (b,b):11};
ep :="b" ;

45

Chapter 2. Set Related Functions

See also:

The function StringToETement, the procedure FindUsedETements and the
procedure RestoreInactiveETements.

46

Chapter 2. Set Related Functions

Element

With the function Element you can retrieve the n-th element from a set.

Element(
Set, I (input) set reference
n ! (input) integer expression
)
Arguments:
Set

The set from which an element is to be returned.

An integer expression indicating the ordinal number of the element to
be returned.

Return value:
The function Element returns the n-th element of set Set.

Remarks:

If there is no n-th element in Set, the function returns the empty element
"’ instead.

47

Chapter 2. Set Related Functions

ElementCast

With the function ElementCast you can cast an element of one set to an
(existing) element with the same name in a set with a different root set.

ETementCast(
set, I (input) a set expression
element, ! (input) a scalar element expression
[create] ! (optional) 0 or 1
)
Arguments:
set

A set in which you want to find a specific element name.

element
A scalar element expression, representing the element that you want
to convert to a different root set hierarchy.

create (optional)
An indicator whether or not a nonexisting element are added to the
set during the call.

Return value:

The function returns the existing element or, if the element cannot be
converted to an existing element and the argument create is not set to 1,
the function returns the empty element. If create is set to 1, nonexisting
elements will be created on the fly.

See also:

The procedure SetElementAdd.

48

Chapter 2. Set Related Functions

ElementRange

With the function ElementRange you can create a set with elements in which
each element can be constructed using a prefix string, a postfix string, and a a
sequential number.

ETementRange(
from, ! (input) integer expression
to, I (input) integer expression

|
|
[incr,] ! (optional) integer expression
|
|
|

[prefix,] I (optional) string expression
[postfix,] I (optional) string expression
[fi11] ! (optional) 0 or 1
)
Arguments:
from

The integer value for which the first element must be created

to
The integer value for which the last element must be created

incr (optional)
The integer-valued interval length between two consecutive elements.
If omitted, then the default interval length of 1 is used.

prefix (optional)
The prefix string for every element. If omitted, then the elements
have no prefix (and thus start with the number).

postfix (optional)
The postfix string for every element. If omitted, then the elements
have no postfix (and thus end with the number).

fill (optional)
This logical indicator specifies whether the numbers must be padded
with leading zeroes. If omitted, then the default value 1 is used.

Return value:

The function returns a set containing the created elements.

49

Chapter 2. Set Related Functions

FindUsedElements

The procedure FindUsedETements finds all elements of a particular set that are
in use in a given collection of indexed model identifiers.

FindUsedETements(
SearchSet, I (input) a set
SearchIdentifiers, ! (input) a subset of Al1Identifiers
UsedETements I (output) a subset
)

Arguments:

SearchSet
The set for which you want to find the used elements.

Searchlidentifiers
A subset of Al1Identifiers, holding identifiers that are indexed over
SearchSet.

UsedElements
A subset of SearchSet. On return this subset will contain the elements
that are currently used (i.e. have corresponding nondefault values) in
the identifiers contained in Searchldentifiers.

50

Chapter 2. Set Related Functions

First

With the function First you can retrieve the first element from a set.

First(
Set, I (input) set reference

)
Arguments:

Set
The set from which the first element is to be returned.

Return value:
The function First returns the first element of set Set.

Remarks:

If there is no element in Set, the function returns the empty element ’’
instead.

51

Chapter 2. Set Related Functions

Last

With the function Last you can retrieve the last element from a set.

Last(
Set, I (input) set reference

)
Arguments:

Set
The set from which the last element is to be returned.

Return value:
The function Last returns the last element of set Set.

Remarks:

If there is no element in Set, the function returns the empty element ’’
instead.

52

Chapter 2. Set Related Functions

Ord

The function Ord returns the ordinal number of a set element relative to a set.

Ord(
index, I (input) element expression
[set] ! (optional) set reference
)
Arguments:
index
An element expression for which you want to obtain the ordinal
number.

set (optional)
The set with respect to which you want the ordinal number to be
taken. If omitted, set is assumed to be the range of the argument
index.

Return value:
The function Ord returns the ordinal number of index in set set.

Remarks:

A compile time error occurs if the argument set is not present, and AIMMS
is unable to determine the range of index.

53

Chapter 2. Set Related Functions

RestorelnactiveElements

The procedure RestoreInactiveElements finds and restores all elements that
were previously removed from a particular set, but for which inactive data
still exists in a given collection of indexed model identifiers.

RestoreInactiveETements(

SearchSet, I (input/output) a set
SearchIdentifiers, ! (input) a subset of AllIdentifiers
UsedETements ! (output) a subset
)
Arguments:

SearchSet
The set for which you want to find the inactive elements.

Searchlidentifiers
A subset of Al1Identifiers, holding identifiers that are indexed over
SearchSet.

UsedElements

A subset of SearchSet. On return this subset will contain all the
inactive elements that are currently used (i.e. have corresponding
nondefault values) in the identifiers contained in Searchldentifiers.

Remarks:

The inactive elements found are placed in the result-set, but are also
automatically added to the search-set.

54

Chapter 2. Set Related Functions

RetrieveCurrentVariableValues

With the procedure RetrieveCurrentVariableValues you can obtain the variable
values for a given collection of variables during a running solution process.
This procedure can only be called from within the context of a solver callback
procedure.

RetrieveCurrentVariableValues(
Variables I (input) a subset of AllvVariables
)

Arguments:

Variables
A subset of Al1Variables, holding all the variables for which you want
to retrieve the current values.

See also:

Solver callback procedures are discussed in full detail in Section 15.2 of
the Language Reference

55

Chapter 2. Set Related Functions

SetAddRecursive

With the procedure SetAddRecursive you can merge the elements of one set
into another set.

SetAddRecursive(
toSet, ! (input/output) a set
fromSet I (input) a set
)

Arguments:

toSet
The set into which the elements of fromSet are merged.

fromSet
The set that you want to merge in toSet.

Remarks:

m The sets toSet and fromSet should have the same root set.

m The difference between this function and a regular set assignment is
that in case fromSet is not the domain of toSet all elements added to
toSet will also be added to the domain set of toSet

56

Chapter 2. Set Related Functions

SetElementAdd

With the procedure SetETementAdd you can add new elements to a set. When
you apply SetElementAdd to a root set, the element will be added to that root
set. When you apply it to a subset, the element will be added to the subset as
well as to all its supersets, up to and including its associated root set.

SetETementAdd(
Setname, I (input/output) a set
Elempar, ! (output) an element parameter
Newname I (input) a scalar string expression

)
Arguments:

Setname
The root set or subset to which you want to add the element.

Elempar
An element parameter into Setname, that on return will point to the
newly added element.

Newname
A string holding the name of the element to be added.

Remarks:

If the element already exists in the set, the procedure does not make any
changes to the set, and on return the element parameter Elempar will
point to the existing element.

See also:

m The function ElementCast and the procedures SetElementRename and
StringToElement.

m The lexical conventions for set elements in Section 2.3 of the Language
Reference.

57

Chapter 2. Set Related Functions

SetElementRename

With the procedure SetElementRename you can rename an element in a set.

SetETementRename(
Setname, I (input) a set
Element, ! (input) an element parameter
Newname I (input) a scalar string expression

)
Arguments:

Setname
The root set or subset in which you want to rename an element.

Element
The element that you want to rename.

Newname
A string holding the new name of the element.

Remarks:

m If the new name for the element already exists in the set, the procedure
will generate an execution error.

m AIMMS will refuse to rename a set element, if an explicit reference to
such an element exists in the model source.

See also:

m The procedure SetETementAdd, and the function StringToETement.
m The lexical conventions for set elements in Section 2.3 of the Language
Reference.

58

Chapter 2. Set Related Functions

StringToElement

With the function StringToETement you can convert a string into an (existing)
element of a set.

StringToETlement(
Set, ! (input) a set expression
Name, I (input) a scalar string
[create] ! (optional) 0 or 1, default 0
)
Arguments:
Set
A set in which you want to find a specific element name.
Name
A scalar string expression, representing the string that you want to
convert.

create (optional)
An indicator whether or not a nonexisting element are added to the
set during the call.

Return value:

The function returns the existing element or, if the string cannot be
converted to an existing element and the argument create is not set to 1,
the function return the empty element. If create is set to 1, nonexisting
elements will be created on the fly.

See also:

m The function ElementCast and the procedure SetETementAdd.
m The lexical conventions for set elements in Section 2.3 of the Language
Reference.

59

Chapter 2. Set Related Functions

SubRange

The function SubRange extracts a subrange of consecutive elements from an
existing set.

SubRange(
Superset, ! (input) a simple set
First, I (input) an element
Last I (input) an element

)
Arguments:

Superset

The set containing the subrange of elements that you want to extract.
First

An element in Superset representing the first element of the subrange.
Last

An element in Superset representing the last element of the subrange.

Return value:

The function returns a set containing the subrange of elements extracted

from Superset. If the element First is positioned after Last, then the empty
set is returned.

60

Chapter 3

String Manipulation Functions

AimMs supports the following functions for manipulating strings:

Character
CharacterNumber
FindNthString
FindReplaceNthString
FindReplaceStrings
FindString
FormatString
GarbageCollectStrings
RegexSearch
StringCapitalize
StringlLength
StringOccurrences
StringTolLower
StringToUpper
SubString

Chapter 3. String Manipulation Functions

Character
The function Character returns the string consisting of a single character
whose ordinal number is the value of the argument.

Character(
n I (input) a numeric expression

)
Arguments:

n
A numeric expression in the range {0..55295} U {57344..65535}.

Return value:

The function Character returns a string of length 1. Exception: when the
value 0 is passed it returns the empty string.

See also:

The function CharacterNumber.

62

Chapter 3. String Manipulation Functions

CharacterNumber
The function CharacterNumber returns the character number of the first
character in a string. It returns 0 for the empty string.

CharacterNumber (
text I (input) a scalar string expression

)
Arguments:

text
The string for which you want to have the value of the first character.

Return value:
The function CharacterNumber returns a value in the range { 0 .. 65535 }.

See also:

The function Character.

63

Chapter 3. String Manipulation Functions

FindNthString

The function FindNthString searches for the n-th occurrence of a substring (a
key) within a search string.

FindNthString(
SearchString, ! (input) a scalar string expression
Key, I (input) a scalar string expression
Nth, I (input) an integer expession
[CaseSensitive], ! (optional) binary
[WordOnly], I (optional) binary
[IgnoreWhite] ! (optional) binary
)

Arguments:

SearchString
The string in which you want to find the substring Key.

Key
The substring to search for.

Nth
The function will search for the Nth occurrence of the substring. If
this number is negative, then the function will search backwards
starting from the right.

CaseSensitive

The search will be case sensitive when the value is 1. The default
depends on the setting of the option
Case_sensitive_string_comparison, and is 1 if this option is ’On’ and 0
if this option is 'Off’. The default of the option
Case_sensitive_string_comparison is 'On’.

WordOnly
It is a word only search when this option is set to 1. The default is 0.

IgnoreWhite
The search ignores whites if this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function FindNthString
is case sensitive by default. You can modify this behavior through the
option Case_Sensitive_String_Comparison.

Return value:

The function returns the start position of the n-th occurrence of the
substring starting from the left (or right). If the substring does not exist
within the string, or does not occur Nth times then the function returns O.
When the argument Nth is 0, then this function will always return 0.

Chapter 3. String Manipulation Functions

See also:

The functions FindString, StringOccurrences, RegexSearch.

65

Chapter 3. String Manipulation Functions

FindReplaceNthString

The function FindRepTaceNthString constructs a string by searching for the
Nth occurrence of a substring (a key) within a search string and replacing this
occurrence with another string. It returns the constructed string.

FindReplaceNthString(

SearchString, I (input) a scalar string expression
Key, ! (input) a scalar string expression
Replacement, I (input) a scalar string expression
Nth, I (input) an integer expession
[CaseSensitive], ! (optional) binary
[WordOnly] ! (optional) binary
)

Arguments:

SearchString

The string in which you want to find the substring key.

Key
The substring to search for.

Replacement
The string used to replace Key.

Nth

The function will search for the Nth occurrence of the substring. If
this number is negative, then the function will search backwards
starting from the right.

CaseSensitive
The search will be case sensitive when the value is 1. The default
depends on the setting of the option
Case_sensitive_string_comparison, and is 1 if this option is ’On’ and 0
if this option is 'Off’. The default of the option
Case_sensitive_string_-comparison is 'On’.

WordOnly
It is a word only search when this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function
FindRepTaceNthString is case sensitive by default. You can modify this
behavior through the option Case_Sensitive_String_-Comparison.

Return value:

The function returns the resulting string. If the Nth occurrence of Key is
not found, the original string is returned.

66

Chapter 3. String Manipulation Functions

See also:

The functions FindNthString, StringOccurrences and FindReplaceStrings.

67

Chapter 3. String Manipulation Functions

FindReplaceStrings

The function FindReplaceStrings constructs a string by searching for every
occurrence of a substring (a key) within a search string and replaces it with
another string. It returns the constructed string.

FindReplaceStrings(
SearchString, I (input) a scalar string expression
Key, ! (input) a scalar string expression
Replacement, I (input) a scalar string expression
[CaseSensitive], ! (optional) binary
[WordOnly] ! (optional) binary
)

Arguments:
SearchString

The string in which you want to find the substring key.
Key
The substring to search for.

Replacement
The string used to replace Key.

CaseSensitive
The search will be case sensitive when the value is 1. The default
depends on the setting of the option
Case_sensitive_string_comparison, and is 1 if this option is ’On’ and 0
if this option is 'Off’. The default of the option
Case_sensitive_string.-comparison is 'On’.

WordOnly
It is a word only search when this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function
FindRepTaceStrings is case sensitive by default. You can modify this
behavior through the option Case_Sensitive_String_Comparison.

Return value:

The function returns the resulting string. If Key is not found, the original
string is returned.

See also:

The functions FindString, StringOccurrences and FindReplaceNthString.

68

Chapter 3. String Manipulation Functions

FindString

The function FindString searches for the occurrence of a substring (a key)
within a search string.

FindString(
SearchString, ! (input) a scalar string expression
Key, ! (input) a scalar string expression
[CaseSensitive], ! (optional) binary
[(WordOnly], I (optional) binary
[IgnoreWhite] ! (optional) binary
)

Arguments:
SearchString

The string in which you want to find the substring key.
Key
The substring to search for.

CaseSensitive

The search will be case sensitive when the value is 1. The default
depends on the setting of the option

Case_sensitive_string_comparison, and is 1 if this option is ’On’ and 0
if this option is 'Off’. The default of the option
Case_sensitive_string_comparison is 'On’.

WordOnly
It is a word only search when this option is set to 1. The default is 0.

IgnoreWhite
The search ignores whites if this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function FindString is
case sensitive by default. You can modify this behavior through the option
Case_Sensitive_String-Comparison.

Return value:

The function returns the start position of the first occurrence of the
substring. If the substring does not exist, then the function returns 0.

See also:

The functions FindNthString, RegexSearch.

69

Chapter 3. String Manipulation Functions

FormatString

With the FormatString function you can compose a string that is built up from
combinations of numbers, strings and set elements. The FormatString
function accepts a varying number of arguments, defined by the conversion
specifiers in the format string.

FormatString(
formatstring, ! (input) a literal double quoted string
arguments, I (input) a list of numbers, strings, and set elements

)
Arguments:

formatstring
A format string that specifies how the returned string is composed.
The string should contain the proper conversion specifier for each
following argument.

arguments,...
One or more arguments of type number, string or element. The order

of these arguments must coincide with the order of the conversion
specifiers in formatstring.

Return value:
The function returns the formatted string.
See also:

For a detailed description of the conversion specifiers in AIMMS see
Section 5.3.2 of the Language Reference.

70

Chapter 3. String Manipulation Functions

GarbageCollectStrings

The procedure GarbageCollectStrings removes any unused strings in the
internal data structures of AiMmms. If you do not call this procedure explicitly,
AIMMS performs an automatic garbage collect at certain places during
execution. For example as part of the Empty statement when recently a lot of
string valued expressions have been executed.

GarbageCollectStrings()

Remarks:

Use this procedure only when you notice that AIMMS uses a lot of memory
that might be related to having many strings in the model. It is a rather
expensive procedure in terms of execution time, because it needs to
enumerate all the individual entries of all string parameters in the model.
After runnig it you might see a drop in the memory that is in use by
AIMMS, but be aware that because of the internal memory model of
AIMMS, some memory is not given back to the operating system directly,
but has only been marked for re-use in subsequent memory requests.

71

Chapter 3. String Manipulation Functions

RegexSearch

The function RegexSearch tells if there is a substring in the search string that
matches the regex pattern.

RegexSearch(
SearchString, ! (input) a scalar string expression
Pattern, ! (input) a scalar string expression
[CaseSensitive] ! (optional) binary

)
Arguments:

SearchString
The string in which you want to find a substring matching the regex
pattern.

Pattern
The regular expressions pattern to match. Multilines are not
supported.

CaseSensitive
The search will be case sensitive when the value is 1. The default
depends on the setting of the option
Case_sensitive_string_comparison, and is 1 if this option is ’On’ and 0
if this option is 'Off’. The default of the option
Case_sensitive_string_comparison is 'On’.

Remarks:

m The used regular expressions grammar follows the implementation of
the modified ECMAScript regular expression grammar in the C++
Standard Library. It follows ECMA-262 grammar and POSIX grammar,
with some modifications. For further references go to this link
https://en.cppreference.com/w/cpp/regex/ecmascript
You can find more information on ESMA Script regular expressions via
this link: ECMA Regular expressions. You can find more information on
POSIX regular expressions via this link:

POSIX Basic Regular Expressions.

m To include a special character in a string, it should be escaped by the
backslash character (for more information on special characters see
also Section 5.3.2 of the Language Reference). In regular expressions
special characters also have to be escaped in order to be included in a
pattern. So, for example, in order to match a backslash character the
pattern should contain four backslashes (see the example below).

72

https://en.cppreference.com/w/cpp/regex/ecmascript
https://ecma-international.org/ecma-262/#sec-regexp-regular-expression-objects
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03

Chapter 3. String Manipulation Functions

Return value:

The function returns 1 if a substring that matches the regex pattern exists
in the search string. When the pattern is an empty string, the function
returns 1. In all other cases, the function returns 0.

Example:

The following example checks if the path contains the specified folder
name on disk C. With the following declarations (and initial data):

Parameter P;
StringParameter path {
InitialData: "C:\\ProgramFiles\\Folder\\SubFolder";
}
StringParameter regexPattern {
InitialData: "c:.*\\\\ProgramFiles(\\\\|$)";
}

the statement

P := regexsearch(path, regexPattern, 0);

results in P being 1.

The used regular expression pattern specifies that the path starts with
"c:", followed by zero or more characters (regular expression ".*"),
followed by "\ProgramFiles" (regular expression "\\\\ProgramFiles"), and
ends with a backslash or the end of line (regular expression "\\\\/[$").

See also:

The functions FindString, FindNthString.

Chapter 3. String Manipulation Functions

StringCapitalize
The function StringCapitalize converts the first character of a string to upper
case, and all other characters to lower case.

StringCapitalize(

text I (input) a scalar string expression

)
Arguments:

text
The string that you want to capitalize.

Return value:

The function returns the capitalized string.

See also:

The functions StringTolLower, StringToUpper.

74

Chapter 3. String Manipulation Functions

StringLength

The function StringlLength returns the number of characters in a string.
StringlLength(
text I (input) a scalar string expression
)
Arguments:

text
The string for which you want to retrieve the length.

Return value:

The function returns the number of characters in the string.

75

Chapter 3. String Manipulation Functions

StringOccurrences

The function StringOccurrences counts the number of occurrences of a
particular substring in a string.

StringOccurrences(
SearchString, I (input) a string expression
Key, I (input) a string expression
[CaseSensitive], ! (optional) binary
[(WordOnly], I (optional) binary
[IgnoreWhite] ! (optional) binary
)

Arguments:
SearchString

A string in which you want to find the substring(s).
Key
The substring.

CaseSensitive
The search will be case sensitive when the value is 1. The default
depends on the setting of the option
Case_sensitive_string_comparison, and is 1 if this option is ’On’ and 0
if this option is 'Off’. The default of the option
Case_sensitive_string_comparison is 'On’.

WordOnly
It is a word only search when this option is set to 1. The default is 0.

IgnoreWhite
The search ignores whites if this option is set to 1. The default is 0.

Return value:

The function returns how many occurrences of the substring Key exist in
the string SearchString.

See also:

The functions FindString, FindNthString.

76

Chapter 3. String Manipulation Functions

StringToLower

The function StringToLower converts all characters of a string to lower case.

StringToLower(
text I (input) a scalar string expression

)
Arguments:

text
The string that you want to convert to lower case characters.

Return value:

The function returns the lower case string.

See also:

The functions StringToUpper, StringCapitalize.

77

Chapter 3. String Manipulation Functions

StringToUpper

The function StringToUpper converts all characters of a string to upper case.
StringToUpper(

text I (input) a scalar string expression

)
Arguments:

text
The string that you want to convert to upper case characters.

Return value:

The function returns the upper case string.

See also:

The functions StringToLower, StringCapitalize.

78

Chapter 3. String Manipulation Functions

SubString

The function SubString retrieves a substring from a specific string, based on
the start and end position of this substring within this string.

SubString(
str, I (input) a scalar string expression
from, I (input) an integer value
to I (input) an integer value
)
Arguments:
str

The string from which you want to retrieve the substring.

from
The start position of the substring within str.

to
The end position of the substring within str.

Return value:

The function returns the requested substring.

Remarks:

If the arguments from and to are positive, then the position is calculated
from the start of the string (i.e. the first character is on position 1). If the
arguments from and to are negative, then the position is calculated from
the end of the string (i.e. the last character is on position —1). from must
be less than or equal to to, and if either of the values exceeds the length of
the string, they are automatically set within the proper range.

79

Chapter 4

Unit Functions

AimMSs supports the following functions for unit related functions:

AtomicUnit
ConvertUnit
EvaluateUnit
StringToUnit
Unit

Chapter 4. Unit Functions

AtomicUnit

With the function AtomicUnit you can retrieve the atomic unit expression
corresponding to the unit expression passed as the argument to the function.

AtomicUnit(
unit I (input) scalar unit expression

)
Arguments:

unit
A unit expression of which the associated atomic unit expression
must be computed

Return value:
The function returns the atomic unit expression corresponding to unit.
Remarks:

The atomic unit expression associated with a given unit is the unit
expression solely in terms of atomic unit symbols by which the given unit
differs a constant scale factor only.

See also:

Unit expressions are discussed in full detail in Chapter 32 of the Language
Reference.

81

Chapter 4. Unit Functions

ConvertUnit

With the function ConvertUnit you can compute the associated unit value of a
unit expression with respect to a given convention.

ConvertUnit(
unit, I (input) scalar unit expression
convention I (input) element expression
)
Arguments:
unit

A unit expression of which the associated unit value in the given
convention must be computed

convention
An element expression in to Al1Conventions, representing the
convention with respect to which a unit value must be computed.

Return value:

The function returns the associated unit value of unit with respect to
convention.

See also:

Unit expressions and conventions are discussed in full detail in
Chapter 32 of the Language Reference.

82

Chapter 4. Unit Functions

EvaluateUnit
With the function EvaluateUnit you can compute the numerical value (with
associated unit) of a given unit expression.

EvaluateUnit(
unit I (input) scalar unit expression

)
Arguments:

unit
A unit expression of which the numerical value (with associated unit)
must be computed

Return value:

The function returns the numerical value (with associated unit),
corresponding to one unit of unit.

Remarks:

The function EvaluateUnit is an extension of AIMMS’ local unit override
capabilities which allows computed unit expressions.

See also:

Unit expressions are discussed in full detail in Chapter 32 of the Language
Reference.

83

Chapter 4. Unit Functions

StringToUnit
With the function StringToUnit you can compute a unit value corresponding
to a given string expression.

StringToUnit(
str I (input) scalar string expression

)
Arguments:

Str
A string expression of which the associated unit value must be
computed

Return value:

The function returns the associated unit value of str, or fails if the given
string does not correspond to a string constant.

See also:

Unit expressions discussed in full detail in Chapter 32 of the Language
Reference.

84

Chapter 4. Unit Functions

Unit

The function Unit returns the unit value of a given unit constant.
Unit(

unit I (input) scalar unit constant

)
Arguments:

unit
A unit constant of which the associated unit value must be computed

Return value:
The function returns the unit value of a unit constant unit.
Remarks:

The function Unit simply returns its argument. It exists to allow the use of
numeric constants in computed unit expressions.

See also:

Unit expressions discussed in full detail in Chapter 32 of the Language
Reference.

85

Chapter 5

Time Functions

AIMMS supports the following time-related functions:

Aggregate
ConvertReferenceDate
CreateTimeTable
CurrentToMoment
CurrentToString
CurrentToTimeSlot
DayTightSavingEndDate
DaylightSavingStartDate
DisAggregate
MomentToString
MomentToTimeSTot
PeriodToString
StringToMoment
StringToTimeSTot
TestDate
TimeSlotCharacteristic
TimeSTotToMoment
TimeSTotToString
TimeZoneOffSet

Chapter 5. Time Functions

Aggregate

With the procedure Aggregate you can aggregate time-dependent data from a
calendar time scale (time slots) to a horizon time scale (periods).

Aggregate(
TimeslotData, I (input) an indexed identifier over a calendar
PeriodData, I (output) an indexed identifier over a horizon
TimeTable, I (input) an AIMMS time table
Type, I (input) an element in the set AggregationTypes
[Locus] | (optional) a value between 0 and 1
)

Arguments:
TimeslotData

An identifier (slice) containing the data to be aggregated. The domain
sets in the index domain of this identifier should at least contain a
calendar set, and all other sets should coincide with the domain of
PeriodData.

PeriodData
An identifier (slice) that on return will contain the aggregated data.
The domain sets in the index domain of this identifier should at least
contain a horizon set, and all other sets should coincide with the
domain of TimeslotData.

TimeTable
An indexed set in a calendar and defined over a horizon. This horizon
and calendar should match with the index domains of TimeslotData
and PeriodData.

Type
An element of the pre-defined set AggregationTypes (summation,
average, maximum, minimum, or interpolation).

Locus (only for interpolation type)
A number between 0 and 1, that indicates at which moment in a
period the quantity is to be measured.

See also:

The procedure DisAggregate. Time-dependent aggregation and
disaggregation is discussed in full detail in Section 33.5 of the Language
Reference.

87

Chapter 5. Time Functions

ConvertReferenceDate

The function ConvertReferenceDate converts a reference date from one
timezone to the other.

ConvertReferenceDate(

ReferenceDate, I (input) a string expression
FromTimezone, I (input) an element expression
ToTimezone, I (input) an element expression
IgnoreDST I (optional) a numerical expression (default 0)
)
Arguments:
ReferenceDate

A string that holds a reference date in FromTimezone.

FromTimezone
An element of A11TimeZones with respect to which ReferenceDate is
expressed.

ToTimezone
An element of Al1TimeZones with respect to which the resulting
reference date must be expressed.

IgnoreDST
A numerical expression indicating whether daylight saving time must
be ignored in the conversion.

Return value:

The result of ConvertReferenceDate is a reference date in ToTimezone
corresponding to the reference date ReferenceDate in FromTimezone.

See also:

AIMMS support for time zones is discussed in full detail in Sections 33.7.4
and 33.10 of the Language Reference.

88

Chapter 5. Time Functions

CreateTimeTable

With the procedure CreateTimeTable you can create a timetable in AIMMS.

CreateTimeTable(
Timetable, I (output) an indexed set
CurrentTimeslot, I (input) an element in a calendar
CurrentPeriod, I (input) an element in a horizon

I
I
I

PeriodLength, I (input) one-dimensional integer parameter
I
I
I

LengthDominates, ! (input) one-dimensional binary parameter
InactiveTimeSlots, I (input) a subset of a calendar
DelimiterSlots I (input) a subset of a calendar
)
Arguments:
Timetable

An indexed set in a calendar and defined over the horizon to be
linked to the calendar. This argument implicitly sets the calendar and
horizon used for the creation of the timetable. The other arguments
of the procedure should match with this calendar and horizon.

CurrentTimeslot
An element of a calendar (a time slot) that should be aligned with the
CurrentPeriod in the horizon.

CurrentPeriod
An element of a horizon (a period) that should be aligned with the
timeslot in the calendar.

PeriodLength
A one-dimensional integer parameter, specifying the desired length of
each period in the horizon in terms of the number of time slots to be
contained in it.

LengthDominates
A one-dimensional binary parameter, indicating whether reaching the
specified PeriodLength dominates over the presence of any delimiter
slot for every period in the horizon.

InactiveTimeSlots
A subset of the calendar, indicating the time slots that must be
excluded from the timetable.

DelimiterSlots
A subset of the calendar, indicating the time slots that will (usually)
result in starting a new period in the horizon.

See also:

The procedures Aggregate, DisAggregate. For a more detailed description
of the creation of timetables, see Section 33.4 of the Language Reference.

89

Chapter 5. Time Functions

CurrentToMoment

The function CurrentToMoment converts the current time to the elapsed time
with respect to a specific reference date.

CurrentToMoment (
Unit, I (input) a time unit
ReferenceDate I (input) a string expression
)
Arguments:
Unit

The time unit that is used to return the elapsed time.

ReferenceDate
A string that holds the begin date using the fixed format for date and
time, see paragraph Reference date format on page 544 of the
Language Reference.

Return value:

The result of CurrentToMoment is the elapsed time in Unit since
ReferenceDate.

See also:

m The function StringToMoment.

m The Aimms blog post: Creating StopWatch in AIMMS to time execution
illustrates the use of some time functions. The purpose of
CurrentToMoment in that post is to compute the time since a starting
point.

90

http://blog.aimms.com/2011/12/creating-stopwatch-in-aimms-to-time-execution/

Chapter 5. Time Functions

CurrentToString

The function CurrentToString creates a string representation of the current
time in the a specified format.

CurrentToString(
Format I (input) a string expression

)
Arguments:

Format
A string that holds the date and time format used in the returned
string. Valid format strings are described in Section 33.7.

Return value:

The result of CurrentToString is a description of the current time
according to Format.

Remarks:

There is an option Current_Time_in_LocalDST that specifies whether this
function takes into account the effects of daylight savings time.

See also:

m The functions MomentToString, CurrentToMoment.

m The Aimms blog post: Creating StopWatch in AIMMS to time execution
illustrates the use of some time functions. The purpose of
CurrentToString in that post is to mark the starting point.

91

http://blog.aimms.com/2011/12/creating-stopwatch-in-aimms-to-time-execution/

Chapter 5. Time Functions

CurrentToTimeSlot
The function CurrentToTimeSlot determines the time slot in a calendar that
corresponds with the current time.

CurrentToTimeSlot(
Calendar I (input) a calendar

)
Arguments:

Calendar
An identifier of type calendar.

Return value:

The function CurrentToTimeSTot returns the time slot in the calendar that
contains the current moment.

Remarks:

There is an option Current_Time_in_LocalDST that specifies whether this
function takes into account the effects of daylight savings time.

See also:

The functions StringToTimeSlot, MomentToTimeSlot.

92

Chapter 5. Time Functions

DaylightSavingEndDate

The function DaylightSavingEndDate computes the end date of daylight saving
time for a particular year in a particular time zone.

DayTightSavingEndDate(

Year, I (input) an element expression
Timezone I (input) an element expression
)
Arguments:
Year

An element of a yearly calendar for the end date of daylight saving
time must be computed.

Timezone
An element in the predefined set A11TimeZones.

Return value:

The result of DayTightSavingEndDate is the end date of daylight saving
time, as a reference date, for the time zone Timezone in the year Year.

See also:

AIMMS support for time zones is discussed in full detail in Sections 33.7.4
and 33.10 of the Language Reference.

93

Chapter 5. Time Functions

DaylightSavingStartDate

The function DaylightSavingStartDate computes the start date of daylight
saving time for a particular year in a particular time zone.

DayTightSavingStartDate(

Year, I (input) an element expression
Timezone I (input) an element expression
)
Arguments:
Year

An element of a yearly calendar for the end date of daylight saving
time must be computed.

Timezone
An element in the predefined set AT1TimeZones.

Return value:

The result of DayTightSavingStartDate is the start date of daylight saving
time, as a reference date, for the time zone Timezone in the year Year.

See also:

AIMMS support for time zones is discussed in full detail in Sections 33.7.4
and 33.10 of the Language Reference.

94

Chapter 5. Time Functions

DisAggregate

With the procedure DisAggregate you can disaggregate time-dependent data
from a horizon time scale (periods) to a calendar time scale (time slots).

DisAggregate(
PeriodData, I (input) an indexed identifier over a horizon
TimeslotData, ! (output) an indexed identifier over a calendar
Timetable, I (input) an AIMMS time table
Type, I (input) an element in the set AggregationTypes
[Locus] ! (optional) a value between 0 and 1
)

Arguments:
PeriodData

An identifier (slice) containing the data to be disaggregated. The

domain sets in the index domain of this identifier should at least
contain a horizon set, and all other sets should coincide with the
domain of TimeslotData.

TimeslotData
An identifier (slice) that on returns will contain the disaggregated
data. The domain sets in the index domain of this identifier should at
least contain a calendar set, and all other sets should coincide with
the domain of PeriodData.

Timetable
An indexed set in a calendar and defined over a horizon. This horizon
and calendar should match with the index domains of TimeslotData
and PeriodData.

Type
An element of the pre-defined set AggregationTypes (summation,
average, maximum, minimum, or interpolation).

Locus (only for interpolation type)
A number between 0 and 1, that indicates at which moment in a
period the quantity is to be measured.

See also:

The procedure Aggregate. Time-dependent aggregation and disaggregation
is discussed in full detail in Section 33.5 of the Language Reference.

95

Chapter 5. Time Functions

MomentToString

The function MomentToString creates a string representation of a moment, that
is calculated from a given amount of elapsed time since a specific reference
date.

MomentToString(
Format, I (input) a string expression
unit, I (input) a time unit
ReferenceDate, I (input) a string expression
Elapsed I (input) a numerical expression
)

Arguments:
Format

A string that holds the date and time format used in the returned
string. Valid format strings are described in Section 33.7.

unit
The time unit that is used in the argument Elapsed.

ReferenceDate
A string that holds the begin date using the fixed format for date and
time, see paragraph Reference date format on page 544 of the
Language Reference.

Elapsed
A numerical value of the time elapsed since ReferenceDate.

Return value:

The result of MomentToString is a string describing the corresponding
moment according to Format.

See also:

The function StringToMoment.

96

Chapter 5. Time Functions

MomentToTimeSlot

The function MomentToTimeSTlot determines the time slot in a calendar that
corresponds with the a moment that is specified as the elapsed time since a
specific reference date.

MomentToTimeSTot(
Calendar, I (input) a calendar
ReferenceDate, I (input) an element (time-slot) in the calendar
Elapsed I (input) a numerical value

)
Arguments:

Calendar
An identifier of type calendar.

ReferenceDate
A specific time-slot in Calendar holding the reference time.

Elapsed
The elapsed time since ReferenceDate. This should be an integral
multiple of the calendar’s time unit in order to select the time slot
that is the return value of this function.

Return value:

The function MomentToTimeSlot returns the time slot in the calendar that
contains the given moment. When the time slot is outside the calendar the
empty element is returned.

See also:

The functions TimeSTotToMoment, CurrentToTimeSlot, StringToTimeSTot.

97

Chapter 5. Time Functions

PeriodToString

With the function PeriodToString you can obtain a description of a period in a
timetable that consists of multiple calendar slots.

PeriodToString(
Format, I (input) a string expression
Timetable, I (input) an AIMMS time table
Period I (input) an element in a horizon

)
Arguments:

Format
A string that holds the date and time format used in the returned
string. This format string can contain period specific conversion
specifiers to generate a description referring to both the beginning
and end of the period, see Section 33.7

Timetable
An indexed set in a calendar and defined over a horizon.

Period
An element in the horizon that is defined by Timetable.

Return value:

The result of PeriodToString is a string describing the corresponding
moment according to Format.

See also:

The procedure CreateTimeTable.

98

Chapter 5. Time Functions

StringToMoment

The function StringToMoment converts a given time string (in a free time
format) to the elapsed time with a respect to a specific reference date.

StringToMoment (
Format, I (input) a string expression
Unit, I (input) a time unit
ReferenceDate, I (input) a string expression
TimesTot I (input) a string expression
)

Arguments:
Format

A string that holds the date and time format used in the fourth
argument Timeslot. Valid format strings are described in Section 33.7.
Unit
The time unit that is used to return the elapsed time.
ReferenceDate
A string that holds the begin date using the fixed format for date and
time, see paragraph Reference date format on page 544 of the
Language Reference.

Timeslot
A string representing a specific date and time moment using the
format specified in the first argument Format.

Return value:

The result of StringToMoment is the elapsed time in unit between
reference-date and date.

See also:

The functions MomentToString, CurrentToMoment.

99

Chapter 5. Time Functions

StringToTimeSlot

The function StringToTimeSlot determines the time slot in a calendar that
corresponds with the a moment that is specified using a free format string.

StringToTimeSTot(
Format, I (input) a string expression
Calendar, ! (input) a calendar
MomentString I (input) a string expression

)
Arguments:

Format
A string that holds the date and time format used in the third
argument MomentString. Valid format strings are described in
Section 33.7.

Calendar
An identifier of type calendar.

MomentString
A string expression of the moment (using the format given in Format)
that should be matched with the time slots in the calendar.

Return value:

The function StringToTimeSlot returns the time slot in the calendar that
contains the given moment.

See also:

The functions CurrentToTimeSTot, MomentToTimeSlot.

100

Chapter 5. Time Functions

TestDate

The function TestDate tests whether or not a particular date is according to
given format.

TestDate(
Format, I (input) a string expression
Date, I (input) a string expression
requireUnique ! (optional) default 1.

)
Arguments:

Format
A string that holds the date and time format used in the returned
string. Valid format strings are described in Section 33.7.

Date
It is tested whether or not this string is according to format Format.

requireUnique
When 1, it requires the year number to be present in the date.

Return value:

The result of TestDate is 1 if Date is according to format Format and an
existing data, and O otherwise. If the result is 0, the pre-defined identifier
CurrentErrorMessage will contain a proper error message.

Examples:
ok := TestDate("%ckhy-%m-%d", "2015-xx-xx"); ! ok becomes 0; Not numeric.
ok := TestDate("%c%y-%m-%d", "2015-02-29"); ! ok becomes 0; Feb 2015 has only 28 days.
ok := TestDate("%c¥y-%m-%d", "2016-02-29"); ! ok becomes 1; Feb 29, 2016 exists.
ok := TestDate("%cky-%m-%d", "2015-04-31"); ! ok becomes 0; April 31 does not exist.
!

ok := TestDate("%cky-%m-%d", "2015-04-01"); ! ok becomes 1; April 01 does exist (-;
ok := TestDate("%m-%d", "03-03", requireUnique:1); ! Not unique, ok becomes 0.
ok := TestDate("%m-%d", "03-03", requireUnique:0); ! Uniqueness not required; ok becomes 1.

See also:

The function CurrentToString.

101

Chapter 5. Time Functions

TimeSlotCharacteristic

The function TimeSTotCharacteristic obtains a numeric value which
characterizes the time slot, in terms of its day of the week, its day in the year,
etc.

TimeSlotCharacteristic(
Timeslot, I (input) an element (time-slot) in a calendar
Characteristic, ! (input) an element in TimeslotCharacteristics
|
!

Timezone, (optional) an element in Al1TimeZones, default Local.
IgnoreDST (optional) 0-1 expression, default 0.
)
Arguments:
Timeslot

A element refering to a time-slot in a calendar.

Characteristic
An element in the predefined set TimeSlotCharacteristics, each
element in this set refers to a specific value that can be retrieved for a
time slot.

Timezone
A time zone from the predefined set AT1TimeZones.

IgnoreDST
A 0-1 expression indicating whether or not to ignore daylight savings
time.

Return value:

The function TimeSTotCharacteristic returns a numerical value for the
requested time slot characteristic.

See also:

The function TimeSTotCharacteristic is discussed in full detail in
Section 33.4 of the Language Reference.

102

Chapter 5. Time Functions

TimeSlotToMoment

The function TimeSTotToMoment calculates the elapsed time since a specific
reference date for a given time slot in a calendar.

TimeSTotToMoment (
Calendar, I (input) a calendar
ReferenceDate, I (input) an element (time-slot) in the calendar
TimesTot I (input) an element (time-slot) in the calendar

)
Arguments:

Calendar
An identifier of type calendar.

ReferenceDate
A specific time-slot in Calendar holding the reference time.

Timeslot
A specific time slot in the calendar.

Return value:

The function TimeSTotToMoment returns the elapsed time since the
reference date for the given time slot (measured in the calendar’s unit).

See also:

The functions MomentToTimeSlot, CurrentToTimeSTlot, StringToTimeSTot.

103

Chapter 5. Time Functions

TimeSlotToString

The function TimeSTotToString creates a string representation of a specific
time slot in a calendar.

TimeSTotToString(
Format, I (input) a string expression
Calendar, I (input) a calendar
Timeslot I (input) an element (timeslot) in the calendar

)
Arguments:

Format
A string that holds the date and time format used in the returned
string. Valid format strings are described in Section 33.7.

Calendar
An identifier of type calendar.

Timeslot
A specific time-slot in the calendar.

Return value:

The function TimeSTotToString returns a string representation of the time
slot.

See also:

The functions MomentToString, CurrentToTimeSlot, StringToTimeSlot.

104

Chapter 5. Time Functions

TimeZoneOffSet

The function TimeZoneOffSet computes, in minutes, the offset between two
time zones.

TimeZoneOffSet(
FromTZ, I (input) an element expression
ToTZ I (input) an element expression
[UseDST] ! (optional) 0 or 1
)
Arguments:
FromTZ
An element from the set A11TimeZones.
ToTZ
An element from the set A11TimeZones.
UseDST (optional)

A scalar expression specifying whether or not the current setting for
daylight saving time (DST) in both time zones should be taken into
account. The default is 0, indicating DST is not used.

Return value:

The result of TimeZoneOffSet is the offset, in minutes, between FromTZ and
ToTZ.

Remarks:

The result of the function has an associated unit, namely minutes. If
FromTZ is UTC, the offset of ToTZ is the usual offset with respect to UTC
(or GMT).

See also:

AIMMS support for time zones is discussed in full detail in Sections 33.7.4
and 33.10 of the Language Reference.

105

Chapter 6

Financial Functions

Financial functions can be of great use in modeling financial optimization
models. They perform common business calculations, such as determining

the depreciation of an asset,

the payments for a loan,

the future value or net present value of an investment, and
the values of bonds, coupons or other securities.

Having these functions available in AIMMS prevents you from having to
implement such functionality into your models yourself. Common arguments
for the financial functions include:

m Values: the value of an investment, security or cash flow at a specific
time. For example, the amount paid periodically to an investment or
loan.

m Rates: the interest rate or discount rate for an investment or security.
For example, the desired internal return on investment could be 8
percent.

m Dates: the date of measurements, payments or other events. For
example, the date of settlement of a security. AIMMS’ financial functions
always expects dates to be provided in the format “ccyy-mm-dd”.

m Interval lengths (in time periods): the number of periods that has to be
analyzed. For example, the useful life of an asset or the number of
payments or periods of an investment

m Type: the time when payments are made during the period. For
example, at the beginning of a month or the end of the month.

The financial functions supported by AiMmMs can be divided into separate
categories. Each of these categories will be shortly introduced (including the
mathematical equations underlying the functions in a category) and each of
the available functions will be described in full detail. The following
categories can be distinguished:

General conversion functions
Day count bases and dates
Depreciation of assets
Investments and loans
Securities

Chapter 6. Financial Functions

6.1 General Conversions

Prices (such as security prices) are often provided as a fractional price,
whereas the financial functions in AIMMS always expect decimal prices.
AimMs supports the following conversion functions between fractional and
decimal prices:

m PriceDecimal
m PriceFractional

Annual interest rates can be given as a nominal rate (just the sum of interest
rates over the number of compounding periods) or in the form of an effective
rate (including the effects of interest over interest for all compounding
periods). AIMMS supports the following interest rate conversion functions:

m RateEffective
m RateNominal

107

Chapter 6. Financial Functions

PriceDecimal

The function PriceDecimal converts a price expressed as a fractional number
to a price expressed as a decimal number depending on the input parameter
FractionBase.

PriceDecimal(

FractionalPrice, I (input) numerical expression
FractionBase I (input) numerical expression
)
Arguments:
FractionalPrice

The price expressed as a fractional number. FractionalPrice can be
any real number.

FractionBase

The base used as the denominator of the fraction. FractionBase must
be a positive integer.

Return value:

The function PriceDecimal returns the FractionalPrice expressed as a
decimal number.

Equation:

The conversion between decimal and fractional prices is based on the
system of equations

pr—lpsl= mn—zgm (pa — lpal) (fractional parts)

{[Pf] = |pal (integer parts)
where pg is the decimal price, ps the fractional price and b the base.

Remarks:

m For bases which are a power of 10, the decimal and fractional prices
coincide. In all other cases, the fractional price is smaller than the
decimal price.

m The function PriceDecimal is similar to the Excel function DOLLARDE.
See also:

The function PriceFractional.

108

Chapter 6. Financial Functions

PriceFractional

The function PriceFractional converts a price expressed as a decimal number
to a price expressed as a fractional number depending on the input
parameter FractionBase.

PriceFractional(

DecimalPrice, I (input) numerical expression
FractionBase I (input) numerical expression
)
Arguments:
DecimalPrice

The price expressed as a decimal number. DecimalPrice can be any
real number.

FractionBase
The base to be used as the denominator of the fraction. FractionBase
must be a positive integer.

Return value:

The function PriceFractional returns the DecimalPrice expressed as a
fractional number.

Remarks:

m The system of equations on which the conversion between decimal and
fractional prices is based, is explained for the function PriceDecimal (the
inverse of PriceFractional).

m The function FractionalDecimal is similar to the Excel function DOLLARFR.

See also:

The function PriceDecimal.

109

Chapter 6. Financial Functions

RateEffective

The function RateEffective returns the effective annual interest rate,
expressed as a fraction, on the basis of a nominal interest rate plus the
number of compounding periods per year.

RateEffective(
NominalRate, I (input) numerical expression
NumberPeriods I (input) numerical expression

)
Arguments:

NominalRate
The nominal annual interest rate expressed as a fraction.
NominalRate must be a nonnegative decimal number.

NumberPeriods
The number of compounding periods per year. NumberPeriods must
be a positive integer.

Return value:
The function RateEffective returns the effective annual interest rate
expressed as a fraction.

Equation:

The conversion between nominal and effective rates is based on the
equation

n
reff:(lﬂf”%) 1

where 7, is the effective annual rate, 4o, the nominal annual rate and n
the number of compounding periods.

Remarks:

m This function can be used in an objective function or constraint, and the
input parameter NominalRate can be used as a variable.
m The function RateEffective is similar to the Excel function EFFECT.

See also:

The function RateNominal.

110

Chapter 6. Financial Functions

RateNominal

The function RateNominal returns the nominal annual interest rate, expressed
as a fraction, on the basis of an effective annual interest rate plus the number
of compounding periods per year.

RateNominal(

EffectiveRate, I (input) numerical expression
NumberPeriods I (input) numerical expression
)
Arguments:
EffectiveRate

The effective annual interest rate expressed as a fraction.
EffectiveRate must be a nonnegative decimal number.

NumberPeriods
The number of compounding periods per year. NumberPeriods must
be a positive integer.

Return value:

The function RateNominal returns the nominal annual interest rate
expressed as a fraction.

Remarks:

m The equation on which the conversion between nominal and effective
rates is based, is explained for the function RateEffective (the inverse of
RateNominal).

m This function can be used in an objective function or constraint, and the
input parameter EffectiveRate can be used as a variable.

m The function RateNominal is similar to the Excel function NOMINAL.

See also:

The function RateEffective.

111

Chapter 6. Financial Functions

6.2 Day Count Bases and Dates

Many financial functions require date arguments, and depend on differences
between two dates, either as a number of days or as a fraction of a year. This
chapter discusses the date format expected by AiMMS’ financial functions and
the different methods to compute date differences used from which you can
choose in many functions.

Format of date arguments

All date arguments in AIMMS’ financial functions should be provided in the
fixed string date format “ccyy-mm-dd”. So, 15 August, 2000 should be passed
to a financial function as the string “2000-08-15". If you want to pass an
element from a daily calendar as a date argument, you should convert it to
the fixed string date format using the function TimeSTotToString.

Day count bases

The result of many financial functions depends on the way with which
differences between two dates are dealt with. Such functions have a day count
basis argument, which determines how the difference between two dates is
calculated, either in days or as a fraction of a year. AIMMS supports 5
different day count basis methods, each of which is commonly used in the
financial markets. Each of these methods is specified by a way to count days
and a way to determine how many days are in a year.

m Method 1 - NASD Method / 360 Days: Calculating with day count basis
method 1 means that a year is assumed to consist of 12 periods of 30
days. A year consists of 360 days. The difference between this method
and method 5 is the way the last day of a month is handled.

m Method 2 - Actual / Actual: Calculating with day count basis method 2
means that both the number of days between two dates and the number
of dates in a year are actual.

m Method 3 - Actual / 360 Days: Calculating with day count basis method
3 means that the number of days between two dates is actual and that
the number of days in a year is 360. When using this method, you
should note that the year fraction of two dates that are one year apart is
larger than 1 (365/360) and that this may lead to unwanted results.

m Method 4 - Actual / 365 Days: Calculating with day count basis method
4 means that the number of days between two dates is actual and that
the number of days in a year is 365.

m Method 5 - European Method / 360 Days: Calculating with day count
basis method 5 means that a year is assumed to consist of 12 periods of

112

Chapter 6. Financial Functions

30 days. A year consists of 360 days. The difference between this
method and method 1 is the way the last day of a month is handled.

When the day count basis argument is optional, AIMMS assumes the NASD
method 1 by default.

Date differences

A1mMMS supports the following functions for computing differences between
two dates:

m DateDifferenceDays
m DateDifferenceYearFraction

113

Chapter 6. Financial Functions

DateDifferenceDays

The function DateDifferenceDays calculates the number of days between two
dates based on the specified day count basis.

DateDifferenceDays(
FirstDate, I (input) scalar string expression
SecondDate, I (input) scalar string expression
[Basis] ! (optional) numerical expression
)

Arguments:

FirstDate
The first date must be in date format.

SecondDate

The second date must be in date format, and later than FirstDate.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function DateDifferenceDays returns the number of days between the
two dates.

Remarks:

The function DateDifferenceDays is similar to the Excel function DAYS300.

See also:

Day count basis methods.

114

Chapter 6. Financial Functions

DateDifferenceYearFraction

The function DateDifferenceYearFraction calculates the year fraction between
two dates based on the specified day count basis.

DateDifferenceYearFraction(

FirstDate, I (input) scalar string expression
SecondDate, I (input) scalar string expression
[Basis] ! (optional) numerical expression
)
Arguments:

FirstDate
The first date must be in date format.

SecondDate

The second date must be in date format, and later than FirstDate.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function DateDifferenceYearFraction returns the difference between
FirstDate and SecondDate in fractions of a year.

Remarks:

The function DateDifferenceYearFraction is similar to the Excel function
YEARFRAC.

See also:

Day count basis methods.

115

Chapter 6. Financial Functions

6.3 Depreciations

This chapter discusses the functions available in AiMmMS for the depreciation
of an asset. Depreciation can be performed in many ways, for example by a
fixed amount in every period, or by depreciation amounts that decrease over
time. An asset is characterized by its purchase (or initial) cost ¢ and its
salvage value s (the value at the end of the useful life of the asset).

The accounting periods for depreciating the asset have a length of one year,
but do not necessarily have to start at January 1. The useful life of the asset is
either given as a fixed amount of L years, or is computed dynamically on the
basis of the characteristics of the depreciation. The first period is the period
from the purchase date until the beginning of the next regular accounting
period. If the purchase date does not coincide with the beginning of an
accounting period, the depreciations take place in L + 1 accounting periods.

The following system of equations are true for all types of depreciations
supported by AIMMS, where d; is the actual depreciation in period i, d; is the
generic depreciation computed in a method-dependent manner, and v; the
value of the asset at the beginning of period i.

d; = max(0, min(d;, vi — 5))
i-1

Vi=¢C— Zdj
j=1

The equations express that generic method-dependent depreciation method
will be adapted to yield the actual depreciation value to make sure that the
value of an asset v; can never drop below its salvage value s.

For each depreciation method available in AIMMS, the equations used to
compute the generic method-dependent depreciation amount d; will be listed
in the description of the depreciation function. In most occasions these
equations use the fraction fpy, which expresses the year fraction from the
purchase date until the beginning of the next regular accounting period. Its
value depends on the selected day-count basis method.

AIMMS supports the following linear depreciation by constant amounts
functions:

m DepreciationLinearLife
m DepreciationLinearRate

AIMMS supports the following non-linear depreciation by linear declining
amounts functions:

Depreciation
functions

Useful life

General
equations

Method-
dependent
equations

116

Chapter 6. Financial Functions 117

m DepreciationNonLinearSumOfYear

A1MMS supports the following non-linear depreciation by non-linear declining
amounts functions:

m DepreciationNonLinearLife
m DepreciationNonLinearFactor
m DepreciationNonLinearRate
m DepreciationSum

Chapter 6. Financial Functions

DepreciationLinearLife

The function DepreciationLinearLife returns the depreciation of an asset for
the specified period, using straight-line depreciation. The accounting periods
have a length of one year, but they don’t necessary need to start January 1.
The depreciation amounts are equal for every period. In case of partial
periods, a relatively equal part must be depreciated.

DepreciationLinearLife(

PurchaseDate, I (input) scalar string expression
NextPeriodDate, I (input) scalar string expression
Cost, I (input) numerical expression
Salvage, I (input) numerical expression
Life, I (input) numerical expression
Period, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Life
The number of periods until the asset will be fully depreciated, also
called the useful life of the asset. Life must be a positive integer.

Period
The period for which you want to compute the depreciation. Period
an integer in the range {1, Life + 1}. Period 1 is the (partial) period
from PurchaseDate until NextPeriodDate.

Basis
The day-count basis method to be used. The default is 1.

118

Chapter 6. Financial Functions

Return value:

The function DepreciationLinearLife returns the depreciation of an asset
for the specified period.

Equation:

The method-dependent depreciation d; is expressed by the equation

R
I
>

2

Remarks:
The function DepreciationLinearLife is similar to the Excel function SLN.
See also:

Day count basis methods. General equations for computing depreciations.

119

Chapter 6. Financial Functions

DepreciationLinearRate

The function DepreciationLinearRate returns the depreciation of an asset for
the specified period, using linear depreciation. The accounting periods have a
length of one year, but they don’t necessary need to start January 1. The sum
of the depreciation amounts of all periods cannot be higher than the
difference between the cost and the salvage.

DepreciationLinearRate(

PurchaseDate, I (input) scalar string expression
NextPeriodDate, I (input) scalar string expression
Cost, I (input) numerical expression
Salvage, I (input) numerical expression
Period, I (input) numerical expression
DepreciationRate, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Period
The period for which you want to compute the depreciation. Period
must be a positive integer. Period 1 is the (partial) period from
PurchaseDate until NextPeriodDate.

DepreciationRate
The value of the asset declines every period by an amount equal to
the depreciation rate times the Cost. DepreciationRate must be a
numerical expression in the range [0, %).

Basis
The day-count basis method to be used. The default is 1.

120

Chapter 6. Financial Functions

Return value:

The function DepreciationlLinearRate returns the depreciation of an asset
for the specified period.

Equation:

The method-dependent depreciation d; is expressed by the equation

di = fpnrc
di=rc (i#1)
where 7 is the depreciation rate.

Remarks:

m The useful life of the asset is determined by the depreciation rate, and
the requirement that the value of the asset can never drop below its
salvage value.

m The function DepreciationLinearRate is similar to the Excel function
AMORLINC.

See also:

Day count basis methods. General equations for computing depreciations.

121

Chapter 6. Financial Functions

DepreciationNonLinearSumOfYear

The function DepreciationNonLinearSumOfYear returns the depreciation of an
asset for the specified period, using sum of years’ digits depreciation. The
accounting periods have a length of one year, but they don’t necessary need
to start January 1. The depreciation amounts decline linear for every
following period until the value reaches the salvage.

DepreciationNonLinearSumOfYear(

PurchaseDate, (input) scalar string expression
NextPeriodDate, (input) scalar string expression
Cost, (input) numerical expression

!
!
!
Salvage, I (input) numerical expression
!
!
!

Life, (input) numerical expression
Period, (input) numerical expression
[Basis] (optional) numerical expression
)
Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Life
The number of periods until the asset will be fully depreciated, also
called the useful life of the asset. Life must be a positive integer.
Period
The period for which you want to compute the depreciation. Period
an integer in the range {1, Life + 1}. Period 1 is the (partial) period
from PurchaseDate until NextPeriodDate.
Basis

The day-count basis method to be used. The default is 1.

122

Chapter 6. Financial Functions

Return value:

The function DepreciationNonLinearSum0fYear returns the depreciation of
an asset for the specified period.

Equation:

The method-dependent depreciation d; is expressed by the equation

~ cC—S

d=-—="1

PTIL) Jon

di=—5"2 (L+2-i-fon) (i#1)
EREYTTASY! N '

Remarks:

The function DepreciationNonLinearSumOfYear is similar to the Excel
function SYD.

See also:

Day count basis methods. General equations for computing depreciations.

123

Chapter 6. Financial Functions

DepreciationNonLinearLife

The function DepreciationNonLinearLife returns the depreciation of an asset
for the specified period, using fixed declining balance depreciation. The
accounting periods have a length of one year, but they don’t necessary need
to start January 1. The depreciation amounts decline by a fixed rate for every
succeeding period.

DepreciationNonLinearLife(

PurchaseDate, I (input) scalar string expression
NextPeriodDate, I (input) scalar string expression
Cost, I (input) numerical expression
Salvage, I (input) numerical expression
Life, I (input) numerical expression
Period, I (input) numerical expression
[Basis,] ! (optional) numerical expression
[Mode] ! (optional) numerical expression
)
Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Life
The number of periods until the asset will be fully depreciated, also
called the useful life of the asset. Life must be a positive integer.
Period
The period for which you want to compute the depreciation. Period
an integer in the range {1, Life + 1}. Period 1 is the (partial) period
from PurchaseDate until NextPeriodDate.
Basis

The day-count basis method to be used. The default is 1.

124

Chapter 6. Financial Functions

Mode
Specifies how partial periods will be handled. Mode must be binary.
Mode = 0: we just take a relatively equal part of the depreciation for a
full year. This is mathematically incorrect, but is rather common in
the financial world. Mode = 1: the depreciation for the partial periods
is calculated so that the asset exactly equals its Salvage after its
useful life. The default is 0.

Return value:

The function DepreciationNonLinearLife returns the depreciation of an
asset for the specified period.

Equation:

The method-dependent depreciation d; is expressed by the equations

gi = fpNT V1 for Mode = 0
' (1 —-(1- r)f"N) v, for Mode = 1

d; =rv; (i+1)

where the depreciation rate » equals

Remarks:

The function DepreciationLinearNonLife is similar to the Excel function DB.

See also:

Day count basis methods. General equations for computing depreciations.

125

Chapter 6. Financial Functions

DepreciationNonLinearFactor

The function DepreciationNonLinearFactor returns the depreciation of an asset
for the specified period, using double-declining balance depreciation or some
other method you specify. The accounting periods have a length of one year,
but they don’t necessary need to start January 1. The depreciation amounts
decline by the factor times a fixed rate for every succeeding period. The
higher the used factor, the sooner the asset is totally depreciated.

DepreciationNonLinearFactor(

PurchaseDate, I (input) scalar string expression
NextPeriodDate, I (input) scalar string expression
Cost, I (input) numerical expression
Salvage, I (input) numerical expression
Life, I (input) numerical expression
Period, I (input) numerical expression
Factor I (input) numerical expression
[Basis,] ! (optional) numerical expression
[Mode] ! (optional) numerical expression
)
Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Life
The number of periods until the asset will be fully depreciated, also
called the useful life of the asset. Life must be a positive integer.

Period
The period for which you want to compute the depreciation. Period
an integer in the range {1, Life + 1}. Period 1 is the (partial) period
from PurchaseDate until NextPeriodDate.

126

Chapter 6. Financial Functions 127

Factor
The rate by which the depreciation declines is F%;gr Factor must be a
numerical expression in the range [1, «). In case Factor = 2 we
define this method as double declining depreciation.

Basis
The day-count basis method to be used. The default is 1.

Mode
Specifies how partial periods will be handled. Mode must be binary.
Mode = 0: we just take a relatively equal part of the depreciation for a
full year. This is mathematically incorrect, but is rather common in
the financial world. Mode = 1: the depreciation for the partial periods
is calculated so that the asset exactly equals its Salvage after its
useful life. The default is 0.

Return value:

The function DepreciationNonLinearFactor returns the depreciation of an
asset for the specified period.

Equation:

The method-dependent depreciation d; is expressed by the equations

Ji = fenrc for Mode = 0
' (1—(1—1/)fPN>c for Mode = 1
di=(c—d)r(l-r)? (i+1)

where the depreciation rate » equals

SIS

with f the Factor argument.
Remarks:

m The useful life of the asset is determined by the Factor and Life
arguments, and the requirement that the value of the asset can never
drop below its salvage value.

m The function DepreciationLinearNonFactor is similar to the Excel
function DDB.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions

DepreciationNonLinearRate

The function DepreciationNonLinearRate returns the depreciation of an asset
for the specified period, using factor-declining depreciation. The
DepreciationRate determines the factor. The accounting periods have a length
of one year, but they don’t necessary need to start January 1.

DepreciationNonLinearRate(

PurchaseDate, I (input) scalar string expression
NextPeriodDate, I (input) scalar string expression
Cost, I (input) numerical expression
Salvage, I (input) numerical expression
Period, I (input) numerical expression
DepreciationRate, I (input) numerical expression
[Basis,] ! (optional) numerical expression
[Mode] ! (optional) numerical expression
)
Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Period
The period for which you want to compute the depreciation. Period
an integer in the range {1, Life + 1}. Period 1 is the (partial) period
from PurchaseDate until NextPeriodDate.

DepreciationRate
The value of the asset declines every period by an amount equal to
the depreciation rate times the Cost. DepreciationRate must be a
numerical expression in the range [0, %).

Basis
The day-count basis method to be used. The default is 1.

128

Chapter 6. Financial Functions

Mode
Specifies how partial periods will be handled. Mode must be binary.
Mode = 0: we just take a relatively equal part of the depreciation for a
full year. This is mathematically incorrect, but is rather common in
the financial world. Mode = 1: the depreciation for the partial periods
is calculated so that the asset exactly equals its Salvage after its
useful life. The default is 0.

Return value:

The function DepreciationNonLinearRate returns the depreciation of an
asset for the specified period.

Equation:

The method-dependent depreciation d; is expressed by the equations

g = fenvfc for Mode = 0
! (1—(1—1ff)f"N)c for Mode = 1

rfvi (1<i<L-1)

di: %Ui (i=L-1)
vi—s (i=1)

where v is the DepreciationRate, L = [1/7] the useful life of the asset, and
the depreciation coefficient f is determined by

1.5 for % < %
f=120 for% %
2.5 forvr < %

Remarks:

The function DepreciationLinearNonRate is similar to the Excel function
AMORDEGRC.

See also:

Day count basis methods. General equations for computing depreciations.

129

Chapter 6. Financial Functions

DepreciationSum

The function DepreciationSum returns the depreciation of an asset for the
specified interval, using factor-declining depreciation. The accounting periods
have a length of one year, but they don’'t necessary need to start January 1. A
parameter Switch is used to indicated that, when straight-line depreciation
results in greater depreciation than factor-declining depreciation, the
calculation of the depreciation has to be based on that method.

DepreciationSum(
PurchaseDate, I (input) scalar string expression
NextPeriodDate, I (input) scalar string expression
Cost, I (input) numerical expression
Salvage, I (input) numerical expression
Life, I (input) numerical expression
StartPeriod, I (input) numerical expression
EndPeriod, I (input) numerical expression
Factor, I (input) numerical expression
[Basis,] ! (optional) numerical expression
[Mode,] ! (optional) numerical expression
[Switch] ! (optional) numerical expression
)

Arguments:
PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a
date format. This is the first day that there will be depreciated.

NextPeriodDate
The next date after the balance is drawn up. NextPeriodDate must
also be in date format. NextPeriodDate is the first day of a new period
and must be further in time than PurchaseDate, but not more than
one year after PurchaseDate. When NextPeriodDate is an empty string,
it will get the default value of January 1st of the next year after
purchase.

Cost
The purchase or initial cost of the asset. Cost must be a positive
number.

Salvage
The value of the asset at the end of its useful life. Salvage must be a
scalar numerical expression in the range [0, Cost).

Life
The number of periods until the asset will be fully depreciated, also
called the useful life of the asset. Life must be a positive integer.

StartPeriod
The starting period of the interval, for which you want to compute
the sum of depreciation, this may also indicate a partial period.

130

Chapter 6. Financial Functions

StartPeriod must be an integer in the range {1, Life}. StartPeriod must
have the same unit as Life.

EndPeriod
The last period of the interval, for which you want to compute the
sum of depreciation. EndPeriod must be an integer in the range
{StartPeriod, Life}. EndPeriod must have the same unit as Life.

Factor
The rate by which the depreciation declines is £ ‘if;gr Factor must be a
numerical expression in the range [1, «). In case Factor = 2 we
define this method as double declining depreciation.

Basis
The day-count basis method to be used. The default is 1.

Mode
Specifies how partial periods will be handled. Mode must be binary.
Mode = 0: we just take a relatively equal part of the depreciation for a
full year. This is mathematically incorrect, but is rather common in
the financial world. Mode = 1: the depreciation for the partial periods
is calculated so that the asset exactly equals its Salvage after its
useful life. The default is 0.

Switch
Indicates whether to switch to straight-line depreciation when the
depreciation amounts will be higher applying that method, or not to
switch. Switch must be binary. If Switch = 0: do not switch, if
Switch = 1: switch. The default is 1.

Return value:

The function DepreciationSum returns the depreciation of an asset for the
specified period.

Remarks:

The function DepreciationSum is similar to the Excel function VDB.

See also:

The functions DepreciationNonLinearFactor, DepreciationLinearLife. Day
count basis methods. General equations for computing depreciations.

131

Chapter 6. Financial Functions

6.4 Investments

When dealing with investments or loans, several cash flows are scheduled
within a certain time frame, such as the

m present value (the value at the beginning of the scheduled time frame),
m future value (the value at the end of the scheduled time frame), and
m periodic payments during the scheduled time frame.

A1mMSs provides several functions to calculate each of these cash flows (or the
interest rate used) in the presence of all others.

Investments and loans with constant, periodic payments and a constant
interest rate are special. When the payments are annual, such an investment
is called an annuity. The constant payments of these investments consist of a
principal and an interest payment. The principal payment will generally
increase in time whereas the interest payment will decrease in time. Two
different types of investments with constant payments and interest rates can
be distinguished:

m The first type, also referred as type 0, has payments that are made at
the end of each period.

m The second type, type 1, has payments that are made at the beginning
of each period. This type has no interest payment at the beginning of
the first period, but does have an extra period, after the last periodic
payment, with an interest payment over the last period and an inverse
principal payment.

Cash flows can be either positive or negative, where a positive payment
indicates that you are receiving this payment. Taking the interest into
account, the total value of an investment must be equal to zero after all cash
flows have occurred. For example, a positive present value and positive
payments will lead to a negative future value: your debt has grown. The
following equation expresses the relation between all the cash flows that take

place
N

vp(L+N+p > A+ v, =0
i=1
where v, is the present value, v is the future value, p is the constant
periodic payment, 7 is the constant interest rate and T is the investment type
as discussed above.

132

Investments and
loans

Constant
payments

Equations

Chapter 6. Financial Functions

AIMMS supports the following investment functions with constant, periodic
payments:

InvestmentConstantPresentValue
InvestmentConstantFutureValue
InvestmentConstantPeriodicPayment
InvestmentConstantInterestPayment
InvestmentConstantPrincipalPayment
InvestmentConstantCumulativeInterestPayment
InvestmentConstantCumulativePrincipalPayment
InvestmentConstantNumberPeriods
InvestmentConstantRateAll
InvestmentConstantRate

When the cash flows are variable (i.e. not constant), take place at irregular
intervals, or when the interest rate varies over time, it still possible to
compute present values, future values, and the internal rate of return, i.e. the
rate received for an investment consisting of payments and income.

A1MMS supports the following investment functions for variable cash flows:

InvestmentVariablePresentValue
InvestmentVariablePresentValueInPeriodic
InvestmentSingleFutureValue
InvestmentVariableInternalRateReturnAll
InvestmentVariableInternalRateReturn
InvestmentVariableInternalRateReturnInPeriodicAll
InvestmentVariableInternalRateReturnInPeriodic
InvestmentVariableInternalRateReturnModified

Variable
payments

133

Chapter 6. Financial Functions

InvestmentConstantPresentValue

The function InvestmentConstantPresentValue returns the present value of an
investment based on periodic, constant payments and a constant interest rate.

InvestmentConstantPresentValue(
FutureValue, I (input) numerical expression
Payment, I (input) numerical expression
NumberPeriods, I (input) numerical expression

|

|

InterestRate, (input) numerical expression
Type (input) numerical expression
)
Arguments:
FutureValue

The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

Payment
The periodic payment for the investment. Payment must be a real
number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (-1, 1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Return value:

The function InvestmentConstantPresentValue returns the total amount
that a series of future payments is worth at this moment.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters FutureValue, Payment and InterestRate can be used as
a variable.

m The function InvestmentConstantPresentValue is similar to the Excel
function PV.

See also:

General equations for investments with constant, periodic payments.

134

Chapter 6. Financial Functions

InvestmentConstantFutureValue

The function InvestmentConstantFutureValue returns the future value of an
investment based on periodic, constant payments and a constant interest rate.

InvestmentConstantFutureValue(
PresentValue, I (input) numerical expression
Payment, I (input) numerical expression
NumberPeriods, I (input) numerical expression

I

I

InterestRate, (input) numerical expression
Type (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

Payment
The periodic payment for the investment. Payment must be a real
number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Return value:

The function InvestmentConstantFutureValue returns the cash balance you
want to attain after the last payment is made.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue, Payment and InterestRate can be used
as a variable.

m The function InvestmentConstantFutureValue is similar to the Excel
function FV.

See also:

General equations for investments with constant, periodic payments.

135

Chapter 6. Financial Functions

InvestmentConstantPeriodicPayment

The function InvestmentConstantPeriodicPayment returns the periodic payment
for an investment based on periodic, constant payments and a constant
interest rate.

InvestmentConstantPeriodicPayment(
PresentValue, I (input) numerical expression
FutureValue, I (input) numerical expression
NumberPeriods, I (input) numerical expression
|
|

InterestRate, (input) numerical expression
Type (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Return value:

The function InvestmentConstantPeriodicPayment returns the periodic
payment for the investment.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue, FutureValue and InterestRate can be
used as a variable.

m The function InvestmentConstantPeriodicPayment is similar to the Excel
function PMT.

136

Chapter 6. Financial Functions 137

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions

InvestmentConstantInterestPayment

The function InvestmentConstantInterestPayment returns the interest payment
of the specified period for an investment based on periodic, constant
payments and a constant interest rate. Every periodic payment can be divided
in two parts: an interest payment and a principal repayment.

InvestmentConstantInterestPayment(

PresentValue, I (input) numerical expression
FutureValue, I (input) numerical expression
NumberPeriods, I (input) numerical expression
Period I (input) numerical expression
InterestRate, I (input) numerical expression
Type I (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

Period
The period for which you want to compute the interest payment.
Period must be an integer in the range {1, NumberPeriods + Type}.
When Type = 1, the extra period is to account the interest over the
former period.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Return value:

The function InvestmentConstantInterestPayment returns the interest
payment for the specified period.

138

Chapter 6. Financial Functions

Equation:
The interest payment i; in period i is computed through the equation
ij=-v,r(1+71)1"T —p (((1 +)i-1-T 1) a+nrT+ rT)
Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue, FutureValue and InterestRate can be
used as a variable.

m The function InvestmentConstantInterestPayment is similar to the Excel
function IPMT.

See also:

General equations for investments with constant, periodic payments.

139

Chapter 6. Financial Functions

InvestmentConstantPrincipalPayment

The function InvestmentConstantPrincipalPayment returns the principal
payment of the specified period for an investment based on periodic,
constant payments and a constant interest rate. Every periodic payment can
be divided in two parts: an interest payment and a principal payment.

InvestmentConstantPrincipalPayment(

PresentValue, I (input) numerical expression
FutureValue, I (input) numerical expression
NumberPeriods, I (input) numerical expression
Period I (input) numerical expression
InterestRate, I (input) numerical expression
Type I (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

Period
The period for which you want to compute the interest payment.
Period must be an integer in the range {1, NumberPeriods + Type}.
When Type = 1, the extra period is to account the interest over the
former period.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Return value:

The function InvestmentConstantPrincipalPayment returns the principal
payment for the specified period.

140

Chapter 6. Financial Functions

Equation:
The principal payment p; in period i follows from the relation
pi=p—i
where 1i; is the interest payment in period i.
Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue, FutureValue and InterestRate can be
used as a variable.

m The function InvestmentConstantPrincipalPayment is similar to the Excel
function PPMT.

See also:

General equations for investments with constant, periodic payments.

141

Chapter 6. Financial Functions

InvestmentConstantCumulativelnterestPayment

The function InvestmentConstantCumulativelnterestPayment returns the
cumulative interest payment for the specified interval for an investment
based on periodic, constant payments and a constant interest rate. Every
periodic payment can be divided in two parts: an interest payment and a
principal payment.

InvestmentConstantCumulativeInterestPayment(

PresentValue, (input) numerical expression
FutureValue, (input) numerical expression
NumberPeriods, (input) numerical expression

!
!
!
StartPeriod, I (input) numerical expression
!
!
!

EndPeriod, (input) numerical expression
InterestRate, (input) numerical expression
Type (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

StartPeriod
The starting period of the interval for which you want to compute the
cumulative interest payment. StartPeriod must be an integer in the
range {1, NumberPeriods}.

EndPeriod
The ending period of the interval for which you want to compute the
cumulative interest payment. EndPeriod must be an integer in the
range {StartPeriod, NumberPeriods}.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

142

Chapter 6. Financial Functions

Return value:

The function InvestmentConstantCumulativeInterestPayment returns the
sum of the interest payments for the periods in the specified interval.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue, FutureValue and InterestRate can be
used as a variable.

m The function InvestmentConstantCumulativeInterestPayment is similar to
the Excel function CUMIPMT.

See also:

General equations for investments with constant, periodic payments.

143

Chapter 6. Financial Functions

InvestmentConstantCumulativePrincipalPayment

The function InvestmentConstantCumulativePrincipalPayment returns the
cumulative principal payment for the specified interval for an investment
based on periodic, constant payments and a constant interest rate. Every
periodic payment can be divided in two parts: an interest payment and a
principal payment.

InvestmentConstantCumulativePrincipalPayment(

PresentValue, (input) numerical expression
FutureValue, (input) numerical expression
NumberPeriods, (input) numerical expression

!
!
!
StartPeriod, I (input) numerical expression
!
!
!

EndPeriod, (input) numerical expression
InterestRate, (input) numerical expression
Type (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

StartPeriod
The starting period of the interval for which you want to compute the
cumulative interest payment. StartPeriod must be an integer in the
range {1, NumberPeriods}.

EndPeriod
The ending period of the interval for which you want to compute the
cumulative interest payment. EndPeriod must be an integer in the
range {StartPeriod, NumberPeriods}.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

144

Chapter 6. Financial Functions

Return value:

The function InvestmentConstantCumulativePrincipalPayment returns the
sum of the principal payments for the periods in the specified interval.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue, FutureValue and InterestRate can be
used as a variable.

m The function InvestmentConstantCumulativePrincipalPayment is similar to
the Excel function CUMPRINC.

See also:

General equations for investments with constant, periodic payments.

145

Chapter 6. Financial Functions

InvestmentConstantNumberPeriods

The function InvestmentConstantNumberPeriods returns the number of periods
for an investment based on periodic, constant payments and a constant
interest rate.

InvestmentConstantNumberPeriods(
PresentValue, I (input) numerical expression
FutureValue, I (input) numerical expression
Payment, I (input) numerical expression
|
|

InterestRate, (input) numerical expression
Type (input) numerical expression
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

Payment
The value of the periodic payment for the investment. Payment must
be a real number. Payment and InterestRate cannot both be 0.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (—1,1).

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Return value:

The function InvestmentConstantNumberPeriods returns the number of
periods for an investment based on periodic, constant payments and a
constant interest rate.

Remarks:

The function InvestmentConstantNumberPeriods is similar to the Excel
function NPER.

See also:

General equations for investments with constant, periodic payments.

146

Chapter 6. Financial Functions

InvestmentConstantRateAll

The procedure InvestmentConstantRateAll returns the interest rate(s) for an
investment based on periodic, constant payments and a constant interest rate.

InvestmentConstantRateAll(

PresentValue, I (input) numerical expression
FuturevValue, I (input) numerical expression
Payment, I (input) numerical expression

I
I
I

NumberPeriods, I (input) numerical expression
I
I
I
I

Type, I (input) numerical expression
Mode, I (input) numerical expression
NumberSoTutions, ! (output) numerical expression
Solutions I (output) one-dimensional parameter
)
Arguments:
PresentValue

The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

Payment
The periodic payment for the investment. Payment must be a real
number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

Mode
Indicates whether all the solutions need to be found or just one.
Mode = 0: the search for solutions stops after one solution is found.
Mode = 1: the search for solutions continues till all solutions are
found.

NumberSolutions
The number of solutions found. If Mode = 0 NumberSolutions will
always be 1.

Solutions
There is not always a unique solution for InterestRate. Dependent on
Mode one solution or all the solutions will be given. Solutions smaller

147

Chapter 6. Financial Functions

than —1 are not supposed to be relevant, so the search for solutions
is limited to the area greater than —1.

Remarks:

m When you want to use this procedure in an objective function or
constraint you have to use InvestmentConstantRate.

m The function InvestmentConstantRateAll is similar to the Excel function
RATE.

See also:

General equations for investments with constant, periodic payments.

148

Chapter 6. Financial Functions

InvestmentConstantRate

The function InvestmentConstantRate returns the interest rate for an
investment based on periodic, constant payments and a constant interest
rate. This function uses the procedure InvestmentConstantRateAll to
determine all possible interest rates and returns the interest rate that is
within the specified bounds.

InvestmentConstantRate(

PresentValue, I (input) numerical expression
FutureValue, I (input) numerical expression
Payment, I (input) numerical expression

Type, I (input) numerical expression

[LowerBound,] I (optional) numerical expression
[UpperBound,] I (optional) numerical expression
[Error] I (optional) numerical expression

)
Arguments:

I
I
I
NumberPeriods, I (input) numerical expression
I
I
I
I

PresentValue
The total amount that a series of future payments is worth at this
moment. PresentValue must be a real number.

FutureValue
The cash balance you want to attain after the last payment is made.
FutureValue must be a real number.

Payment

The periodic payment for the investment. Payment must be a real
number.

NumberPeriods
The total number of payment periods for the investment.
NumberPeriods must be a positive integer.

Type
Indicates when payments are due. Type = 0: Payments are due at the
end of each period. Type = 1: Payments are due at the beginning of
each period.

LowerBound
Indicates a minimum for the interest rate to be accepted by this
function. The default is —1.

UpperBound
Indicates a maximum for the interest rate to be accepted by this
function. The default is 5.

Error
Indicates whether AiMMS should give an error if multiple solutions
are found that satisfy the bounds. Error = 0: if multiple solutions are

149

Chapter 6. Financial Functions

found, return the solution with the smallest absolute value. Error = 1:
if multiple solutions are found, return an error message. The default
is 0.

Return value:

The function InvestmentConstantRate returns the interest rate for an

investment based on periodic, constant payments and a constant interest
rate.

Remarks:

m The function InvestmentConstantRate can be used in an objective
function or constraint. The input parameters PresentValue, FutureValue
and Payment can be used as variables.

m The function InvestmentConstantRate is similar to the Excel function
RATE.

See also:

General equations for investments with constant, periodic payments.

150

Chapter 6. Financial Functions

InvestmentVariablePresentValue

The function InvestmentVariablePresentValue returns the net present value
for an investment based on a series of periodic cash flows at the end of the
periods and a constant interest rate.

InvestmentVariablePresentValue(

Value, I (input) one-dimensional numerical parameter
InterestRate I (input) numerical expression
)
Arguments:
Value

The periodic payments (positive or negative), which must be equally
spaced in time and occur at the end of each period. The order of the
payments in Value must be the same as the order in which the cash
flows occur. Value is an one dimensional parameter of real numbers.
Value should contain at least one nonzero number. Value given by
positive numbers represent incoming amounts and Value given by
negative numbers represent outgoing amounts.

InterestRate

The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (-1, 1).

Return value:

The function InvestmentVariablePresentValue returns the net present value
of an investment, which is the total value of all the future cash flows at
the beginning of the first period.

Equation:

The net present value v, is computed through the equation

n
pi
Vy = —
P Z (1+7)t
i=1
where p; are the (variable) periodic payments, and v is the (constant)
interest rate.

Remarks:

m When all payments are constant, the net present value computed here is
equal to the negative value of the present value computed by the
function InvestmentConstantPresentValue with the future value set to 0.0.

m This function can be used in an objective function or constraint and the
input parameters Value and InterestRate can be used as a variable.

151

Chapter 6. Financial Functions 152

m The function InvestmentVariablePresentValue is similar to the Excel
function NPV.

See also:

The function InvestmentConstantPresentValue.

Chapter 6. Financial Functions

InvestmentVariablePresentValuelnPeriodic

The function InvestmentVariablePresentValueInPeriodic returns the net
present value on the date of the first cash flow for an investment based on a
series of in-periodic cash flows and a constant interest rate.

InvestmentVariablePresentValueInPeriodic(

Value, I (input) one-dimensional numerical expression
Date, I (input) one-dimensional string expression
InterestRate, I (input) numerical expression

[Basis] I (optional) numerical expression

)
Arguments:

Value
The payments (positive or negative). Value is an one-dimensional
parameter of real numbers. Value given by positive numbers
represent incoming amounts and Value given by negative numbers
represent outgoing amounts. Value must contain at least one positive
and at least one negative number.

Date
The dates on which the payments occur. Date and Value must have
the same order. Date is an one-dimensional parameter of dates given
in a date format. The first payment date indicates the beginning of
the schedule of payments. All other dates must be later than this
date, but they may occur in any order. Date should contain as many
dates as the number of values given by Value.

InterestRate
The interest rate per period for the investment. InterestRate must be
a numerical expression in the range (-1, 1).

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function InvestmentVariablePresentValueInPeriodic returns the net
present value of an investment, which is the total value of all the future
cash flows at this moment.

Equation:

The net present value v, is computed through the equation

n

_ pi
Vp = gi (1+7)fi

153

Chapter 6. Financial Functions

where p; are the periodic payments, 7 is the (constant) interest rate, and
fi is the difference between date i and the first date (so, f; = 0), according
to the selected day-count basis method.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters Value and InterestRate can be used as a variable.

m The function InvestmentVariablePresentValueInPeriodic is similar to the
Excel function XNPV.

See also:

Day count basis methods.

154

Chapter 6. Financial Functions

InvestmentSingleFutureValue

The function InvestmentSingleFutureValue returns the future value, the cash
balance, of a payment made at this moment, present value, with periodic
interest rates.

InvestmentSingleFutureValue(

PresentValue, I (input) numerical expression
PeriodicRate I (input) one-dimensional numerical expression
)
Arguments:
PresentValue

Payment made at the start of the first period. PresentValue must be a
real number. If PresentValue is a negative number it represents an
outgoing amount and when it is a positive number it represents an
incoming amount.

PeriodicRate
Interest rates which differ per period. PeriodicRate is a
one-dimensional parameter, which should contain at least one
nonzero number. The periods must be equally spaced in time and the
interest rates must be ordered.

Return value:

The function InvestmentSingleFutureValue returns the future value of the
present value, using the periodic interest rates.

Equation:
The future value vy is computed through the equation
n
vr=v, [[Q+7)
i=1
where v, is the present value, and r; the variable, periodic interest rates.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters PresentValue and PeriodicRate can be used as a
variable.

m The function InvestmentSingleFutureValue is similar to the Excel
function FVSCHEDULE.

155

Chapter 6. Financial Functions

InvestmentVariableInternalRateReturnAll

The procedure InvestmentVariableInternalRateReturnAll returns the internal

rate of

return for an investment based on a series of periodic cash flows. The

internal rate of return is the rate received for an investment consisting of
payments (negative values) and income (positive values).

InvestmentVariableInternalRateReturnAll(

Value, I (input) one-dimensional numerical expression
Mode, I (input) numerical expression
NumberSoTutions, I (output) numerical expression
IRR I (output) one-dimensional numerical expression
)
Arguments:
Value

The periodic payments (positive or negative), which must be equally
spaced in time. The order of the payments in Value must be the same
as the order in which the cash flows occur. Value is an one
dimensional parameter of real numbers. Value given by positive
numbers represent incoming amounts and Value given by negative
numbers represent outgoing amounts. em Value must contain at least
one positive and at least one negative number.

Mode

Indicates whether all the solutions need to be found or just one.
Mode = 0: the search for solutions stops after one solution is found.
Mode = 1: the search for solutions continues till all solutions are
found.

NumberSolutions

IRR

The number of solutions found. When Mode = 0 the NumberSolutions
will be 1.

The internal rate of return for the investment. There is not always a
unique solution for IRR. Dependent on Mode one solution or all the
solutions will be given. Solutions smaller than -1 are not supposed to
be relevant, so the search for solutions is limited to the area greater
than -1.

Equation:

The internal rate of return 7 is a solution of the equation

n

Pi _
> Teni 0

i=1

where p; are the periodic payments.

156

Chapter 6. Financial Functions

Remarks:

m The internal rate of return is the interest rate at which the investment
has a zero net present value.

m When you want to use this procedure in an objective function or
constraint you have to use InvestmentVariableInternalRateReturn.

m The function InvestmentVariableInternalRateReturnAll is similar to the
Excel function IRR.

See also:

The functions InvestmentVariableInternalRateReturn,
InvestmentVariableInternalRateReturnInPeriodic.

157

Chapter 6. Financial Functions

InvestmentVariableInternalRateReturn

The function InvestmentVariableInternalRateReturn returns the internal rate
of return for an investment based on a series of periodic cash flows. The
internal rate of return is the rate received for an investment. This function
uses the procedure InvestmentVariableInternalRateReturnAll to determine all
possible internal rates and returns the internal rate that is within the
specified bounds.

InvestmentVariableInternalRateReturn(
Value, (input) one-dimensional numerical expression
[LowerBound,] (optional) numerical expression
[UpperBound,] (optional) numerical expression
[Error] (optional) numerical expression

)
Arguments:

Value
The periodic payments (positive or negative), which must be equally
spaced in time. The order of the payments in Value must be the same
as the order in which the cash flows occur. Value is an one
dimensional parameter of real numbers. Value given by positive
numbers represent incoming amounts and Value given by negative
numbers represent outgoing amounts. em Value must contain at least
one positive and at least one negative number.

LowerBound
Indicates a minimum for the internal rate to be accepted by this
function. The default is —1.

UpperBound
Indicates a maximum for the internal rate to be accepted by this
function. The default is 5.

Error
Indicates whether AiMMs should give an error if multiple solutions
are found that satisfy the bounds. Error = 0: if multiple solutions are
found, return the solution with the smallest absolute value. Error = 1:
if multiple solutions are found, return an error message. The default
is 0.

Return value:

The function InvestmentVariableInternalRateReturn returns the internal
rate of return for an investment based on a series of periodic cash flows.
The internal rate of return is the rate received for an investment.

158

Chapter 6. Financial Functions

Remarks:

m The function InvestmentVariableInternalRateReturn can be used in an
objective function or constraint. The input parameter Value can be used
as a variable.

m The function InvestmentVariableInternalRateReturn is similar to the
Excel function IRR.

See also:

The functions InvestmentVariableInternalRateReturnAll,
InvestmentVariableInternalRateReturnInPeriodic.

159

Chapter 6. Financial Functions

InvestmentVariableInternalRateReturnInPeriodicAll

The procedure InvestmentVariableInternalRateReturnInPeriodicAll returns
the internal rate of return for an investment based on a series of in-periodic
cash flows. The internal rate of return is the interest rate received for an
investment.

InvestmentVariableInternalRateReturnInPeriodicAll(

Value, I (input) one-dimensional numerical expression
Date, I (input) one-dimensional string expression
Mode, I (input) numerical expression
IRR, I (output) one-dimensional numerical expression
NumberSoTutions, I (output) numerical expression
[Basis] I (optional) numerical expression
)
Arguments:
Value

The payments (positive or negative). Value is an one-dimensional
parameter of real numbers. Value given by positive numbers
represent incoming amounts and Value given by negative numbers
represent outgoing amounts. Value must contain at least one positive
and at least one negative number.

Date

The dates on which the payments occur. Date and Value must have
the same order. Date is an one-dimensional parameter of dates given
in a date format. The first payment date indicates the beginning of
the schedule of payments. All other dates must be later than this
date, but they may occur in any order. Date should contain as many
dates as the number of values given by Value.

Mode

IRR

Indicates whether all the solutions need to be found or just one.
Mode = 0: the search for solutions stops after one solution is found.
Mode = 1: the search for solutions continues till all solutions are
found.

The internal rate of return for the investment. There is not always a
unique solution for IRR. Dependent on Mode one solution or all the
solutions will be given. Solutions smaller than -1 are not supposed to
be relevant, so the search for solutions is limited to the area greater
than -1.

NumberSolutions

The number of solutions found. When Mode = 0 the NumberSolutions
will be 1.

160

Chapter 6. Financial Functions

Basis
The day-count basis method to be used. The default is 1.

Equation:

The internal rate of return 7 is a solution of the equation

;(1+r

where p; are the periodic payments, and f; is the difference between date
i and the first date (so, f1 = 0), according to the selected day-count basis
method.

Remarks:

m When you want to use the procedure in an objective function or
constraint you have to use
InvestmentVariableInternalRateReturnInPeriodic.

m The procedure InvestmentVariableInternalRateReturnInPeriodicAll is
similar to the Excel function XIRR.

See also:

The functions InvestmentVariableInternalRateReturn,
InvestmentVariableInternalRateReturnInPeriodic. Day count basis
methods.

161

Chapter 6. Financial Functions

InvestmentVariableInternalRateReturnInPeriodic

The function InvestmentVariableInternalRateReturnInPeriodic returns the
internal rate of return for an investment based on a series of in-periodic cash
flows. The internal rate of return is the interest rate received for an
investment. This function uses the procedure
InvestmentVariableInternalRateReturnInPeriodicAll to determine all possible
internal rates and returns the internal rate that is within the specified bounds.

InvestmentVariableInternalRateReturnInPeriodic(
Value, I (input) one-dimensional numerical expression
Date, I (input) one-dimensional string expression
[Basis,] I (optional) numerical expression

[LowerBound,] I (optional) numerical expression

[UpperBound,] I (optional) numerical expression

[Error] I (optional) numerical expression

)
Arguments:

Value
The periodic payments (positive or negative), which must be equally
spaced in time. The order of the payments in Value must be the same
as the order in which the cash flows occur. Value is an one
dimensional parameter of real numbers. Value given by positive
numbers represent incoming amounts and Value given by negative
numbers represent outgoing amounts. em Value must contain at least
one positive and at least one negative number.

Date
The dates on which the payments occur. Date and Value must have
the same order. Date is an one-dimensional parameter of dates given
in a date format. The first payment date indicates the beginning of
the schedule of payments. All other dates must be later than this
date, but they may occur in any order. Date should contain as many
dates as the number of values given by Value.

Basis
The day-count basis method to be used. The default is 1.

LowerBound
Indicates a minimum for the internal rate to be accepted by this
function. The default is —1.

UpperBound
Indicates a maximum for the internal rate to be accepted by this
function. The default is 5.

Error
Indicates whether AiMMS should give an error if multiple solutions
are found that satisfy the bounds. Error = 0: if multiple solutions are

162

Chapter 6. Financial Functions

found, return the solution with the smallest absolute value. Error = 1:
if multiple solutions are found, return an error message. The default
is 0.

Return value:

The function InvestmentVariableInternalRateReturnInPeriodic returns the
internal rate of return for an investment based on a series of in-periodic
cash flows. The internal rate of return is the interest rate received for an
investment.

Remarks:

m The function InvestmentVariableInternalRateReturnInPeriodic can be
used in an objective function or constraint. The input parameter Value
can be used as a variable.

m The function InvestmentVariableInternalRateReturnInPeriodic is similar
to the Excel function XIRR.

See also:

The functions InvestmentVariableInternalRateReturn,
InvestmentVariableInternalRateReturnInPeriodicAll. Day count basis
methods.

163

Chapter 6. Financial Functions

InvestmentVariableInternalRateReturnModified

The function InvestmentVariableInternalRateReturnModified returns the
modified internal rate of return for an investment based on a series of
periodic cash flows. It considers both the cost made for the investment and
the interest received on the reinvestment of cash flows.

InvestmentVariableInternalRateReturnModified(

Value, I (input) one-dimensional numerical expression
FinanceRate, I (input) numerical expression
ReinvestRate I (input) numerical expression
)
Arguments:
Value

The periodic payments (positive or negative), which must be equally
spaced in time. The order of the payments in Value must be the same
as the order in which the cash flows occur. Value is an one
dimensional parameter of real numbers. Value given by positive
numbers represent incoming amounts and Value given by negative
numbers represent outgoing amounts. Value must contain at least
one positive and at least one negative number.

FinanceRate
Interest rate you pay on money used in negative cash flows.
FinanceRate must be a numerical expression in the range [—1, o).

ReinvestRate
Interest rate you receive on the positive cash flows as you reinvest
them. ReinvestRate must be a numerical expression in the range
[_ 1 y) -

Return value:

The function InvestmentVariableInternalRateReturnModified returns the
modified internal rate of return for the investment.

Equation:
The internal rate of return 7 is the solution of the equation

NPV, 7)1 +1)"

n-1 _
) = =V, A+ rp)

where 7 is the number of periods considered, v; = v/ — v; (with
vl* ,V; = 0), 7y the finance rate, v, the reinvestment rate, and NPV the
function InvestmentVariablePresentValue.

164

Chapter 6. Financial Functions

Remarks:

m This function can be used in an objective function or constraint and the
input parameters Value, FinanceRate and ReinvestRate can be used as a
variable.

m There should be at least one negative and one negative Value.

m The function InvestmentVariableInternalRateReturnModified is similar to
the Excel function MIRR.

See also:

The function InvestmentVariableInternalRateReturn.

165

Chapter 6. Financial Functions

6.5 Securities

There are several types of securities, each with its own features and
scheduled cash flows. Cash flows can be scheduled at the end of every
coupon period or just at the end of the security’s life. If we see a security as
an investment, its yield can be viewed as the internal rate of return. The cash
flows of a security can consists of periodic payments (equal to a certain
percentage of the par value), the coupons, and the future value of the
security. In general, the general cash flow equation

N
vp(L+r)N4p > A+t +vp=0

i=1

where v, is the present value, vy is the future value, N the number of
periods, p is a constant periodic payment and 7 is the constant interest rate,
holds. AimMs provides functions the most common types of securities like
treasury bills and bonds. However, the present value, future value, periodic
payments, number of periods and interest rate are different for each specify
security type.

We distinguish three main types of securities:

m securities with zero coupon periods (discounted securities),
m securities with one coupon period (at maturity), and
m securities with multiple coupon periods

In the case of discounted (or zero coupon) securities such as treasury bills,
there are no periodical payments. The only positive cash flow is a fixed
redemption at the end of the securitys life. Therefore, only the value of this
redemption and the investment made for the security determine its yield. In
this case, the present value is equal to the price —P, the price at which the
security is bought at the settlement date, there O periods (so no periodic
payments), and the future value at the maturity date is equal to the
redemption R. Thus the general cash flow equation reduces to

—P(1+7vyfsm)+R=0

where 7, is the annual yield of the security, and fsu is the difference (in
fractions of years) between the settlement and maturity date, computed with
respect to the specified day count basis method.

166

Securities

Security types

Discounted
securities

Chapter 6. Financial Functions

Commonly with discounted securities, the yield is not expressed in terms of
the price, but in terms of the fixed redemption. The discount rate is the
increase in value per year as a percentage of the redemption. The relationship
between the yield 7, and the discount rate ¥4 is given by

1

147y fsy = ————
v fsm 1-7afsm

which leads to the following equivalent relation between price and
redemption
-P+R(—vafsm) =0

A treasury bill is a discounted security with less than one year from
settlement until maturity, the number of days in one year is fixed at 360 and
redemption is fixed at 100.

A1MMS supports the following functions for securities with zero coupon
periods:

SecurityDiscountedPrice
SecurityDiscountedRedemption
SecurityDiscountedYield
SecurityDiscountedRate
TreasuryBiT1Price
TreasuryBillYield
TreasuryBil1BondEquivalent

Securities that only pay interest at maturity can be seen as securities with
only one coupon period, where the accrued interest increases linearly in time
until it is paid (when the security expires), and the redemption equals the par
value of the security. In the general cash flow equation,

m the present value
Vp = —P - vparTCfIS;

where P is the price of the account at settlement and f7g is the
difference between the issue and settlement date (in fraction of years)
with respect to the specified day count basis method, to account for the
accrued interest from the issue date until settlement,
m the periodic payment
p= vparryfIM,

where 1, is the annual yield and fju is the difference between the issue
and maturity date (in fraction of years) with respect to the specified day
count basis method, and

m the interest rate

v =7y fom,

167

Discount rate

Treasury bills

Functions for
discounted
securities

One-coupon
securities

Chapter 6. Financial Functions

where fgy is the difference between the settlement and maturity date
(in fraction of years) with respect to the specified day count basis
method.

This results in the following equation for securities with one coupon period:

(=P - vparrcfls)(l + TnyM) + vparryfIM + Vpar = 0

A1MMS supports the following functions for securities with one coupon
period:

SecurityMaturityPrice
SecurityMaturityCouponRate
SecurityMaturityYield
SecurityMaturityAccruedInterest

For securities with multiple coupon periods, interest will be accrued linearly
during and paid at the end of each coupon period (i.e. at the coupon date). In
the general cash flow equation

m the number of periods

N =[ffsml,

where f is the coupon frequency (number of coupon periods per year),
and fsy the difference between settlement and maturity date (in
fraction of years) with respect to the specified day count basis method,

m the present value

e frs

S fen’
where P is the price of the security at settlement, vy, the par value of
the security, 7. the annual coupon rate, fps the difference (in fraction of
years) between the previous coupon and settlement date, and fpy the
difference between the previous and next coupon date, both with
respect to the specified day count basis method,

m the periodic payment

Vp = —P — vpgr

P = Vpars
= VUpar
f

m the interest rate

where 7, is the annual yield.

This results in the following equation for securities with multiple coupon
periods:

N-1+48

Ye fPS) fon g“ Ye ry)N_i
P = Vpar— 5 + D Vpar— |1+ = +R=0
< parf fPN = parf < f

168

Functions for
one-coupon
securities

Multi-coupon
securities

Chapter 6. Financial Functions

A1MMS supports the following functions for securities with multiple coupon
periods:

SecurityCouponNumber
SecurityCouponPreviousDate
SecurityCouponNextDate
SecurityCouponDays
SecurityCouponDaysPreSettlement
SecurityCouponDaysPostSettlement
SecurityPeriodicPrice
SecurityPeriodicRedemption
SecurityPeriodicCouponRate
SecurityPeriodicYieldAll
SecurityPeriodicYield
SecurityPeriodicAccruedInterest
SecurityPeriodicDuration
SecurityPeriodicDurationModified

169

Functions for
multi-coupon
securities

Chapter 6. Financial Functions

SecurityDiscountedPrice

The function SecurityDiscountedPrice returns the price of a discounted
security at settlement date.

SecurityDiscountedPrice(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Redemption, I (input) numerical expression
DiscountRate, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:
SettlementDate

The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Redemption
The amount repaid at maturity date. Redemption must be a positive
real number.

DiscountRate
The rate the security’s value increases per year as a percentage of the
redemption value. DiscountRate must be a positive real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedPrice returns the price of the security at
settlement date.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters Redemption and DiscountRate can be used as a
variable.

m The function SecurityDiscountedPrice is similar to the Excel function
PRICEDISC.

See also:

Day count basis methods. General equations for discounted securities.

170

Chapter 6. Financial Functions

SecurityDiscountedRedemption

The function SecurityDiscountedRedemption returns the repayment at maturity
date of a discounted security.

SecurityDiscountedRedemption(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Price, I (input) numerical expression
DiscountRate, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:
SettlementDate

The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Price
The price of the security at settlement date. Price must be a positive
real number.

DiscountRate
The rate the security’s value increases per year as a percentage of the
redemption value. DiscountRate must be a positive real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedRedemption returns the amount paid at
maturity date.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters Price and DiscountRate can be used as a variable.

m The function SecurityDiscountedRedemption is similar to the Excel
function RECEIVED.

See also:

Day count basis methods. General equations for discounted securities.

171

Chapter 6. Financial Functions

SecurityDiscountedYield

The function SecurityDiscountedYield returns the yield of a discounted
security at maturity date.

SecurityDiscountedYield(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Price, I (input) numerical expression
Redemption, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:
SettlementDate

The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Price
The price of the security at settlement date. Price must be a positive
real number.

Redemption
The amount repaid at maturity date. Redemption must be a positive
real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedYield returns the annual rate the
security’s value increases as a percentage of the price.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters Price and Redemption can be used as a variable.

m The function SecurityDiscountedYield is similar to the Excel function
YIELDDISC.

See also:

Day count basis methods. General equations for discounted securities.

172

Chapter 6. Financial Functions

SecurityDiscountedRate

The function SecurityDiscountedRate returns the discount rate of a
discounted security.

SecurityDiscountedRate(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Price, I (input) numerical expression
Redemption, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:
SettlementDate

The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Price
The price of the security at settlement date. Price must be a positive
real number.

Redemption
The amount repaid at maturity date. Redemption must be a positive
real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedRate returns the annual rate the security’s
value increases as a percentage of the redemption value.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters Price and Redemption can be used as a variable.

m The function SecurityDiscountedRate is similar to the Excel function
DISC.

See also:

Day count basis methods. General equations for discounted securities.

173

Chapter 6. Financial Functions

TreasuryBillPrice

The function TreasuryBi11Price returns the price of a Treasury bill at
settlement date. A Treasury bill is a discounted security with less than one
year from settlement until maturity, the number of days in one year is fixed
at 360 and redemption is fixed at 100.

TreasuryBi11Price(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
DiscountRate I (input) numerical expression
)
Arguments:
SettlementDate

The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

DiscountRate
The discount rate of the security as a percentage of the redemption.
DiscountRate must be a positive real number.

Return value:

The function TreasuryBi11Price returns the price of a Treasury bill at
settlement date.

Remarks:

m This function can be used in an objective function or constraint and the
input parameter DiscountRate can be used as a variable.

m The function TreasuryBil1Price is similar to the Excel function
TBILLPRICE.

See also:

General equations for discounted securities.

174

Chapter 6. Financial Functions

TreasuryBillYield

The function TreasuryBi11Yield returns the yield of a Treasury bill at
settlement date. A Treasury bill is a discounted security with less than one
year from settlement until maturity, the number of days in one year is fixed
at 360 and redemption is fixed at 100.

TreasuryBillYield(
SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Price I (input) numerical expression

)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Price
The price the security is worth at this moment. Price must be a
positive real number.

Return value:

The function TreasuryBil1Yield returns the annual rate the Treasury bill’s
value increases as a percentage of the price.

Remarks:

m This function can be used in an objective function or constraint and the
input parameter Price can be used as a variable.

m The function TreasuryBil1Yield is similar to the Excel function
TBILLYIELD.

See also:

General equations for discounted securities.

175

Chapter 6. Financial Functions

TreasuryBillBondEquivalent

The function TreasuryBill1BondEquivalent returns the bond equivalent yield of
a treasury bill. A Treasury bill is a discounted security with less than one year
from settlement until maturity, the number of days in one year is fixed at 360
and redemption is fixed at 100.

TreasuryBil1BondEquivalent(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
DiscountRate I (input) numerical expression
)
Arguments:
SettlementDate

The date of settlement of the security. SettlementDate must be given
in a date format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

DiscountRate
The discount rate of the security as a percentage of the redemption.
DiscountRate must be a positive real number.

Return value:

The function TreasuryBil1BondEquivalent returns the bond equivalent yield
of a Treasury bill.

Remarks:

m This function can be used in an objective function or constraint and the
input parameter DiscountRate can be used as a variable.

m The function TreasuryBillBondEquivalent is similar to the Excel function
TBILLEQ.

See also:

General equations for discounted securities.

176

Chapter 6. Financial Functions

SecurityMaturityPrice

The function SecurityMaturityPrice returns the price at settlement date of a
security that pays interest at maturity.

SecurityMaturityPrice(

IssueDate, I (input) scalar string expression
SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
ParValue, I (input) numerical expression
CouponRate, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

IssueDate
The date of issue of the security. IssueDate must be given in date
format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in
date format and must be a date after IssueDate.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a
positive real number.

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityPrice returns the price of the security at
settlement date.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters ParValue, CouponRate, and Yield can be used as a
variable.

177

Chapter 6. Financial Functions 178

m The function SecurityMaturityPrice is similar to the Excel function
PRICEMAT.

See also:

Day count basis methods. General equations for securities with one
coupon.

Chapter 6. Financial Functions

SecurityMaturityCouponRate

The function SecurityMaturityCouponRate returns the coupon rate of a security
that pays interest at maturity.

SecurityMaturityCouponRate(

IssueDate, I (input) scalar string expression
SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Parvalue, I (input) numerical expression
Price, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

IssueDate
The date of issue of the security. IssueDate must be given in date
format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in
date format and must be a date after IssueDate.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Price
The price of the security at settlement date. Price must be a positive
real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityCouponRate returns the annual interest rate
of the security as a percentage of the par value.

Remarks:

This function can be used in an objective function or constraint and the
input parameters ParValue, Price, and Yield can be used as a variable.

179

Chapter 6. Financial Functions 180

See also:

Day count basis methods. General equations for securities with one
coupon.

Chapter 6. Financial Functions

SecurityMaturityYield

The function SecurityMaturityYield returns the yield of a security that pays
interest at maturity.

SecurityMaturityYield(

IssueDate, I (input) scalar string expression
SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Parvalue, I (input) numerical expression
Price, I (input) numerical expression
CouponRate, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

IssueDate
The date of issue of the security. IssueDate must be given in date
format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in
date format and must be a date after IssueDate.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Price
The price of the security at settlement date. Price must be a positive
real number.

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityYield returns the annual rate the security’s
value increases as a percentage of the price.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters ParValue, Price, and CouponRate can be used as a
variable.

181

Chapter 6. Financial Functions 182

m The function SecurityMaturityYield is similar to the Excel function
YIELDMAT.

See also:

Day count basis methods. General equations for securities with one
coupon.

Chapter 6. Financial Functions

SecurityMaturityAccruedInterest

The function SecurityMaturityAccruedInterest returns the accrued interest for
a security that pays interest at maturity.

SecurityMaturityAccruedInterest(

IssueDate, I (input) scalar string expression
SettlementDate, I (input) scalar string expression
ParValue, I (input) numerical expression
CouponRate, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

IssueDate
The date of issue of the security. IssueDate must be given in date
format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in
date format and must be a date after IssueDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityAccruedInterest returns the interest accrued
from issue date until settlement date.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters CouponRate and ParValue can be used as a variable.

m The function SecurityMaturityAccruedInterest is similar to the Excel
function ACCRINTM.

See also:

Day count basis methods. General equations for securities with one
coupon.

183

Chapter 6. Financial Functions

SecurityCouponNumber

The function SecurityCouponNumber returns the number of coupons from
settlement date and maturity date of a security that pays interest at the end
of each coupon period.

SecurityCouponNumber(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Frequency, I (input) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

Return value:

The function SecurityCouponNumber returns the number of coupon
payments from the settlement date until the maturity date.

Remarks:

The function SecurityCouponNumber is similar to the Excel function COUPNUM.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

184

Chapter 6. Financial Functions

SecurityCouponPreviousDate

The function SecurityCouponPreviousDate returns the last coupon-date
previous to settlement date of a security that pays interest at the end of each
coupon period.

SecurityCouponPreviousDate(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Frequency I (input) numerical expression
PreviousDate ! (output) string parameter
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

PreviousDate
The date on which the coupon period, in which the settlement date
falls, starts and on which the previous coupon period ends.

Remarks:

The function SecurityCouponPreviousDate is similar to the Excel function
COUPPCD.

See also:

General equations for securities with multiple coupons.

185

Chapter 6. Financial Functions

SecurityCouponNextDate

The function SecurityCouponNextDate returns the first coupon-date next to
settlement date of a security that pays interest at the end of each coupon
period.

SecurityCouponNextDate(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Frequency I (input) numerical expression
NextDate ! (output) string parameter
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

NextDate
The date on which the coupon period ends and on which the next
coupon period starts.

Remarks:

The function SecurityCouponNextDate is similar to the Excel function
COUPNCD.

See also:

General equations for securities with multiple coupons.

186

Chapter 6. Financial Functions

SecurityCouponDays

The function SecurityCouponDays returns the number of days of the coupon
period in which settlement date falls. In other words the number of days
from the last coupon-date previous to settlement date until the first
coupon-date next to settlement date of a security that pays interest at the end
of each coupon period.

SecurityCouponDays (
SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Frequency, I (input) numerical expression
[Basis] ! (optional) numerical expression
)

Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityCouponDays returns the number of days of the
coupon period in which the settlement date falls.

Remarks:
The function SecurityCouponDays is similar to the Excel function COUPDAYS.
See also:

Day count basis methods. General equations for securities with multiple
coupons.

187

Chapter 6. Financial Functions

SecurityCouponDaysPreSettlement

The function SecurityCouponDaysPreSettlement returns the number of days
from the last coupon-date previous to settlement date until settlement date
of a security that pays interest at the end of each coupon period.

SecurityCouponDaysPreSettlement(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Frequency, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityCouponDaysPreSettlement returns the number of days
from the previous coupon-date until the settlement date, using the
specified day-count basis.

Remarks:

The function SecurityCouponDaysPreSettlement is similar to the Excel
function COUPDAYBS.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

188

Chapter 6. Financial Functions

SecurityCouponDaysPostSettlement

The function SecurityCouponDaysPostSettlement returns the number of days
from the first coupon-date next to settlement date until settlement date of a
security that pays interest at the end of each coupon period.

SecurityCouponDaysPostSettTement(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Frequency, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityCouponDaysPostSettlement returns the number of
days from the first coupon-date next to settlement date until settlement
date.

Remarks:

The function SecurityCouponDaysPostSettlement is similar to the Excel
function COUPDAYSNC.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

189

Chapter 6. Financial Functions

SecurityPeriodicPrice

The function SecurityPeriodicPrice returns the price at settlement date of a
security that pays interest at the end of each coupon period.

SecurityPeriodicPrice(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
ParValue, I (input) numerical expression
Redemption, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Redemption
The amount repaid for the security at the maturity date. Redemption
must be a positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicPrice returns the price of the security at
settlement date.

190

Chapter 6. Financial Functions

Remarks:

m This function can be used in an objective function or constraint and the
input parameters ParValue, Redemption, CouponRate, and Yield can be
used as a variable.

m The function SecurityPeriodicPrice is similar to the Excel function
PRICE.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

191

Chapter 6. Financial Functions

SecurityPeriodicRedemption

The function SecurityPeriodicRedemption returns the repayment at maturity
date of a security that pays interest at the end of each coupon period.

SecurityPeriodicRedemption(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
ParValue, I (input) numerical expression
Price, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Price
The price of the security at settlement date. Price must be a positive
real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicRedemption returns the amount repaid for
the security at the maturity date.

192

Chapter 6. Financial Functions 193

Remarks:

This function can be used in an objective function or constraint and the
input parameters ParValue, Price, CouponRate, and Yield can be used as a
variable.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

Chapter 6. Financial Functions

SecurityPeriodicCouponRate

The function SecurityPeriodicCouponRate returns the coupon rate of a security
that pays interest at the end of each coupon period.

SecurityPeriodicCouponRate(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
ParValue, I (input) numerical expression
Price, I (input) numerical expression
Redemption, I (input) numerical expression
Frequency, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Price
The price of the security at settlement date. Price must be a positive
real number.

Redemption

The amount repaid for the security at the maturity date. Redemption
must be a positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicCouponRate returns the interest rate per year
of the security as a percentage of the par value.

194

Chapter 6. Financial Functions 195

Remarks:

This function can be used in an objective function or constraint and the
input parameters ParValue, Price, Redemption, and Yield can be used as a
variable.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

Chapter 6. Financial Functions

SecurityPeriodicYieldAll

The procedure SecurityPeriodicYieldAl1 returns the yield(s) of a security that
pays interest at the end of each coupon period.

SecurityPeriodicYieldA11(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
ParValue, I (input) numerical expression
Price, I (input) numerical expression
Redemption, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
Yield, ! (output) one-dimensional numerical expression
NumberSoTutions, ! (output) numerical expression
[Basis,] ! (optional) numerical expression
[Mode] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Price
The price of the security at settlement date. Price must be a positive
real number.

Redemption
The amount repaid for the security at the maturity date. Redemption
must be a positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

196

Chapter 6. Financial Functions

Yield
There is not always a unique solution for yield. Dependent on Mode
one solution or all the solutions will be given.

NumberSolutions
The number of solutions found. If Mode = 0 NumberSolutions will
always be 1.

Basis
The day-count basis method to be used. The default is 1.

Mode
Indicates whether all the solutions need to be found or just one.
Mode = 0: the search for solutions stops after one solution is found.
Mode = 1: the search for solutions continues till all solutions are
found.

Remarks:

m When you want to use this procedure in an objective function or
constraint you have to use SecurityPeriodicYield.

m The function SecurityPeriodicYieldAll is similar to the Excel function
YIELD.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

197

Chapter 6. Financial Functions

SecurityPeriodicYield

The function SecurityPeriodicYield returns the yield of a security that pays
interest at the end of each coupon period. This function uses the procedure
SecurityPeriodicYieldAll to determine all possible yields and returns the
yield that is within the specified bounds.

SecurityPeriodicYield(

[LowerBound,]
[UpperBound,]
[Error]

)
Arguments:

(optional) numerical expression
(optional) numerical expression
(optional) numerical expression

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Parvalue, I (input) numerical expression
Price, I (input) numerical expression
Redemption, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
[Basis,] ! (optional) numerical expression

I

I

I

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate
The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a
positive real number.

Price
The price of the security at settlement date. Price must be a positive
real number.

Redemption

The amount repaid for the security at the maturity date. Redemption
must be a positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

198

Chapter 6. Financial Functions

LowerBound
Indicates a minimum for the yield to be accepted by this function.
The default is —1.

UpperBound
Indicates a maximum for the yield to be accepted by this function.
The default is 5.

Error
Indicates whether AiMMS should give an error if multiple solutions
are found that satisfy the bounds. Error = 0: if multiple solutions are
found, return the solution with the smallest absolute value. Error = 1:
if multiple solutions are found, return an error message. The default
is 0.

Return value:

The function SecurityPeriodicYield returns the yield of a security that
pays interest at the end of each coupon period.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters ParValue, Price, Redemption, and CouponRate can be
used as a variable.

m The function SecurityPeriodicYield is similar to the Excel function
YIELD.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

199

Chapter 6. Financial Functions

SecurityPeriodicAccruedInterest

The function SecurityPeriodicAccruedInterest returns the accrued interest
from the begin of the coupon period until the settlement date for a security
that pays interest at the end of each coupon period.

SecurityPeriodicAccruedInterest(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
ParValue, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicAccruedInterest returns the interest accrued
from the begin of the coupon period until settlement date.

Remarks:

This function can be used in an objective function or constraint and the
input parameters ParValue and CouponRate can be used as a variable.

200

Chapter 6. Financial Functions 201

See also:

Day count basis methods. General equations for securities with multiple
coupons.

Chapter 6. Financial Functions

SecurityPeriodicDuration

The function SecurityPeriodicDuration returns the Macauley duration of a
security that pays interest at the end of each coupon period. Duration is
defined as the weighted average of time it takes to receive a positive cash
flow. The present values of the cash flows are used as weights. The duration
can be used as a measure of a bond price’s response to changes in yield.

SecurityPeriodicDuration(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Parvalue, I (input) numerical expression
Redemption, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Redemption
The amount repaid for the security at the maturity date. Redemption
must be a positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

202

Chapter 6. Financial Functions

Return value:

The function SecurityPeriodicDuration returns the Macauley duration of a
security that pays interest at the end of each coupon period. Duration is
defined as the weighted average of the time it takes to receive a positive
cash flow.

Equation:
The Macauley duration D is computed through the equation
Voo te
(N_Hfsw)%i(mfw)#
SpN (b Spn (i~ 1+ 5N

1+ Q)l 5y

D: f

SN

N Upar%
+Z i 14 SN

=1 ry\! I+%N

()

where all other variables have the same interpretation as in the general
equations for securities with multiple coupons.

Remarks:

m This function can be used in an objective function or constraint and the
input parameters ParValue, Redemption, CouponRate, and Yield can be
used as a variable.

m The function SecurityPeriodicDuration is similar to the Excel function
DURATION.

See also:

Day count basis methods. General equations for securities with multiple
coupons.

203

Chapter 6. Financial Functions

SecurityPeriodicDurationModified

The function SecurityPeriodicDurationModified returns the modified Macauley
duration of a security that pays interest at the end of each coupon period.

SecurityPeriodicDurationModified(

SettlementDate, I (input) scalar string expression
MaturityDate, I (input) scalar string expression
Parvalue, I (input) numerical expression
Redemption, I (input) numerical expression
Frequency, I (input) numerical expression
CouponRate, I (input) numerical expression
Yield, I (input) numerical expression
[Basis] ! (optional) numerical expression
)
Arguments:

SettlementDate
The date of settlement of the security. SettlementDate must be in date
format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in
date format and must be a date after SettlementDate.

ParValue
The starting value of the security at issue date. ParValue must be a
positive real number.

Redemption
The amount repaid for the security at the maturity date. Redemption
must be a positive real number.

Frequency
The number of coupon payments in one year. Frequency must be 1
(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate
The annual interest rate of the security as a percentage of the par
value. CouponRate must be a nonnegative real number.

Yield
The yield of the security. Yield must be a nonnegative real number.

Basis
The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicDurationModified returns the modified
Macauley duration of a security that pays interest at the end of each
coupon period.

204

Chapter 6. Financial Functions

Equation:
The modified duration D, is computed through the equation
D

Ty
1+f

Dimoa =

where D is the Macauley duration.
Remarks:

m This function can be used in an objective function or constraint and the
input parameters ParValue, Redemption, CouponRate, and Yield can be
used as a variable.

m The function SecurityPeriodicDurationModified is similar to the Excel
function MDURATION.

See also:

The function SecurityPeriodicDuration. Day count basis methods. General
equations for securities with multiple coupons.

205

Chapter 7

Distribution and Combinatoric Functions

A1MMS supports several functions to obtain random numbers from discrete
or continuous distribution, and additionally some combinatoric functions.

The functions for discrete distributions are:

Binomial
Geometric
HyperGeometric
NegativeBinomial
Poisson

The functions for continuous distributions are:

Beta
Exponential
ExtremeValue
Gamma
Logistic
LogNormal
Normal
Pareto
Triangular
Uniform
Weibull

The following functions that operate on distributions are available:

DistributionCumulative
DistributionInverseCumulative
DistributionDensity
DistributionInverseDensity
DistributionMean
DistributionDeviation
DistributionVariance
DistributionSkewness
DistributionKurtosis

The combinatoric functions are:

m Combination

Chapter 7. Distribution and Combinatoric Functions 207

m Factorial
m Permutation

Chapter 7. Distribution and Combinatoric Functions

Binomial

The function Binomial draws a random value from a binomial distribution.

Binomial(
ProbabilityOfSuccess, ! (input) numerical expression
NumberOfTries I (input) integer expression

)
Arguments:

ProbabilityOfSuccess

A scalar numerical expression in range (0, 1).
NumberOfTries

An integer numerical expression > 0.

Return value:

The function Binomial returns a random value drawn from a binomial
distribution with a probability of success ProbabilityOfSuccess and
number of tries NumberOfTries

See also:

The Binomial distribution is discussed in full detail in Appendix A of the
Language Reference.

208

Chapter 7. Distribution and Combinatoric Functions

Geometric

The function Geometric draws a random value from a geometric distribution.

Geometric(
ProbabilityOfSuccess I (input) numerical expression

)
Arguments:

ProbabilityOfSuccess
A scalar numerical expression in the range (0, 1).

Return value:

The function Geometric returns a random value drawn from a geometric
distribution with a probability of success ProbabilityOfSuccess.

See also:

The Geometric distribution is discussed in full detail in Appendix A of the
Language Reference.

209

Chapter 7. Distribution and Combinatoric Functions

HyperGeometric

The function HyperGeometric draws a random value from a hypergeometric
distribution.

HyperGeometric(
ProbabilityOfSuccess, I (input) numerical expression
NumberOfTries, I (input) integer expression
PopulationSize I (input) integer expression
)
Arguments:
ProbabilityOfSuccess
A scalar numerical expression in the range (0, 1).
NumberOfTries
A integer numerical expression in the range 1, ..., PopulationSize.

PopulationSize
A integer numerical expression > 0.

Return value:

The function HyperGeometric returns a random value drawn from a
hypergeometric distribution with a probability of success
ProbabilityOfSuccess, number of tries NumberOfTries and population size
PopulationSize.

Remarks:

The probability of success ProbabilityOfSuccess must assume one of the
values i/size, where i is in the range 1, ..., PopulationSize — 1.

See also:

The HyperGeometric distribution is discussed in full detail in Appendix A of
the Language Reference.

210

Chapter 7. Distribution and Combinatoric Functions

NegativeBinomial

The function NegativeBinomial draws a random value from a negative
binomial distribution.

NegativeBinomial(

ProbabilityOfSuccess, I (input) numerical expression
NumberOfSuccesses I (input) integer expression
)
Arguments:
ProbabilityOfSuccess

A scalar numerical expression in the range (0, 1).

NumberOfSuccesses
A integer numerical expression > 0.

Return value:

The function NegativeBinomial returns a random value drawn from a
negative binomial distribution with probability ProbabilityOfSuccess and
number of successes NumberOfSuccesses.

See also:

The NegativeBinomial distribution is discussed in full detail in Appendix A
of the Language Reference.

211

Chapter 7. Distribution and Combinatoric Functions

Poisson

The function Poisson draws a random value from a Poisson distribution.

Poisson(
AverageNumberOfSuccesses I (input) numerical expression

)
Arguments:

lambda
A scalar numerical expression > 0.

Return value:

The function Poisson returns a random value drawn from a Poisson
distribution with average number of occurrences
AverageNumberOfSuccesses.

See also:

The Poisson distribution is discussed in full detail in Appendix A of the
Language Reference.

212

Chapter 7. Distribution and Combinatoric Functions

Beta

The function Beta draws a random value from a beta distribution.

Beta(
ShapeAlpha, I (input) numerical expression
ShapeBeta, I (input) numerical expression
Minimum, ! (optional) numerical expression
Maximum ! (optional) numerical expression
)

Arguments:
ShapeAlpha

A scalar numerical expression > 0.

ShapeBeta

A scalar numerical expression > 0.
Minimum

A scalar numerical expression.

Maximum
A scalar numerical expression >min.

Return value:

The function Beta returns a random value drawn from a beta distribution
with shapes ShapeAlpha, ShapeBeta, lower bound Minimum and upper
bound Maximum.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. The original
function Beta(ShapeAlpha, ShapeBeta, s) returns a random value drawn
from a beta distribution with shapes ShapeAlpha, ShapeBeta and scale s,
where s = Maximum and Minimum = 0.

See also:

The Beta distribution is discussed in full detail in Appendix A of the
Language Reference.

213

Chapter 7. Distribution and Combinatoric Functions

Exponential

The function Exponential draws a random value from an exponential
distribution.

Exponential(

Towerbound ! (optional) numerical expression
scale ! (optional) numerical expression
)
Arguments:
lowerbound

A scalar numerical expression.
scale

A scalar numerical expression > 0.

Return value:

The function Exponential returns a random value drawn from a
exponential distribution with lower bound lowerbound and scale scale.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. The original
function Exponential(lambda) returns a random value drawn from a
exponential distribution with rate lambda = 1/scale and lower bound 0.

See also:

The Exponential distribution is discussed in full detail in Appendix A of
the Language Reference.

214

Chapter 7. Distribution and Combinatoric Functions

ExtremeValue

The function ExtremeValue draws a random value from an extreme value
distribution.

ExtremeValue(
Tocation, ! (optional) numerical expression
scale ! (optional) numerical expression

)
Arguments:

location
A scalar numerical expression.

scale
A scalar numerical expression > 0.

Return value:

The function ExtremeValue returns a random value drawn from an extreme
value distribution with location location and scale scale.

See also:

The ExtremeValue distribution is discussed in full detail in Appendix A of
the Language Reference.

215

Chapter 7. Distribution and Combinatoric Functions

Gamma

The function Gamma draws a random value from a gamma distribution.

Gamma (
Shape, I (input) numerical expression
Lowerbound, ! (optional) numerical expression
Scale ! (optional) numerical expression

)
Arguments:

Shape
A scalar numerical expression > 0.

Lowerbound
A scalar numerical expression > 0.

Scale

A scalar numerical expression > 0.

Return value:

The function Gamma returns a random value drawn from a gamma
distribution with shape Shape, lower bound Lowerbound and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. The original
function Gamma(alpha, Shape) returns a random value drawn from a gamma
distribution with rate alpha = 1/Scale, shape Shape and lower bound 0.

See also:

The Gamma distribution is discussed in full detail in Appendix A of the
Language Reference.

216

Chapter 7. Distribution and Combinatoric Functions

Logistic

The function Logistic draws a random value from a logistic distribution.

Logistic(
Location, ! (optional) numerical expression
Scale ! (optional) numerical expression
)
Arguments:
Location

A scalar numerical expression.

Scale
A scalar numerical expression > 0.

Return value:

The function Logistic returns a random value drawn from a logistic
distribution with mean Location and scale Scale.

See also:

The Logistic distribution is discussed in full detail in Appendix A of the
Language Reference.

217

Chapter 7. Distribution and Combinatoric Functions

LogNormal

The function LogNormal draws a random value from a lognormal distribution.

LogNormal(
Shape, I (input) numerical expression
Lowerbound, ! (optional) numerical expression
Scale I (optional) numerical expression

)
Arguments:

Shape
A scalar numerical expression > 0.

Lowerbound
A scalar numerical expression.

Scale
A scalar numerical expression > 0.

Return value:

The function LogNormal returns a random value drawn from a lognormal
distribution with shape Shape, lower bound Lowerbound and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. The original
function LogNormal(m, sd) returns a random value drawn from a lognormal
distribution with mean m > 0 and standard deviation sd > 0. The same
result should now be obtained by setting Shape = sd/m, Lowerbound = 0
and Scale = m.

See also:

The LogNormal distribution is discussed in full detail in Appendix A of the
Language Reference.

218

Chapter 7. Distribution and Combinatoric Functions

Normal

The function Normal draws a random value from a normal distribution.

Normal (
Mean, I (optional) numerical expression
Deviation ! (optional) numerical expression

)
Arguments:

Mean
A scalar numerical expression.

Deviation
A scalar numerical expression > 0.

Return value:

The function Normal returns a random value drawn from a normal
distribution with mean Mean and standard deviation Deviation.

See also:

The Normal distribution is discussed in full detail in Appendix A of the
Language Reference.

219

Chapter 7. Distribution and Combinatoric Functions

Pareto

The function Pareto draws a random value from a Pareto distribution.

Pareto(
Shape, I (input) numerical expression
Location, I (optional) numerical expression
Scale I (optional) numerical expression
)
Arguments:
Shape

A scalar numerical expression > 0.

Location
A scalar numerical expression.

Scale

A scalar numerical expression > 0.

Return value:

The function Pareto returns a random value drawn from a Pareto
distribution with shape Shape, location Location and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. The original
function Pareto(s, beta) returns a random value drawn from a Pareto
distribution with shape beta, location 0 and scale s.

See also:

The Pareto distribution is discussed in full detail in Appendix A of the
Language Reference.

220

Chapter 7. Distribution and Combinatoric Functions

Triangular

The function Triangular draws a random value from a triangular distribution.

Triangular(
Shape, I (input) numerical expression
Minimum, ! (optional) numerical expression
Maximum ! (optional) numerical expression

)
Arguments:

Shape

A scalar numerical expression.
Minimum

A scalar numerical expression.

Maximum
A scalar numerical expression.

Return value:

The function Triangular returns a random value drawn from a triangular
distribution with shape Shape, lower bound Minimum and upper bound
Maximum. The argument Shape must satisfy the relation 0 < Shape < 1.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. The original
function Triangular(a, b, ¢) returns a random value drawn from a
triangular distribution with a lower bound q, likeliest value b and upper
bound c. The arguments must satisfy the relation a < b < c. The relation
between the arguments Shape and b is given by Shape = (b — a)/(c — a).

See also:

The Triangular distribution is discussed in full detail in Appendix A of the
Language Reference.

221

Chapter 7. Distribution and Combinatoric Functions

Uniform

The function Uniform draws a random value from a uniform distribution.

Uniform(
Minimum, I (optional) numerical expression
Maximum I (optional) numerical expression

)
Arguments:

Minimum
A scalar numerical expression.

Maximum
A scalar numerical expression.

Return value:

The function Uniform returns a random value drawn from a uniform
distribution with lower bound Minimum and upper bound Maximum.

Remarks:
The arguments must satisfy the relation Minimum < Maximum.

See also:

The Uniform distribution is discussed in full detail in Appendix A of the
Language Reference.

222

Chapter 7. Distribution and Combinatoric Functions

Weibull

The function Weibull draws a random value from a Weibull distribution.

Weibul1(
Shape, I (input) numerical expression
Lowerbound, ! (optional) numerical expression
Scale ! (optional) numerical expression
)
Arguments:
Shape

A scalar numerical expression > 0.

Lowerbound
A scalar numerical expression.

Scale

A scalar numerical expression > 0.

Return value:

The function Weibul1 returns a random value drawn from a Weibull
distribution with shape Shape lower bound Lowerbound, and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of
AIMMS 3.4. In order to run models that still use the original prototype, the
option Distribution_compatibility should be set to Aimms_3_0. In the
original function Weibull(Lowerbound, Shape, Scale), the arguments were
ordered differently.

See also:

The Weibull distribution is discussed in full detail in Appendix A of the
Language Reference.

223

Chapter 7. Distribution and Combinatoric Functions

DistributionCumulative

The function DistributionCumulative computes the cumulative probability
value of a given distribution.

DistributionCumulative(

distribution, ! (input) distribution
X I (input) numerical expression
)
Arguments:
distribution

An expression representing any distribution (such as Normal(0,1)).

A scalar numerical expression.

Return value:

The function CumulativeDistribution(distribution,x), for x € (—oo, o)
returns the probability P(X < x) where the stochastic variable X is
distributed according to the given distribution.

Remarks:

For continuous distributions AIMMS can compute the derivatives of the
cumulative and inverse cumulative distribution functions. As a
consequence, you may use these functions in the constraints of a
nonlinear model when the second argument is a variable.

See also:

The function DistributionInverseCumulative. The function
DistributionCumulative is discussed in full detail in Appendix A of the
Language Reference.

224

Chapter 7. Distribution and Combinatoric Functions

DistributionInverseCumulative

The function DistributionInverseCumulative computes the inverse cumulative
probability value of a given distribution.

DistributionInverseCumulative(

distribution, ! (input) distribution
alpha I (input) numerical expression
)
Arguments:
distribution

An expression representing any distribution (such as Normal(0,1)).

alpha
A scalar numerical expression within the interval [0, 1].

Return value:

The function DistributionInverseCumulative(distribution,x), for @ € [0, 1]
computes the largest x € (—co0, 00) such that the probability P(X < x) < «
where the stochastic variable X is distributed according to the given
distribution.

Remarks:

For continuous distributions AIMMS can compute the derivatives of the
cumulative and inverse cumulative distribution functions. As a
consequence, you may use these functions in the constraints of a
nonlinear model when the second argument is a variable.

See also:

The function DistributionCumulative. The function
DistributionInverseCumulative is discussed in full detail in Appendix A of
the Language Reference.

225

Chapter 7. Distribution and Combinatoric Functions

DistributionDensity

The function DistributionDensity computes the density of a given
distribution.

DistributionDensity(
distribution, ! (input) distribution
X I (input) numerical expression
)
Arguments:
distribution

An expression representing any distribution (such as Normal(0,1)).

A scalar numerical expression.

Return value:

The function DistributionDensity(distribution,x), for x € (—o0, c0) returns
the expected density around x of sample points from distribution. It is the
derivative of DistributionCumulative(distr,x).

See also:

The functions DistributionCumulative, DistributionInverseDensity. The
function DistributionDensity is discussed in full detail in Appendix A of
the Language Reference.

226

Chapter 7. Distribution and Combinatoric Functions

DistributionInverseDensity

The function DistributionInverseDensity computes the density of the inverse
cumulative function of a given distribution.

DistributionInverseDensity(

distribution, ! (input) distribution
alpha I (input) numerical expression
)
Arguments:
distribution

An expression representing any distribution (such as Normal(0,1)).
alpha

A scalar numerical expression within the interval [0, 1].

Return value:

The function DistributionInverseDensity(distribution,x), for & € [0, 1]
returns the inverse density from distribution. It is the derivative of
DistributionInverseCumulative(distr,alpha).

See also:

The function DistributionDensity. The function
DistributionInverseDensity is discussed in full detail in Appendix A of the
Language Reference.

227

Chapter 7. Distribution and Combinatoric Functions

DistributionMean

The function DistributionMean computes the mean of a given distribution.
DistributionMean(

distribution ! (input) distribution

)
Arguments:

distribution
An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionMean(distribution) returns the mean of the given
distribution.

See also:

You can find more information about the mean of a distribution in
Appendix A of the Language Reference.

228

Chapter 7. Distribution and Combinatoric Functions

DistributionDeviation
The function DistributionDeviation computes the expected deviation of the
given distribution .

DistributionDeviation(

distribution ! (input) distribution

)
Arguments:

distribution
An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionDeviation(distribution) returns the expected
deviation (distance from the mean) of the distribution.

See also:

You can find more information about the deviation of a distribution in
Appendix A of the Language Reference.

229

Chapter 7. Distribution and Combinatoric Functions

DistributionVariance

The function DistributionVariance computes the variance of a given
distribution.

DistributionVariance(
distribution ! (input) distribution

)
Arguments:

distribution
An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionVariance(distribution) returns the variance of the
given distribution.

See also:

You can find more information about the variance of a distribution in
Appendix A of the Language Reference.

230

Chapter 7. Distribution and Combinatoric Functions

DistributionSkewness

The function DistributionSkewness computes the skewness of a given
distribution.

DistributionSkewness(
distribution ! (input) distribution

)
Arguments:

distribution
An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionSkewness(distribution) returns the skewness of
the given distribution.

See also:

You can find more information about the skewness of a distribution in
Appendix A of the Language Reference.

231

Chapter 7. Distribution and Combinatoric Functions

DistributionKurtosis

The function DistributionKurtosis computes the kurtosis of a given
distribution.

DistributionKurtosis(
distribution ! (input) distribution

)
Arguments:

distribution
An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionKurtosis(distribution) returns the kurtosis of the
given distribution.

See also:

You can find more information about the kurtosis of a distribution in
Appendix A of the Language Reference.

232

Chapter 7. Distribution and Combinatoric Functions

Combination

The function Combination computes the number of combinations of length m
in nitems.

Combination(

n, I (input) integer expression
m I (input) integer expression
)
Arguments:
n

An integer numerical expression > 0.

An integer numerical expression in the range 0,..., n.

Return value:

The function Combination returns (:V‘l), the number of combinations of
length m in a given number of items n.

See also:

Combinatoric functions are discussed in full detail in Section 6.1.7.

233

Chapter 7. Distribution and Combinatoric Functions

Factorial

The function Factorial returns the factorial of an integer number.
Factorial(

n I (input) integer expression

)
Arguments:

n
An integer numerical expression > 0.

Return value:
The function Factorial returns the factorial value n!.

See also:

Combinatoric functions are discussed in full detail in Section 6.1.7.

234

Chapter 7. Distribution and Combinatoric Functions

Permutation

The function Permutation computes the number of permutations of length m
in n items.

Permutation(
n, I (input) integer expression
m I (input) integer expression
)
Arguments:
n

An integer numerical expression > 0.

An integer numerical expression in the range 0,..., n.

Return value:

The function Permutation returns m! - (:V‘l), the number of permutations of
length m in a given number of items n.

See also:

Combinatoric functions are discussed in full detail in Section 6.1.7.

235

Chapter 8

Histogram Functions

AIMMS supports the following functions for creating and managing
histograms:

HistogramAddObservation
HistogramAddObservations
HistogramCreate
HistogramDelete
HistogramGetAverage
HistogramGetBounds
HistogramGetDeviation
HistogramGetFrequencies
HistogramGetKurtosis
HistogramGetObservationCount
HistogramGetSkewness
HistogramSetDomain

Chapter 8. Histogram Functions

HistogramAddObservation

The procedure HistogramAddObservation adds a new observation to a
histogram that was previously created through the procedure
HistogramCreate.

HistogramAddObservation(

histogram_id, I (input) a scalar parameter
value I (input) a scalar value
)

Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate procedure.

value
The value of a new observation that should be added to the
histogram.

Return value:

The procedure returns 1 if the new observation is added successfully, or 0
otherwise.

See also:

The procedure HistogramAddObservations, HistogramCreate. Histogram
support in AiMMS is discussed in full detail in Section A.6 of the Language
Reference.

237

Chapter 8. Histogram Functions

HistogramAddObservations

The procedure HistogramAddObservations adds a set of observations to a
histogram that was previously created through the procedure
HistogramCreate.

HistogramAddObservations(

histogram_id, I (input) a scalar parameter
values ! (input) a one-dimensional parameter
)

Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate procedure.

values
A one-dimensional identifier that contains the values of new
observations that should be added to the histogram. The cardinality
should be at least 1.

Return value:

The procedure returns 1 if the new observation is added successfully, or 0
otherwise.

See also:

The procedure HistogramAddObservation, HistogramCreate. Histogram
support in AiMMS is discussed in full detail in Section A.6 of the Language
Reference.

238

Chapter 8. Histogram Functions

HistogramCreate

The function HistogramCreate sets up a new histogram. The created histogram
does not yet contain any observations. These observations must be added
later using the function HistogramAddObservation or HistogramAddObservations.

HistogramCreate(
histogram_id, I (output) a scalar parameter
[integer_histogram,] ! (optional) 0 or 1
[sample_buffer_size] I (optional) a positive integer value
)
Arguments:

histogram_id
On return, this argument will contain a unique identification number,
that is used to refer to the created histogram in other functions.

integer_histogram (optional)
A logical indicator that specifies whether the observations will be
integer-valued. Default is O (not integer).

sample_buffer_size (optional)
The sample buffer size used in the histogram. If omitted, a default
buffer size of 512 is used.

Return value:

The function returns 1 if the histogram is created successfully, or 0
otherwise.

See also:

The functions HistogramDelete, HistogramAddObservation,
HistogramAddObservations. Histogram support in AiMMS is discussed in full
detail in Section A.6 of the User’s Guide.

239

Chapter 8. Histogram Functions

HistogramDelete

The procedure HistogramDelete deletes a histogram that was created using the
HistogramCreate procedure. After the historgram has been deleted, the
histogram id is no longer valid.

HistogramDeTlete(
histogram_id I (input) a scalar parameter

)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate procedure. When the procedure returns,
this histogram_id no longer refers to a valid histogram.

Return value:

The procedure returns 1 if the histogram is deleted successfully, or 0
otherwise.

See also:

The procedure HistogramCreate. Histogram support in AIMMS is discussed
in full detail in Section A.6 of the User’s Guide.

240

Chapter 8. Histogram Functions

HistogramGetAverage

The function HistogramGetAverage returns the arithmetic mean of all
observations in a histogram.

HistogramGetAverage(
histogram_id I (input) a scalar number

)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate function.

Return value:

The function returns the arithmetic mean of all observations added to the
histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,
HistogramGetDeviation, HistogramGetSkewness, HistogramGetKurtosis.
Histogram support in AiMMS is discussed in full detail in Section A.6 of
the User’s Guide.

241

Chapter 8. Histogram Functions

HistogramGetBounds

Through the function HistogramGetBounds you can obtain the lower and upper
bounds of frequency interval in a histogram.

HistogramGetBounds (
histogram_id, ! (input) a scalar number
Teft_bound, ! (output) a one-dimensional parameter
right_bound ! (output) a one-dimensional parameter
)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate function.

left_bound
A one-dimensional identifier that will be filled with the left bound of
each interval in the histogram. The cardinality of the domain set
should be at least the number of intervals.

right_bound
A one-dimensional identifier that will be filled with the right bound of
each interval in the histogram. The cardinality of the domain set
should be at least the number of intervals.

Return value:

The function returns 1 if the bounds are retrieved successfully, or 0
otherwise.

See also:

The functions HistogramCreate, HistogramSetDomain. Histogram support in
A1mMS is discussed in full detail in Section A.6 of the Language Reference.

242

Chapter 8. Histogram Functions

HistogramGetDeviation

The function HistogramGetDeviation returns the standard deviation of all
observations in a histogram.

HistogramGetDeviation(
histogram_id I (input) a scalar number

)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate function.

Return value:

The function returns the standard deviation of all observations in the
histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,
HistogramGetAverage, HistogramGetSkewness, HistogramGetKurtosis.
Histogram support in AiMMS is discussed in full detail in Section A.6 of
the Language Reference.

243

Chapter 8. Histogram Functions

HistogramGetFrequencies

Through the procedure HistogramGetFrequencies you can obtain the observed
frequencies for each interval in a histogram.

HistogramGetFrequencies(

histogram_id, ! (input) a scalar number
frequencies ! (output) a one-dimensional parameter
)

Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate procedure.

frequencies
A one-dimensional identifier that will be filled with the frequencies of
each interval in the histogram. The cardinality of the domain set
should be at least the number of intervals.

Return value:

The procedure returns 1 if the frequencies are retrieved successfully, or 0
otherwise.

See also:

The procedures HistogramCreate, HistogramAddObservation,
HistogramAddObservations. Histogram support in AIMMS is discussed in full
detail in Section A.6 of the Language Reference.

244

Chapter 8. Histogram Functions

HistogramGetKurtosis

The function HistogramGetKurtosis returns the kurtosis coefficient of all
observations in a histogram.

HistogramGetKurtosis(
histogram_id I (input) a scalar number

)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate function.

Return value:

The function returns the kurtosis coefficient of all observations in the
histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,
HistogramGetAverage, HistogramGetDeviation, HistogramGetSkewness.
Histogram support in AiMMS is discussed in full detail in Section A.6 of
the Language Reference.

245

Chapter 8. Histogram Functions

HistogramGetObservationCount

The function HistogramGetObservationCount returns the total number of
observations in a histogram.

HistogramGetObservationCount(
histogram_id I (input) a scalar number

)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate function.

Return value:

The function returns the total number of observations in a histogram.

See also:

The functions HistogramCreate, HistogramGetAverage,
HistogramGetDeviation, HistogramGetSkewness, HistogramGetKurtosis.
Histogram support in AiMMS is discussed in full detail in Section A.6 of
the Language Reference.

246

Chapter 8. Histogram Functions

HistogramGetSkewness

The function HistogramGetSkewness returns the skewness of all observations in
a histogram.

HistogramGetSkewness (
histogram_id I (input) a scalar number

)
Arguments:

histogram_id
A scalar value representing a histogram that was previously created
using the HistogramCreate function.

Return value:

The function returns the skewness of all observations in the histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,
HistogramGetAverage, HistogramGetDeviation, HistogramGetKurtosis.
Histogram support in AiMMS is discussed in full detail in Section A.6 of
the Language Reference.

247

Chapter 8. Histogram Functions

HistogramSetDomain

With the procedure HistogramSetDomain you can override the default layout of
frequency intervals of a histogram.

HistogramSetDomain(

histogram_id, ! (input) a scalar number
intervals, ! (input) a positive integer number
[Teft,] I (optional) a scalar expression
[width,] ! (optional) a positive scalar number
[Teft_tail,] ! (optional) 0 or 1
[right_tail] ! (optional) 0 or 1
)

Arguments:

histogram_id

A scalar value representing a histogram that was previously created
using the HistogramCreate procedure.

intervals

The number of fixed-width intervals (not including the left_ or
right_tail interval).

left (optional)
The lower bound of the left-most interval (not including the left-tail
interval). If omitted, then the histogram will use the observations to
determine this bound.

width (optional)
The (fixed) width of each interval. If omitted, then the histogram will
use the observations to determine the width.

left_tail (optional)
An indicator whether or not a left-tail interval should be created. If

this argument is omitted, then the default value of 1 is used (creating
a left-tail interval).

right_tail (optional)
An indicator whether or not a right-tail interval should be created. If

this argument is omitted, then the default value of 1 is used (creating
a right-tail interval).

Return value:

The procedure returns 1 if the domain is changed successfully, or 0
otherwise.

See also:

248

Chapter 8. Histogram Functions 249

The procedures HistogramCreate, HistogramGetBounds. Histogram support
in AiMMS is discussed in full detail in Section A.G of the Language
Reference.

Chapter 9

Forecasting Functions

AimmMs supports the following functions for making forecasts:

forecasting:
forecasting:
forecasting:
forecasting:
forecasting:
forecasting:
forecasting:
forecasting:
forecasting:

:MovingAverage

:WeightedMovingAverage
:ExponentialSmoothing
:ExponentialSmoothingTrend
:ExponentialSmoothingTrendSeasonality
:ExponentialSmoothingTune
:ExponentialSmoothingTrendTune
:ExponentialSmoothingTrendSeasonalityTune
:SimpTleLinearRegression

9.1 Introduction

AIMMS is a development tool for decision support application. Important to
decision support are good forecasts. The AimmsForecasting library provides
tools to compute forecasts from historical data. The usage of this library is
discussed in this chapter.

Before the functions in this section can be used in your model, you will need

to add the library

The prefix of the AIMMSForecasting library is forecasting.

This library does not support the special values NA, ZERO, -INF, INF, and UNDF.

installation

prefix

Restriction

Chapter 9. Forecasting Functions

9.2 Time series forecasting

9.2.1 Notational conventions time series forecasting

For time series forecasting, such as Moving Average and Exponential
Smoothing, we follow the conventions below.

The AIMMSForecasting library uses as input observations made in the history.
It provides estimates over both the history and the horizon. A single set and
index is used to index both the history and the estimates, this set is called the
time set. In addition, you will need to specify the number of elements that
belong to the history. The corresponding mathematical notation is:

T number of observations
H length of horizon
{1...T+H} time set

t index in time set

yvi,t € {1...T} observation
e, t € time set estimate

Table 9.1: Time series forecasting notation

The forecasts are providedine;, t € {T +1...T + H}.

The residual, r+ where t € {1...T}, is the difference between the
corresponding observation y; and estimate e;. To obtain the residuals, you
will need to provide a parameter declared over the time set.

From the residuals, error measures such as Mean Absolute Deviation (MAD),
Mean Absolute Percentage Error (MAPE), and Mean Squared Deviation (MSD)
can be computed.

Whenever one of the time series forecasting functions communicates the
error measures, it uses identifiers declared over the index forecasting: :ems,
declared as follows:

Set ErrorMeasureSet {
Index: ems;
Definition: {
data {
MAD, ! Mean Absolute Deviation
MAPE, ! Mean Absolute Percentage Error (provided as fraction)
MSE ! Mean Squared Error

251

Observations
and Estimates

residuals

error measures

predeclared
index ems

Chapter 9. Forecasting Functions

To obtain the error measures, you will need to provide a parameter indexed
over forecasting::ems to the time series forecasting functions. Note that the
MAPE is a fraction, in order to use it as a percentage, you can use the
predeclared quantity SI_unitless. For instance, given the declarations:

Quantity SI_Unitless {
BaseUnit: -;
Conversions: % -> - : # -> # / 100;

Comment: "Expresses a dimensionless value.";

}

Parameter myMAPE {
Unit: %;

}

Parameter myErrorMeasures {
IndexDomain: forecasting::ems;

}

The following statements:

myMAPE := myErrorMeasures(’MAPE’) ;
display myErrorMeasures, myMAPE ;

The output may look as follows:

myErrorMeasures := data { MAPE : 0.417092, MAD :

myMAPE := 41.709184 [%] ;

1.785714, MSE : 3.982143 } ;

252

Chapter 9. Forecasting Functions

forecasting::MovingAverage

one The moving average procedure is a time series forecasting procedure.
Essentially, this procedure forecasts by taking the average over the last N

observations.

Mathematical Formulation:

Using the notation for observations and estimates given in Table 9.1, the

estimates are defined as:

t-1

et = Z Y+/N where y: =4 ¥yt

T=t—-1-N

Function Prototype:

Y1 ift<1
if Tt e {1..T} 9.1)
e ifT>T

To provide the error measures and residuals only when you need them, there
are three flavors of the MovingAverage procedure provided:

forecasting: :MovingAverage(

dataValues,
estimates,
noObservations,
noAveragingPeriods)

forecasting: :MovingAverageEM(

dataValues,
estimates,
noObservations,
noAveragingPeriods,
ErrorMeasures)

forecasting: :MovingAverageEMR (

dataValues,
estimates,
noObservations,
noAveragingPeriods,
ErrorMeasures,
Residuals)

Provides the estimates, but not the
error measures nor the residuals

Input, parameter indexed over time set
Output, parameter indexed over time set
Scalar input, length history

Scalar input, averaging length

Provides estimates and error measures,
but not the residuals

Input, parameter indexed over time set
Output, parameter indexed over time set
Scalar input, length history

Scalar input, averaging length

Output, indexed over forecasting::ems

Provides estimates, error measures,

and residuals

Input, parameter indexed over time set
Output, parameter indexed over time set
Scalar input, Tength history

Scalar input, averaging length

Output, indexed over forecasting::ems
Output, parameter indexed over time set

Here, the time set is a set that encompasses both the history and the horizon.

253

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

estimates

Chapter 9. Forecasting Functions

A one dimensional parameter containing the estimates for all
elements in the time set.

noObservations

Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented

in Table 9.1.

noAveragingPeriods

Specifies the number of values used to compute a single average. This
parameter corresponds to N in the mathematical notation above.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting: :MovingAverage(
datavValues

estimates

noObservations

noAveragingPeriods :

Will result in the following output:

sampEstl
{ 01-01 :
01-04 :
01-07 :
01-10 :
01-13 :
01-16
01-19 :
01-22 :
01-25 :
01-28 :
01-31 :
02-03 :
02-06 :
02-09 :
02-12 :

62
63
72

72
72

1= data
46.
39.
32.
41.
39.
1 50.
51.
58.
59.
97427964,
.07679348,
.41222140,
71.

90141235,
91352947,
80406692,
90033337,
63855369,
90593288,
93466798,
68254227,
80228910,

50112998,

.06336819,
.07317316,

sampDat,
sampEstl,

31,
5);

01-02 :
01-05 :
01-08 :
01-11 :
01-14 :
01-17 :
01-20 :
01-23 :
01-26 :
01-29 :
02-01 :
02-04 :
02-07 :
02-10 :
02-13 :

72.
72.
72.

This can be graphically displayed as:

90141235,
.21374997,
.23403532,

11936207,
29956164,

.53221241,
96574913,
55058365,
.23264531,
.37015056,

24492039,
12629586,
15237190,
05078266,
05733341,

01-03

01-15
01-18
01-21

1 43,
01-06 :
01-09 :
01-12 :
1 48.
1 52.
1 58.
01-24 :
01-27 :
01-30 :
02-02 :
02-05 :
02-08 :
02-11 :
02-14 :

32.
38.
37.

57.
64.
63.
72.
72.
72.
71.
72.

90055356,
58034743,
29416296,
82654624,
72714940,
07507740,
57734065,
53652213,
41936052,
12741111,
30667944,
41553283,
12151039,
97783263,
04449801 } ;

254

Table 9.2: Sample declarations and input data for the time series calculation

M sampDat

90

Parameter sampDat {
IndexDomain: d;

}

Parameter sampEstl {
IndexDomain: d;

}

Calendar dayCalendar {
Index: d;
Parameter: e_d;
Unit: day;

BeginDate: "2014-01-01";
EndDate: "2014-02-14";
TimesTotFormat: "%m-%d";

sampDat

{ 01-01 :
01-04 :
01-07 :
01-10 :
01-13 :
01-16 :
01-19 :
01-22 :
01-25 :
01-28 :
01-31 :

1= data
46.90141235, 01-02 :
23.40251489, 01-05 :
49.04696039, 01-08 :
24.82954314, 01-11 :
65.57196981, 01-14 :
39.68732832, 01-17 :
68.72671146, 01-20 :
55.16152950, 01-23 :
70.93319924, 01-26 :
71.77896968, 01-29 :

76.98754704 } ;

Bl sampEst1

Chapter 9. Forecasting Functions

.89711841,
.73439963,
.26693007,
.55593066,
.57130575,
.82132259,
.78141816,
79961509,
14691246,
.84184908,

01-03 :
01-06 :
01-09 :
01-12 :
01-15 :
01-18 :
01-21 :
01-24 :
01-27 :
01-30 :

96629187,
.02000981,
.43336694,
10699762,
.72346055,
.86992271,
.21333644,
.05554631,
.93612512,
.68011104,

68

23

0
01-01

01-04 01-07

01-10 0113 01-16 _ 01-19

01-22

01-25 01-28

01-31

02-03

02-06 02-09

46.90141235 sampDat(01-01)

Here the history is from 01-01 till 01-31 and the horizon is from 02-01 till

02-14.

255

Chapter 9. Forecasting Functions

forecasting::WeightedMovingAverage

The weighted moving average procedure is a time series forecasting
procedure. Essentially, this procedure forecasts by taking the weighted

average over the last N observations.

Mathematical Formulation:

Using the notation for observations and estimates given in Table 9.1, the

estimates are defined as:

N

er = >

j=1,T=t—(N+1)+j

Function Prototype:

v ift<l1

wjj/-r where 5/.r = Yt ifte{l.T} (9.2)

er ifTt>T

To provide the error measures and residuals only when you need them, there
are three flavors of the WeightedMovingAverage procedure provided:

forecasting: :WeightedMovingAverage (

I Provides the estimates,

I but not the error measures nor the residuals

dataValues, !
estimates,
noObservations,
weights,
noAveragingPeriods)

Input, parameter indexed over time set
Output, parameter indexed over time set
Scalar input, Tength history

Input, parameter

Scalar input, averaging length

forecasting: :WeightedMovingAverageEM(
I Provides estimates and error measures, but not the residuals

dataValues, !
estimates, !
noObservations, !
weights, !
noAveragingPeriods, !
ErrorMeasures) !

Input, parameter indexed over time set

! Qutput, parameter indexed over time set
I Scalar input, length history

Input, parameter

I Scalar input, averaging length
! Qutput, indexed over forecasting::ems

forecasting: :WeightedMovingAverageEMR(
I Provides estimates, error measures, and residuals

dataValues, !
estimates,
noObservations,
weights,
noAveragingPeriods,
ErrorMeasures,

|
|
!
|
|
Residuals) !

Input, parameter indexed over time set

! Qutput, parameter indexed over time set
! Scalar input, length history

Input, parameter

I Scalar input, averaging length
! Qutput, indexed over forecasting::ems
! Qutput, parameter indexed over time set

Here, the time set is a set that encompasses both the history and the horizon.

256

Chapter 9. Forecasting Functions

Arguments:

dataValues
A one dimensional parameter containing the observations for the first
T elements of the time set.

estimates
A one dimensional parameter containing the estimates for all
elements in the time set.

noObservations
Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented
in Table 9.1.

weights
Specifies the weights. The weights should be indexed over a subset of
Integers: {1..N}, in the range [0, 1] and sum to 1.

noAveragingPeriods
Specifies the number of values used to compute a single average. This
parameter corresponds to N in the mathematical notation above.

ErrorMeasures
The error measures as presented in Section 9.2.

Residuals
The residuals as presented in Section 9.2.

Example:
With declarations and data as specified in Table 9.2 the call:
weightSet := ElementRange(1,4);

TocWeights := data { 1 : 0.1, 2 : 0.2, 3: 0.3, 4: 0.4 } ;
forecasting: :WeightedMovingAverage(

datavValues : sampDat,
estimates : sampEstl,
noObservations . 31,

weights : locWeights,

noAveragingPeriods : 4);

Will result in the following output:

sampEstl := data

{ 01-01 : 46.901412, 01-02 : 46.901412, 01-03 : 45.400983,
01-04 : 41.907042, 01-05 : 36.063210, 01-06 : 28.902678,
01-07 : 29.356152, 01-08 : 33.990024, 01-09 : 41.435848,
01-10 : 45.518815, 01-11 : 41.568491, 01-12 : 35.958284,
01-13 : 37.144096, 01-14 : 39.077193, 01-15 : 51.025996,
01-16 : 58.200997, 01-17 : 54.913605, 01-18 : 48.165158,
01-19 : 44.846840, 01-20 : 53.967984, 01-21 : 63.412990,
01-22 : 62.343600, 01-23 : 58.683930, 01-24 : 53.088836,
01-25 : 53.599271, 01-26 : 64.608926, 01-27 : 69.237841,
01-28 : 68.325173, 01-29 : 60.482475, 01-30 : 56.579581,
01-31 : 62.544522, 02-01 : 72.698920, 02-02 : 73.408174,
02-03 : 73.248910, 02-04 : 74.611221, 02-05 : 73.212924,

257

Chapter 9. Forecasting Functions

02-06 : 73.581479, 02-07 : 73.683663, 02-08 : 73.893028,
02-09 : 73.485649, 02-10 : 73.664861, 02-11 : 73.704989,
02-12 : 73.706377, 02-13 : 73.605353, 02-14 : 73.679252 } ;

This can be graphically displayed as:

W sampDat B sampEst1
90

68

45

23

0
01-01 01-04 01-07 01-10 0113 01-16 01-19 01-22 01-25 01-28 01-31 02-03 02-06 02-09 02-12
46.90141235 sampDat(01-01)

Here the history is from 01-01 till 01-31 and the horizon is from 02-01 till
02-14.

258

Chapter 9. Forecasting Functions

forecasting::ExponentialSmoothing

The exponential smoothing procedure is a time series forecasting procedure.
This procedure forecasts by weighted average of an observation and a
previous forecast.

Mathematical Formulation:

Using the notation in Table 9.1, the estimates are defined as:

er =01+ (1 — e (9.3)

To initialize this sequence, we take
ey =21
Yo =1

To calculate the forecasts for t > T + 2, we take y; for all
te{T+1...T + H} to be equal to e;. This results in y; = y;_; for all
t e {T +2...T + H}; which is graphically depicted as a horizontal line.

The weighting factor « is a parameter in the range (0, 1); high values of «
give more weight to recent observations.
Function Prototype:

To provide the error measures and residuals only when you need them, there
are three flavors of the ExponentialSmoothing procedure provided:

forecasting: :ExponentialSmoothing(
I Provides the estimates, but not the error measures nor the residuals

dataValues, I Input, parameter indexed over time set
estimates, ! Qutput, parameter indexed over time set
noObservations, ! Scalar input, length history

alpha) ! Scalar input, weight of observation

forecasting: :ExponentialSmoothingEM(

| Provides estimates and error measures, but not the residuals
dataValues, ! Input, parameter indexed over time set
estimates, ! Qutput, parameter indexed over time set
noObservations, ! Scalar input, length history
alpha, ! Scalar input, weight of observation
ErrorMeasures) ! Output, indexed over forecasting::ems

forecasting: :ExponentialSmoothingEMR(
I Provides estimates, error measures, and residuals
dataValues, ! Input, parameter indexed over time set
estimates, ! Qutput, parameter indexed over time set
noObservations, ! Scalar input, length history
alpha, ! Scalar input, weight of observation
ErrorMeasures, ! Output, indexed over forecasting::ems
Residuals) ! Qutput, parameter indexed over time set

259

Chapter 9. Forecasting Functions 260

Arguments:

dataValues
A one dimensional parameter containing the observations for the first
T elements of the time set.

estimates
A one dimensional parameter containing the estimates for all
elements in the time set.

noObservations
Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented
in Table 9.1.

alpha
Specifies the weighting factor for the observation. This parameter
corresponds to « in the mathematical notation above.

ErrorMeasures
The error measures as presented in Section 9.2.

Residuals
The residuals as presented in Section 9.2.

Remarks:

In order to use this function, the AIMMSForecasting system library needs
to be added to the application.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting: :ExponentialSmoothing(

dataValues : sampDat,
estimates : sampEstl,
noObservations : 31,

alpha 1 0.3);

Will result in the following output:

sampEstl := data

{ 01-01 : 46.90141235, 01-02 : 46.90141235, 01-03 : 42.40012417,
01-04 : 37.76997448, 01-05 : 33.45973660, 01-06 : 33.54213551,
01-07 : 37.88549780, 01-08 : 41.23393658, 01-09 : 40.04383462,
01-10 : 40.46069432, 01-11 : 35.77134897, 01-12 : 36.00672348,
01-13 : 42.63680572, 01-14 : 49.51735495, 01-15 : 52.23354019,
01-16 : 47.28051629, 01-17 : 45.00255990, 01-18 : 49.74818871,
01-19 : 54.28470891, 01-20 : 58.61730967, 01-21 : 58.66654222,
01-22 : 53.13058049, 01-23 : 53.73986519, 01-24 : 57.05779016,
01-25 : 63.95711700, 01-26 : 66.04994167, 01-27 : 61.57903291,
01-28 : 57.48616057, 01-29 : 61.77400331, 01-30 : 65.39435704,
01-31 : 66.98008324, 02-01 : 69.98232238, 02-02 : 69.98232238,
02-03 : 69.98232238, 02-04 : 69.98232238, 02-05 : 69.98232238,
02-06 : 69.98232238, 02-07 : 69.98232238, 02-08 : 69.98232238,
02-09 : 69.98232238, 02-10 : 69.98232238, 02-11 : 69.98232238,
02-12 : 69.98232238, 02-13 : 69.98232238, 02-14 : 69.98232238 } ;

Chapter 9. Forecasting Functions 261

This can be graphically displayed as:

M sampDat B sampEst1
90

45

23

0
01-01 01-04 01-07 01-10 01-13 01-16 01-18 01-22 01-25 01-28 01-31 02-03 02-06 02-09 02-12
4690141235 sampDat(01-01)

Chapter 9. Forecasting Functions

forecasting::ExponentialSmoothingTrend

The exponential smoothing with trend procedure is a time series forecasting
procedure. This procedure is an extension from the exponential smoothing
whereby the forecast also captures a trend. The reader interested in the
mathematical background is referred to

m https://www.otexts.org/book/fpp
m http://en.wikipedia.org/wiki/Exponential_smoothing

Function Prototype:

To provide the error measures and residuals only when you need them, there
are three flavors of the ExponentialSmoothingTrend procedure provided:

forecasting: :ExponentialSmoothingTrend(

I Provides the estimates
dataValues, !
estimates, !
noObservations,
alpha, !
beta) !

, but not the error measures nor the residuals

Input, parameter indexed over time set
Output, parameter indexed over time set
Scalar input, Tength history

Scalar input, weight of observation

Scalar input, weight of change in observation

forecasting: :ExponentialSmoothingTrendEM(

I Provides estimates and
dataValues, !
estimates, !
noObservations,
alpha, !
beta, !
ErrorMeasures) !

error measures, but not the residuals
Input, parameter indexed over time set

I Qutput, parameter indexed over time set
! Scalar input, length history

Scalar input, weight of observation

! Scalar input, weight of change in observation
! Qutput, indexed over forecasting::ems

forecasting: :ExponentialSmoothingTrendEMR(
| Provides estimates, error measures, and residuals

dataValues, !
estimates,
noObservations,
alpha,

beta,
ErrorMeasures,

!
!
!
!
!
Residuals) !

Arguments:

dataValues

Input, parameter indexed over time set
Output, parameter indexed over time set
Scalar input, Tength history

Scalar input, weight of observation

Scalar input, weight of change in observation
Output, indexed over forecasting::ems

Output, parameter indexed over time set

A one dimensional parameter containing the observations for the first
T elements of the time set.

estimates

A one dimensional parameter containing the estimates for all
elements in the time set.

262

https://www.otexts.org/book/fpp
http://en.wikipedia.org/wiki/Exponential_smoothing

noObservations

Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented

in Table 9.1.

alpha

Specifies the weighting factor for the observation. This parameter

Chapter 9. Forecasting Functions

corresponds to « in the mathematical notation above.

beta

Specifies the weighting factor for the change in observation.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting: :ExponentialSmoothingTrend(

datavValues
estimates

noObservations

alpha
beta

Will result in the following output:

sampEstl
{ 01-01 :
01-04 :
01-07 :
01-10 :
01-13 :
01-16 :
01-19 :
01-22
01-25 :
01-28 :
01-31 :
02-03 :
02-06 :
02-09 :
02-12 :

This can be graphically displayed as:

68
62
71

1= data
46.
11.
21.
29.
51.
52.
64.
1 58.
96338627,
.98534714,
.77479879,
77.
83.
89.
95.

90141235,
09278244,
18135461,
60799603,
09710805,
57369145,
83322220,
20531338,

64454596,
51429313,
38404030,
25378747,

sampDat,
sampEstl,
31,

0.3,
0.3);

01-02 :
01-05 :

01-08 :
01-11 :
01-14 :
01-17 :
01-20 :
01-23 :

01-26

01-29 :
02-01 :
02-04 :

02-07

02-10 :

02-13

31.
9.
.00880483,
32.
57.
56.
65.
59.
1 65.
66.
73.
79.
: 85
91.
: 97.

25

89711841,
12476621,

39262113,
24030837,
19151171,
33462956,
89873706,
20775937,
24030430,
73138118,
60112835,

47087552,

34062269,
21036985,

01-03 :
01-06 :
01-09 :
1 41,
01-15 :
01-18 :
01-21 :
01-24 :
01-27 :
01-30 :
02-02 :
02-05 :
02-08 :
02-11 :
02-14 :

01-12

19.
14.
30.

54.
60.
59.
66
60
68.
75.
81.
87
93.
99.

91486469,
24770491,
04118231,
18187664,
80598480,
35524890,
52540116,

.10199203,
.35010811,

25439193,
68796357,
55771074,

42745791,

29720508,
16695224 } ;

263

Chapter 9. Forecasting Functions 264

M sampDat B sampEst1
110

0
01-01 01-04 01-07 01-10 0113 01-16 01-19 01-22 01-25 01-28 01-31 02-03 02-06 02-09 02-12

46.90141235 sampDat(01-01)

Chapter 9. Forecasting Functions

forecasting::ExponentialSmoothingTrendSeasonality

The exponential smoothing with trend and seasonality procedure is a time
series forecasting procedure. This procedure is an extension from the
exponential smoothing whereby the forecast also captures both a trend and a
seasonality. The reader interested in the mathematical background is referred
to

m https://www.otexts.org/book/fpp
m http://en.wikipedia.org/wiki/Exponential_smoothing

Function Prototype:

To provide the error measures and residuals only when you need them, there
are three flavors of the ExponentialSmoothingTrendSeasonality procedure
provided:

forecasting: :ExponentialSmoothingTrendSeasonality(
I Provides the estimates, but not the error measures nor the residuals
dataValues, ! Input, parameter indexed over time set

estimates, ! Qutput, parameter indexed over time set
noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta, ! Scalar input, weight of change in observation
gamma, ! Scalar input, weight of seasonality
periodLength) ! Scalar input, Tength of season

forecasting: :ExponentialSmoothingTrendSeasonalityEM(
| Provides estimates and error measures, but not the residuals
dataValues, ! Input, parameter indexed over time set

estimates, Output, parameter indexed over time set
noObservations, Scalar input, length history
alpha, Scalar input, weight of observation

!
!
!
beta, ! Scalar input, weight of change in observation
!
!
!

gamma, Scalar input, weight of seasonality
periodLength, Scalar input, Tength of season
ErrorMeasures) Output, indexed over forecasting::ems

forecasting: :ExponentialSmoothingTrendSeasonalityEMR(
| Provides estimates, error measures, and residuals
dataValues, ! Input, parameter indexed over time set

estimates, Output, parameter indexed over time set
noObservations, Scalar input, Tength history
alpha, Scalar input, weight of observation

!
!
!
beta, ! Scalar input, weight of change in observation
!
!
!
!

gamma, Scalar input, weight of seasonality
periodLength, Scalar input, Tength of season
ErrorMeasures, Output, indexed over forecasting::ems
Residuals) Output, parameter indexed over time set

265

https://www.otexts.org/book/fpp
http://en.wikipedia.org/wiki/Exponential_smoothing

Chapter 9. Forecasting Functions

Arguments:

dataValues
A one dimensional parameter containing the observations for the first
T elements of the time set.

estimates
A one dimensional parameter containing the estimates for all
elements in the time set.

noObservations
Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented
in Table 9.1.

noAveragingPeriods
Specifies the number of values used to compute a single average. This
parameter corresponds to N in the mathematical notation above.

alpha
Specifies the weighting factor for the observation. This parameter
corresponds to « in the mathematical notation above.

beta
Specifies the weighting factor for the change in observation.

gamma
Specifies the weighting factor for the seasonality.

periodLength
Specifies the period length.

ErrorMeasures
The error measures as presented in Section 9.2.

Residuals
The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting: :ExponentialSmoothingTrendSeasonality(

dataValues : sampDat,
estimates : sampEstl,
noObservations o 31,

alpha : 0.5,

beta ¢ 0.3,
gamma ¢ 0.3,
periodLength 1)

Will result in the following output:

sampEstl := data

{ 01-01 : 48.17421514, 01-02 : 33.42448176, 01-03 : 28.16272649,
01-04 : 24.07455476, 01-05 : 33.94263017, 01-06 : 47.93386652,
01-07 : 48.83947317, 01-08 : 46.31365850, 01-09 : 23.89344424,

266

This can be graphically displayed as:

-
100

01-10 :
01-13 :
01-16 :
01-19 :
01-22 :
01-25 :
01-28 :
01-31 :
02-03 :
02-06 :
02-09 :
02-12 :

30.
74.
34,
78.
.68452884,
70.
49,
74.

37

77
65
83

sampDat Il sampEst1

27764654,
25387499,
03705964,
64240904,

28818669,
77439370,
36541195,

.83862565,
.94274949,
.83707749,
67.

51502054,

01-11 :
01-14 :
01-17 :
01-20 :

01-23

01-26 :
01-29 :
02-01 :
02-04 :
02-07 :
02-10 :
02-13 :

24

77
85

Chapter 9. Forecasting Functions

.95849413,
76.
18.
90.
1 43,
82.
67.
63.
65.

43874408,
95751109,
15243324,
80677029,
29733841,
81915419,
51664916,
67879532,

.84397349,
.40613721,
73.

51026105,

01-12
01-15 :
01-18 :
01-21 :
01-24 :
01-27 :
01-30 :
02-02 :
02-05 :
02-08 :
02-11 :
02-14 :

1 45,
62.
.97903657,
71.
54.
.89367583,
76.
76.
59.
79.
73.
.41148505 } ;

47

67

85

51882876,
30360776,

83828787,
55643634,

48587445,
26956592,
94750898,
13679316,
24630688,

0
01-01

01-04 01-07

01-10

01-13 01-16

01-19

01-22

01-25 01-28

01-31

02-03

02-06 02-09 02-12

46.90141235 sampDat(01-01)

267

Chapter 9. Forecasting Functions

forecasting::ExponentialSmoothingTune

The forecasting: :ExponentialSmoothingTune procedure is a time series
forecasting helper procedure of forecasting::ExponentialSmoothing by
computing the « for which the mean squared error is minimized.

Function Prototype:

forecasting: :ExponentialSmoothingTune(
! Provides the alpha for which the mean squared error is minimized.
dataValues, ! Input, parameter indexed over time set

noObservations, ! Scalar input, length history
alpha, ! Scalar output, weight of observation
! that minimizes mean squared error
alphalow, ! Optional input, default 0.01
alphalpp) ! Optional input, default 0.99
Arguments:
dataValues

A one dimensional parameter containing the observations for the first
T elements of the time set.

noObservations
Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented
in Table 9.1.

alpha
Upon return it provides the weighting factor « for which the mean
squared error is minimized when using
forecasting: :ExponentialSmoothing on the same dataValues.

alphalow
Lowerbound on «, default 0.01.

alphaUpp
Upperbound on «, default 0.99.

Remarks:

m In order to use this function, the AIMMSForecasting system library
needs to be added to the application.

m Please note that this function performs an optimization step; a
nonlinear programming solver should be available and, in an AIMMS
PRO environment, it should be run server side.

268

Chapter 9. Forecasting Functions

forecasting::ExponentialSmoothingTrendTune

The forecasting: :ExponentialSmoothingTrendTune procedure is a time series
forecasting helper procedure of forecasting::ExponentialSmoothingTrend by
computing the « and S for which the mean squared error is minimized.

Function Prototype:

forecasting: :ExponentialSmoothingTrendTune(
! Provides the alpha for which the mean squared error is minimized.
dataValues, ! Input, parameter indexed over time set

noObservations, Scalar input, Tength history
alpha, Scalar output,
beta, Scalar output,

!
!
!
alphalow, ! Optional input, default 0.01
!
!
!

alphalpp, Optional input, default 0.99

betalow, Optional input, default 0.01

betaUpp) Optional input, default 0.99
Arguments:
dataValues

A one dimensional parameter containing the observations for the first
T elements of the time set.

noObservations
Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented
in Table 9.1.

alpha, beta
« and B are scalar output parameters of this procedure. The values
for & and B are such that the mean squared error of the estimates
returned by forecasting: :ExponentialSmoothingTrend are minimized.

alphalow
Lowerbound on «, default 0.01.

alphaUpp
Upperbound on «, default 0.99.

betal.ow
Lowerbound on B, default 0.01.

betaUpp
Upperbound on B, default 0.99.

Remarks:

m In order to use this function, the AIMMSForecasting system library
needs to be added to the application.

269

Chapter 9. Forecasting Functions 270

m Please note that this function performs an optimization step; a
nonlinear programming solver should be available and, in an AIMMS
PRO environment, it should be run server side.

Chapter 9. Forecasting Functions

forecasting::ExponentialSmoothingTrendSeasonality Tune

The forecasting: :ExponentialSmoothingTrendSeasonalityTune procedure is a
time series forecasting helper procedure of

forecasting: :ExponentialSmoothingTrendSeasonality by computing the «, B,
and y for which the mean squared error is minimized.

Function Prototype:

forecasting: :ExponentialSmoothingTrendSeasonalityTune(
! Provides the alpha for which the mean squared error is minimized.
dataValues, ! Input, parameter indexed over time set

noObservations, Scalar input, Tength history
alpha, Scalar output,

beta, Scalar output,

gamma, Scalar output,

periodlLength, Scalar input, length of season

!
!
|
!
!
alphalow, ! Optional input, default 0.01
!
!
!
!
!

alphalpp, Optional input, default 0.99

betalow, Optional input, default 0.01

betalpp, Optional input, default 0.99

gammalLow, Optional input, default 0.01

gammalpp) Optional input, default 0.99
Arguments:
dataValues

A one dimensional parameter containing the observations for the first
T elements of the time set.

noObservations
Specifies the number of elements that belong to the history of the
time set. This parameter corresponds to T in the notation presented
in Table 9.1.

alpha, beta, gamma
o, B, and y are scalar output parameters of this procedure. The
values for «, B, and y are such that the mean squared error of the
estimates returned by
forecasting: :ExponentialSmoothingTrendSeasonality are minimized.

periodLength
Specifies the period length.

alphaLow
Lowerbound on «, default 0.01.

alphaUpp
Upperbound on «, default 0.99.

betalLow
Lowerbound on B, default 0.01.

271

Chapter 9. Forecasting Functions

betaUpp
Upperbound on B, default 0.99.

gammaLow
Lowerbound on y, default 0.01.

gammaUpp
Upperbound on y, default 0.99.

Remarks:

m In order to use this function, the AIMMSForecasting system library
needs to be added to the application.

m Please note that this function performs an optimization step; a
nonlinear programming solver should be available and, in an AIMMS
PRO environment, it should be run server side.

272

Chapter 9. Forecasting Functions

9.3 Simple Linear Regression

9.3.1 Notational conventions for simple linear regression

For simple linear regression we follow the conventions below.

The AimmsForecasting library uses as input data observations for the
independent variable and the dependent variable. It provides estimates
for the coefficients of the simple linear regression line.

N number of observations
xi, i€ {1...N} observations of the independent variable
vi, i€ {1...N} observations of the dependent variable

X = (1/N) Z}i\il xi; average of the independent observations
v = (1/N) Z]i\il i average of the dependent observations

yi,i€ {1...N} predictions of the dependent variable

Bo, B1 coefficients of the linear relationship (random)

Bo, ﬁ 1 coefficients of the linear regression line (estimates)
ei,ie{l...N} error (residual) for observation data points

Table 9.3: Simple Linear Regression notation

The linear relationship between x; and y; is modeled by the equation:

yi=Bo+ Bixi+¢€ (9.5)

where €; is an error term which averages out to 0 for every i.

The random By and B are estimated by B¢ and S, such that the
prediction for y; is given by the equation:

Pi = Bo + Bixi (9.6)

So, the predictions based on simple linear regression corresponding to the
observation data points (x;, y;) are provided in p;,i € {1...N}.

The error (residual) e; for the data point i is the difference between the
observed y; and the predicted y;, so e; = y; — Bo - ﬁlxi. In order to
obtain the residuals, the user will need to provide a one-dimensional
parameter declared over the set of observations.

273

Observations
and Estimates

Linear
Relationship

Linear
Regression

Residuals

Chapter 9. Forecasting Functions

Given the values of the observations, the estimates, and the residuals,
several components of variation can be computed, such as sum of
squares total = SST, sum of squares error = SSE, and sum of squares
regression = SSR, which are defined as follows:

N
SST = > (yi—)* (9.7)
i=1
N N
SSE= D (yi—31)* =2 ¢ 9.8)
i=1 i=1
N
SSR = > (i —)? (9.9)

i=1

These components of variation satisfy the relation SST = SSE + SSR.

Furthermore, it is also possible to compute the coefficient of
determination = R?, the sample linear correlation = 7, v, and the
standard error of the estimate = s,, which are defined as follows:

SSR

2 _

R® =T (9.10)
[+VRZ ifBi=0

Ty = { ~VRZ ifBi <0 ©-1D

| SSE
Se = m (912)

The linear regression functions return the values of the line coefficients in
a parameter declared over the index forecasting::co declared as follows:

Set LRcoeffSet{

Index: co;
Definition: {
data {
0, ! Intercept Coefficient of Regression Line
1 ! Slope Coefficient of Regression Line
}
}

}

Whenever one of the linear regression functions communicates back
components of variations, it uses identifiers declared over the index
forecasting::vcs declared as follows:

Set VariationCompSet {
Index: vcs;
Definition: {
data {
SST, I Sum of Squares Total

Variation
Components

Predeclared
index vcs

274

Chapter 9. Forecasting Functions

SSE, ! Sum of Squares Error

SSR, ! Sum of Squares Regression
Rsquare, ! Coefficient of Determination
MultipleR, ! Sample Linear Correlation Rxy
Se ! Standard Error

}

In order to obtain the variation components, the user will need to provide
a parameter indexed over forecasting::vcs to the linear regression
functions.

275

Chapter 9. Forecasting Functions

forecasting::SimpleLinearRegression

The simple linear regression procedure computes the regression line
coefficients based on the values of the observations for the independent and
the dependent variables. If desired, the values for variation components and
the residuals can be returned as well.

Mathematical Formulation:

Using the notation for observations and estimates given in Table 9.3, the
estimates of the coefficients of the linear regression line are determined as
follows:

N e
_ Zizl(;cl x)(sz ¥) (9.13)
21 (xi — X)?

B

Bo=y - Bix (9.14)

These values provide the minimum in Bo, 81 of the function

N N
F(Bo,B1) = D €2 = > (yi — Bo - Bixi)?) (9.15)
i-1 i-1

Therefore, the values B and B; given above are called the least squares
estimates of By and f;. With these coefficients, the regression line 9.6 is
called the least squares regression line. Every least squares regression
line has the following two properties:

m It passes through the point (X, V)
u ZJIV=1 e = 0

Function Prototype:
In order to provide the variation components and residuals only when needed,
there are three flavors of the SimpleLinearRegression procedure provided:

forecasting::SimpleLinearRegression(! Provides the estimates of the Tline
I coefficients, but not the variation
I components nor the residuals

xIndepVarValue, I Input, parameter for independent
yDepVarValue, ! Input, parameter for dependent
LRcoeff) ! Qutput,parameter for line coefficients

forecasting::SimpleLinearRegressionVC(! Provides the estimates of the Tine
I coefficients and the variation
! components

xIndepVarValue, | Input, parameter for independent

yDepVarValue, | Input, parameter for dependent

LRcoeff, I Qutput,parameter for line coefficients
!

VariationComp) Output,parameter variation components

276

Chapter 9. Forecasting Functions

forecasting::SimpleLinearRegressionVCR(! Provides the estimates of the line
I coefficients, the variation
I components and the residuals

xIndepVarValue, I Input, parameter for independent
yDepVarValue, ! Input, parameter for dependent
LRcoeff, ! Qutput,parameter for line coefficients
VariationComp, ! Qutput,parameter variation components
yEstimates, ! Qutput,parameter for estimates
eResiduals) ! Qutput,parameter for residuals
Arguments:
xIndepVarValue

A one dimensional parameter containing the observations for the
independent variable

yDepVarValue
A one dimensional parameter containing the observations for the
dependent variable

LRcoeff
A one dimensional parameter for storing the coefficients of the
regression line

VariationComp
A one dimensional parameter for storing the values of the variation
components

yEstimates
A one dimensional parameter for storing the values of the estimates

eResiduals
A one dimensional parameter for storing the values of the residuals

Example:

Suppose that we are looking at cost data for producing one type of
machine. The number of units produced is an independent variable and
the total production costs is a dependent variable. For this situation,
consider the following observations data:

Set sObservationsSet {
SubsetOf: Integers;
Index: i_ob;

Definition: data{l..10};}

Parameter MachinesProd {
IndexDomain: 1i_ob;
Definition: {

data{

1

v A~ W N

: 10,
: 20,
: 30,
1 40,
1 45,

277

: 50,
1 60,
. 55,
9 : 70,
10 : 40
11

oo N o

Parameter CostOfMachinesProd {
IndexDomain: 1i_ob;

Definition: {

data{

1: 257.40,

2 : 601.60,

3 782.00,

4 765.40,

5 : 895.50,

6 : 1133.00,

7 @ 1152.80,

8 : 1132.70,

9 : 1459.20,

10 : 970.10}}}

Chapter 9. Forecasting Functions

With the declarations and the data as specified, the following function call:

forecasting::SimpleLinearRegressionVCR(
xIndepVarValue
yDepVarValue
LRcoeff
VariationComp
yEstimates
eResiduals

MachinesProd,
CostOfMachinesProd,
Coeff,
VariationMeasure,
CostEstimate,
CostError);

will result in the following output data:

Coeff := data

{

0 164.87790700,

1 : 17.85933555

}

VariationMeasure := data

{

SST :1021762.50100,

SSE : 61705.34367,

SSR, : 960057.15730,
Rsquare, 0.9396089173,
MultipleR, : 0.9693342650,
Se : 87.8246432300,
}

CostEstimate := data

{

1 343.4712625,
2 522.0646179,
3 : 700.6579734,
4 : 879.2513289,
5 1 968.54800066,
6 1057.8446840,

I Intercept Coefficient of Regression Line
! Slope Coefficient of Regression Line

Sum of Squares Total

Sum of Squares Error

Sum of Squares Regression
Coefficient of Determination
Sample Linear Correlation
Standard Error

278

Chapter 9. Forecasting Functions 279

1236.4380400,

1147.1413620,

1415.0313950,
879.2513289

O W oo N

1
}

CostError := data
{

-86.07126246,
79.53538206,
81.34202658,

-113.85132890,

-73.04800664,
75.15531561,

-83.63803987,

-14.44136213,
44.16860465,

90.84867110

O W oo ~NOWUVT A WK =

-
=

The cost data observations, the cost estimates and the resulting simple
linear regression line can be graphically displayed as shown in the
following figure (where the cost figures on the y-axis are scaled by a factor
1000):

O Cost Data Observations
—#—— Cost Estimates

. r

P
07 : : :
06 i/////////

0s ; :

o4 /

03

0.2

Part 11

Algorithmic Capabilities

Chapter 10

Constraint Programming Functions

AimMs supports the following functions for constraint programming:

cp::
cp:
cp:
cp:
cp:
cp::
cp::
cp:
cp:

A11Different

:BinPacking
:Cardinality
:Channel
:Count

Lexicographic
ParallelSchedule

:Sequence
:SequentialSchedule

Chapter 10. Constraint Programming Functions

cp::AllDifferent

This function enforces (a slice of) an indexed variable or expression to be
assigned all different values, or to determine whether (a slice of) an indexed
identifier or expression contains all different values.

Mathematical Formulation:
The function cp::A11Different(i,x;) is equivalent to
Vi, j,i#j:xi+Xj
Function Prototype:

cp::Al1Different(
valueBinding, ! (input) an index binding

values I (input/output) an expression
)
Arguments:
valueBinding
The index binding for which the values argument should have all
different values.
values

The expression that should have a different value for each element in
valueBinding. This expression may involve variables, but can only
contain integral or element values (i.e. no strings, fractional, or unit
values).

Return value:

This function returns 1 if the values in values are all distinct, or 0
otherwise. If valueBinding results in zero or one element, then this
function will also return 1, and may issue a warning on non-binding
constraints.

Remarks:

The following two constraints are equivalent, but a constraint
programming solver handles the single row instantiated by Enforcevaluesl
much more efficiently than the many instantiated rows resulting from
Enforcevalues2.

Constraint Enforcevaluesl {

Definition : «cp::A11Different(i, x(i));
}
Constraint Enforcevalues2 {

IndexDomain : (i,3) | i < j;

Definition : x(i) < x(§);

282

Chapter 10. Constraint Programming Functions

Examples:

ElementParameter TheElementParameter {
IndexDomain : i
Definition : {

data{ 1 : A,
2 : B,
3:C}

}

With the above data, cp::Al1Different(i, TheElementParameter(i)) returns
1, because all elements are different. However, with the data below, it
returns O (the element A’ appears twice).

ElementParameter TheElementParameter {
IndexDomain : i;

Definition : {
data{ 1 : A,
2 . B,
3:C}
}

}

The following code snippet is extracted from the Sudoku example (in
which all rows, columns and blocks should have different values). It
illustrates the selection of values; particularly illustrating the use of an
index domain condition on the first argument as used in the definition of
DifferentValuesPerBlock.

Constraint DifferentValuesPerRow {

IndexDomain : 1i;

Definition : cp::Al1Different(j, x(i,3));
}
Constraint DifferentValuesPerColumn {

IndexDomain : j;

Definition : cp::Al1Different(i, x(i,3));
}
Constraint DifferentValuesPerBlock {

IndexDomain : Kk;

Definition : cp::Al1Different((i,j) | Blck(i,j) = k, x(i,3));
}

See also:

m Chapter 22 on Constraint Programming in the Language Reference.

m Further information on index binding can be found in the Chapter on
Index Binding 9 in the Language Reference.

m The global constraint catalog
www.emn.fr/z-info/sdemasse/gccat/Calldifferent.html which
references this function as alldifferent.

283

www.emn.fr/z-info/sdemasse/gccat/Calldifferent.html

Chapter 10. Constraint Programming Functions

cp::BinPacking

This function is used to model the assignment of objects in bins: a set of
objects, each with its own known 'weight’, is to be placed into a set of bins,
each with its own known capacity.

Mathematical Formulation:

The function cp::BinPacking(b,cp,0,a,,w,[,u]) returns 1, if, for each
bin b, the sum of objects o placed, according to assignment variable a,,
into bin b (a, = b) of weight w,, is less than or equal to the capacity c¢p. In
addition, if the argument u is specified, the number of non-empty (i.e.
used) bins is set equal to u.

cp::BinPacking(b,cp,0,a,,wo[,ul) is equivalent to

® is if ¢ involves variables
Vb: > w0®cbwhere{®i b

olere s < if ¢, does not involve variables
=

If argument u is present, the following constraint also applies.

u=>1

blcyp
Function Prototype:

cp::BinPacking(

binBinding, I (input) an index binding

binCapacity, I (input/output) an expression

objectBinding, I (input) an index binding

objectAssignment, ! (input/output) an expression

objectWeight, I (input) an expression

numberOfBinsUsed ! (optional, input/output) an expression

)
Arguments:
binBinding
The index binding that specifies the available bins.
binCapacity
The capacity of the available bins defined over the index binding
binBinding. This expression may involve variables:

m When the binCapacity expression does not involve variables, it is
interpreted as an upperbound on the bin capacity.

m When the binCapacity expression involves variables, the
constraint forces the capacities of the bins to equal this
expression.

objectBinding

The index binding that specifies the objects that need to be packed.

284

Chapter 10. Constraint Programming Functions

objectAssignment
For each object in objectBinding, objectAssignment contains a bin in
binBinding to indicate that the object is assigned to that particular
bin. The expression for objectAssignment may involve variables.

objectWeight
The weight of each object, defined over the binding domain
objectBinding. This expression cannot involve variables.

numberOfBinsUsed
The number of bins that are used to pack the objects. This argument

is an optional expression with a numerical value that may involve
variables.

Return value:

The function returns 1 when the placement of objects into bins is such
that the capacity of the bins is not exceeded. When the object binding
argument objectBinding is empty, this function will return 1. In all other
cases, the function returns 0.

Examples:

Let us move 7 benches of size 3, 1, 2, 2, 2, 2, and 3 respectively from one
place to the next over several trips with a single truck. The truck we are
using has a capacity of 5 (in terms of size, not benches). With the simplest
of heuristics, we fill the truck sequentially with these benches until we

have no benches left to fill the truck. This heuristic leads to the following
schedule:

trip | bench sizes
1 31

2 22

3 22

4 3

With the aid of cp::BinPacking we can do better. The model is as follows:

Set Benches {

Index . bench;
Definition : ElementRange(1, 7, prefix:"bench-");
}
Parameter BenchSize {
IndexDomain : (bench);

InitialData : {
data { bench-1 : 3, bench-2 : 1, bench-3 : 2, bench-4 : 2,
bench-5 : 2, bench-6 : 2, bench-7 : 3}

}
}
Parameter TruckSize {

InitialData : 5;
}

285

Chapter 10. Constraint Programming Functions

Set Trips {
Index Totrip;
Definition : ElementRange(1,5,prefix:"trip-");

}

ElementVariable BenchTrip {
IndexDomain : bench;
Range : Trips;

}

Variable NumberOfTripsNeeded {
Range : free;

}

Constraint RespectTruckSize {
Definition : {

cp::BinPacking(trip, TruckSize, bench, BenchTrip(bench),
BenchSize(bench), NumberOfTripsNeeded)

}

}

MathematicalProgram TripPlanning {
Objective : NumberOfTripsNeeded;
Direction : minimize;
Constraints : AllConstraints;
Variables : Allvariables;

Type : Automatic;

}

Solving this model will provide the following (non-unique) result:
NumberOfTripsNeeded := 3 ;
BenchTrip := data { bench-1 : trip-3, bench-2 : trip-1, bench-3 : trip-2,

bench-4 : trip-3, bench-5 : trip-1, bench-6 : trip-1,
bench-7 : trip-2 } ;

Which leads to the following schedule:

trip | bench sizes
1 122

2 23

3 32

In the above example, the binCapacity argument is a parameter, because
TruckSize has a fixed value. In such a case, TruckSize is an upperbound. In
the example below, the truck needs to be rented and we can decide on
what size it should be. Therefore, TruckSize (the binCapacity argument) is
a variable. The bounds of that variable are used to limit the TruckSize.
Note that TruckSize is indexed over trip, because the BinPacking
constraint enforces that the fill of the truck is equal to this TruckSize. In
case TruckSize is a scalar, all the trips should be equally loaded, which in
practice is not necessary. The example below only displays the new or
changed identifiers compared with the example above (the constraint
remains the same, but is displayed for clarity).

286

Chapter 10. Constraint Programming Functions 287

Parameter MaximumTruckSize {

InitialData : 8;
}
Variable TruckSize {
IndexDomain : trip;
Range :
{0. .MaximumTruckSize}
}
}
Constraint GetTruckSize {
Definition : {
cp::BinPacking(trip, TruckSize(trip), bench, BenchTrip(bench),
BenchSize(bench), NumberOfTripsNeeded)
}
}

Solving this model leads to the following (non-unique) result, where the
TruckSize for the two trips is 7 and 8, so we need to rent a truck of size 8.

NumberOfTripsNeeded := 2 ;
BenchTrip := data { bench-1 : trip-2, bench-2 : trip-1, bench-3 : trip-2,

bench-4 : trip-1, bench-5 : trip-1, bench-6 : trip-1,
bench-7 : trip-2 } ;

Which leads to the following schedule:

trip | bench sizes
1 1222
2 323

See also:

m The examples of the function cp::A11Different that illustrate how the
index binding and indexed arguments can be used. Further information
on index binding can be found in the Chapter on Index Binding 9 in the
Language Reference.

m Chapter 22 on Constraint Programming in the Language Reference.

m The global constraint catalog
www.emn.fr/z-info/sdemasse/gccat/Cbin_packing.html which
references this function as bin_packing.

www.emn.fr/z-info/sdemasse/gccat/Cbin_packing.html

Chapter 10. Constraint Programming Functions

cp::Cardinality

The function cp::Cardinality can be used to restrict the number of
occurrences of a particular value in (a slice of) an indexed identifier or
expression. This function is typically used in constraints that enforce selected
values a limited number of times.

The function cp::Cardinality counts the number of occurrences of a
collection of values and either ensures that the number of occurrences is
within bounds, or sets this equal to the value of a variable.

Mathematical Formulation:

The function cp::Cardinality(i,x;,j,cj,»;[,u;]1) returns 1 if the number
of occurrences where x; equals c; is equal to y; or in the range
{yj.uj}forall j. cp::Cardinality(i,x;,j,cj,¥;) is equivalent to

Vi (xi=cj) =,
i
and cp::Cardinality(i,x;,j,cj,lj,u;) is equivalent to

Vj:lj SZ(XL':CJ') <Uj

1

Function Prototype:

cp::Cardinality(
inspectedBinding,
inspectedvalues,

I (input) an index binding
I (input) an expression

I
I

TookupValueBinding, ! (input) an index binding
TookupValues, I (input) an expression
numberOfOccurrences, ! (input/output) an expression
occurrenceLimit) I (optional/input) an expression

Arguments:

inspectedBinding

An index binding that specifies and possibly limits the scope of
indices. This argument follows the syntax of the index binding
argument of iterative operators.

inspectedValues
An expression that may involve variables, but can only contain
integer or element values (i.e. no strings, fractional or unit values).
The result is a vector with an element for each possible value of the
indices according to inspectedBinding.

lookupValueBinding
An index binding that specifies and possibly limits the scope of
indices. This argument follows the syntax of the index binding
argument of iterative operators.

288

Chapter 10. Constraint Programming Functions

lookupValues
An expression that does not involve variables. The result is a vector
with an element for each possible value of the indices according to
TookupValueBinding.

numberOfOccurrences
An expression that may involve variables. The result is a vector with
an element for each possible value of the indices according to
TookupValueBinding.

occurrenceLimit
An optional expression that does not involve variables. The result is a
vector with an element for each possible value of the indices
according to TookupValueBinding. In addition, if this argument is
specified, the argument numberOfOccurrences is not allowed to contain
variables either.

Return value:

This function returns 1 if the above condition is met. Also if the index
binding argument TookupValueBinding is empty, this function will return 1.

Examples:

In car sequencing the next constraint ensures that the demand
nbCarsPerClass(c) for each class c of type car(i) is met. The value of
element variable car is a class of car.

Constraint meetDemand {

Definition : {
cp::Cardinality(

inspectedBinding .
inspectedValues :ocar(i),
TookupValueBinding : «c,
TookupValues HE o
numberOfOccurrences : nbCarsPerClass(c),
occurrenceLimit : nbCars)

}

}
See also:

m The functions cp: :Count and cp: :Sequence.

m The Chapter on Constraint Programming 22 in the Language Reference.

m The global constraint catalog
www.emn.fr/z-info/sdemasse/gccat/Cglobal_cardinality.html
which references this function as global_cardinality.

289

www.emn.fr/z-info/sdemasse/gccat/Cglobal_cardinality.html

Chapter 10. Constraint Programming Functions

cp::Channel

The function cp: :Channel links two arrays of variables such that they are
uniquely matched to each other. For instance, see Figure 10.1. This function
is often used to model different perspectives of the same problem.

X Y
F = X(A) A w | » D Y('D)=B
D=X(B) B 4 | » E Y(E)=C
E =X(C) ¢ ™S F Y(F)=A

Figure 10.1: A situation accepted by cp: :Channel

Mathematical Formulation:

The function cp::Channel(i,x;,j,¥;) returns 1 if for all i, j: x; = j implies
vj = 1 and vice versa. cp: :Channel(i,x;,j,y;) is equivalent to

Vi,j:xi=jeyi=1
Function Prototype:

cp::Channel(
mapBinding,
mapy
inverseMapBinding,
inverseMap

(input) an index binding
(input/output) an expression
(input) an index binding
(input/output) an expression

)
Arguments:

mapBinding
The index binding corresponding to the domain of the first
expression map.

map
For each element in mapBinding, map will contain an element in
inverseMapBinding. This expression may involve variables.

inverseMapBinding
The index binding corresponding to the domain of the second
expression inverseMap.

290

Chapter 10. Constraint Programming Functions 291

inverseMap
For each element in inverseMapBinding, inverseMap will contain an
element in mapBinding. This expression may involve variables.

Return value:

If a unique mapping between the two index bindings is created, this
function returns 1. When the index bindings mapBinding and
inverseMapBinding are both empty, this function returns 1 as well. In all
other cases, the function returns 0, e.g. when the number of possible
values of index binding mapBinding is different from that of the index
binding inverseMapBinding.

Remarks:

m The cp::Channel constraint is also referred to in the Constraint
Programming literature as Inverse.

m The cp::Channel constraint can be used to implement the
one_factor(i,x(i)) or symm_A11Different(i,x(i)) constraints
encountered in the Constraint Programming literature as
cp::Channel (i,X(i),1,X(1)).

Examples:

In a sports team scheduling problem, the following constraint

Constraint LinkingDuplicateView {
Definition : cp::Channel(s, Games(s), g, Slots(g));
}

links the variable Games(s) to the variable STots(g). A game is the
identification number of a match between a home and an away team. A
slot is the identification number of a week and a match within a week
number. For each game, there is a unique slot and for each slot there is a
unique game.

See also:

m Chapter 22 on Constraint Programming in the Language Reference.

m The global constraint catalog
www.emn.fr/z-info/sdemasse/gccat/Cinverse.html which
references this function as inverse.

www.emn.fr/z-info/sdemasse/gccat/Cinverse.html

Chapter 10. Constraint Programming Functions

cp::Count

The function cp: :Count can be used to restrict the number of occurrences of a
particular value in (a slice of) an indexed identifier or expression. This
function is typically used in constraints that enforce a selected value a limited
number of times.

Mathematical Formulation:

The function cp::Count(i,x;,c,®,y) returns 1 if the number of
occurrences of x; equal to the value c, is related to y according to the
relational operator ®. The function cp::Count(i,x;,c,®,y) is equivalent

to
Silxi=c)®y
® € {<s,=,2,<>%}

Function Prototype:

cp::Count(
inspectedBinding,
inspectedvalues,

(input) an index binding
(input/output) an expression

TookupValue, (input) an expression
relationalOperator, ! (input) an element
occurrenceLimit (input/output) an expression
)
Arguments:
inspectedBinding

The index binding that specifies, together with the inspectedvalues
argument, the set of values in which the TookupValue should be
counted.

inspectedValues
The expression indexed over inspectedBinding for which the number
of occurrences of the value TookupValue is counted. This expression
may involve variables, but can only contain integer or element values
(i.e. no strings, fractional or unit values).

lookupValue
The particular value for which the number of occurrences in
inspectedValues should be counted. This expression cannot involve
variables. The data type should match the data type of
inspectedValues.

relationalOperator
The relational operator that indicates how the number of occurrences
is limited to the occurrencelLimit argument. This can be an expression
and should result in an element in the set
AllConstraintProgrammingRowTypes. This expression cannot involve
variables.

292

Chapter 10. Constraint Programming Functions

occurrenceLimit
The number of occurrences of TookupValue is limited to the
occurrencelLimit. This can be an expression that may involve variables.

Return value:

This function returns 1 if the number of occurences of TookupValue does
not exceed the occurencelLimit argument according to the
relationalOperator. In all other cases, the function returns 0.

Examples:

ElementParameter TheElementParameter {
IndexDomain : 1;
Definition : data{ 1: A, 2 : B, 3:A};
}

With the above data, the following holds:

cp::Count(i, TheElementParameter(i), ’B’, '<=", 1) =1
cp::Count(i, TheElementParameter(i), ’B’, '<’, 1) =0
cp::Count(i, TheElementParameter(i), ’A’, '=’, 2) =1

The following constraint sets the number of stores supplied by a
warehouse w equal to the variable warehouseUsage:

Set Warehouses {

Index oW
}
Set Suppliers {
Index HEEH
}
ElementParamter SupplyingWarehouse {
IndexDomain : s;
Range 1 Warehouses;
}
Variable WarehouseUsage {
IndexDomain : w;
Range : integer;
}
Constraint CountUsedWarehouses {
IndexDomain : w;
Definition : {
cp::count(s, supplyingWarehouse(s), w,
’=", warehouseUsage(w))
}
}
See also:

m The functions cp::Cardinality and cp::Sequence.

m Chapter 22 on Constraint Programming in the Language Reference.

m The global constraint catalog
www . emn. fr/z-info/sdemasse/gccat/Ccount.html] which references
this function as count, or, depending on a particular choice of ®, as
atleast, atmost or exactly.

293

www.emn.fr/z-info/sdemasse/gccat/Ccount.html

Chapter 10. Constraint Programming Functions

cp::Lexicographic

The function cp: :Lexicographic ensures that the data of one expression
comes lexicographically (i.e. according to the set order) before another
expression. This function is often used to reduce symmetry in two variables.

Mathematical Formulation:
cp::Lexicographic(k,xk,Vk[,e]) is equivalent to

. it i xi<y; ife=0
316{1..1’1}.(V].J<1.X1—yJ)/\{xi<yi ife+0
where n equals card(range(k)).

Function Prototype:

cp::Lexicographic(
valueBinding,
firstValues,

(input) an index binding
(input/output) an expression

secondValues, ! (input/output) an expression
allowEqual (optional input) an expression
)
Arguments:
valueBinding

The index binding over which the next two arguments are defined.

firstValues
The expression that should lexicographically come before
secondValues. It is defined over index binding valueBinding and may
involve variables.

secondValues
The expression that should lexicographically come after firstValues.
It is defined over index binding valueBinding and may involve
variables.

allowEqual
When this optional argument is specified and non-zero, the
expressions firstValues and secondvValues are allowed to be equal.
The allowEqual expression may not involve variables. The default of
this argument is 0.

Return value:

This function returns 1 if the above condition is met. When the index
binding valueBinding is empty, this function returns

m 0 if allowEqual is 0
m 1 if allowEqual is not 1.

294

Remarks:

Chapter 10. Constraint Programming Functions

Please note that the comparison between the two expressions is done,
based on the complete specified index binding and not pair-wise for every
element in that index domain.

Examples:

The constraint x_before_y ensures that the identifier x comes
lexicographically before the identifier y.

Constraint x_before_y {

Definition
}
Suppose
x = data { ’al’ :
y = data { ’al’

cp: :Lexicographic(1, x(i), y(i));

1, 'a2’ : 2, ’a3’ :

2}
:1, a2’ 3, ’a3’ : 11}

Then the constraint x_before_y is met. Please note that in the case of a3, x
= 2and y = 1. Allthough 2 does not come lexicographically before 1, the
constraint is met. The ordering is based on the whole index domain, and
not pair wise. Because for a2 2 comes lexicographically before 3, the x-
and y-values for a3 are irrelevant here.

Higher dimensional variables can also be compared using
cp::Lexicographic as is illustrated next. Consider the following

declarations:

Set S {

Index
InitialData

}

Variable X {
IndexDomain
Range

}

Variable Y {
IndexDomain
Range

}

Constraint xylex {

H

Definition

i, 3;
data { a, b, c };

(i,3);
binary;

(i,3);

binary;

cp: :Lexicographic(
(3,3 lord(i)<=o0rd(3),
x(1,3), y(i,3)

}

Instantiated constraints are presented in the constraint listing. For the
constraint xylex this looks as follows:

xylex

295

xylex .. [1] 1| after]

Chapter 10. Constraint Programming Functions

cp::Lexicographic({X(a,a), X(a,b), X(a,c), X(b,b), X(b,c), X(c,O},
{¥(@@,a), Y(@,b), Y(a,0), Y(b,b), Y(b,c), Y(c,0)},

name
X(a,a)
X(a,b)
X(a,c)
X(b,b)
X(b,c)
X(c,c)
Y(a,a)
Y(a,b)
Y(a,c)
Y(b,b)
Y(b,c)
Y(c,c)

allowEqual: 0)

Tower level upper

0

OO OO OO OO O OO

0

OO O OO R OO O OO

RF R RRPRERERRRRERR &

Here A1MMS visits all elements of the two dimensional variables x and vy,
by varying the indices i and j in the index binding (i,j) and adhering to
the index domain condition ord(i)<=ord(j). In the index binding (i,j) the
index j comes after the index i and thus the index j is varied more.

See also:

m The help text associated with the option constraint_Tisting. This option
can be found via the AIMMS menu settings - project options category
Solvers general - Standard reports - constraints.

m Chapter 22 on Constraint Programming in the Language Reference.

m The global constraint catalog
www.emn.fr/z-info/sdemasse/gccat/Clex_less.html which
references this function as Tex_lTess and lex_lesseq.

296

www.emn.fr/z-info/sdemasse/gccat/Clex_less.html

Chapter 10. Constraint Programming Functions

cp::ParallelSchedule

The function cp::ParallelSchedule(c,j,s;,d;j,e;j, w;) models a resource that

can handle multiple jobs j at the same time. The capacity of the resource is c
units. The job j starts at period s; and is active up to but not including period
ej, during d; periods. Job j requires (a weight of) w; units of the resource.

Mathematical Formulation:

cp::ParallelSchedule(c,j,s;,dj,ej,w;) is equivalent to

vt: Zj\sjst<ej wj=c¢
Vj S5t dj = €j.

Function Prototype:

cp::ParallelSchedule(

resourceCapacity, ! (input) an expression
jobBinding, ! (input) an index binding
jobBegin, I (input/output) an expression
jobDuration, I (input/output) an expression
jobEnd, I (input/output) an expression
jobWeight I (input/output) an expression
)
Arguments:
resourceCapacity

jobB

jobB

This argument is the capacity that the single resource has available to
handle multiple jobs at the same time. It is a integer valued
expression and the unit of measurement of this expression should be
commensurate to the unit of measurement of jobWeight. This
expression may not involve variables.

inding

The index binding that specifies the jobs that need to be scheduled.
egin

An expression that involves variables. When this function is used in a
constraint definition it should involve variables. The result is a vector
with an element for each possible value of the indices in jobBinding.
This argument is integer or element valued, i.e. no string, fractional
or unit values.

jobDuration

An expression that may involve variables. The result of this
expression is an integer non-negative value. The result is a vector
with an element for each possible value of the indices in jobBinding.
This argument is integer valued, i.e. no element, string, fractional or
unit values, but elements from the set Integers are allowed.

297

Chapter 10. Constraint Programming Functions 298

jobEnd
An expression that involves variables. When this function is used in a
constraint definition it should involve variables. This expression has
the same data type as jobBegin. The result is a vector with an element
for each possible value of the indices in jobBinding. This argument is
integer or element valued, i.e. no string, fractional or unit values.

JjobWeight
An expression that may involve variables. The result of this
expression is an integer non-negative value. The unit of measurement
of this expression is commensurate with the unit of measurement of
TowerLimit and upperLimit. The result is a vector with an element for
each possible value of the indices in jobBinding. This argument is
integer valued, i.e. no element, string, fractional or unit values, but
elements from the set Integers are allowed.

This argument is integer or element valued, i.e. no string, fractional or unit
values.

Return value:

This function returns 1 if the jobs can be scheduled within the resource
limits. If the index domain argument jobBinding is empty, this function
also returns 1. Otherwise it returns 0.

Remarks:

m The arguments of this function involve discrete AIMMS variables and
AIMMS parameters, not AIMMS activities.

m This and similar constraints are also known in the Constraint
Programming literature as Cumulative constraints.

See also:

m The examples at the function cp::A11Different illustrate how the index
binding and vector arguments are used.

m Chapter 22 on Constraint Programming in the Language Reference.

m The global constraint catalog
www.emn.fr/z-info/sdemasse/gccat/Ccumulative.html which
references this function as cumulative.

www.emn.fr/z-info/sdemasse/gccat/Ccumulative.html

Chapter 10. Constraint Programming Functions 299

cp::Sequence

The function cp: : Sequence is used to limit the number of occurrences of a
group of values in each contiguous sequence of a row of variables. It is used
to model that some values may occur only a limited number of times in a
contiguous subset of the variables.

Mathematical Formulation:

The function cp: :Sequence(i,x;,S,q,l,u[,c]) returns 1 if, for each
contiguous sequence of length g, the number of times that x; is in S is
within the range {l..u}.

cp: :Sequence(i,x;,S,q,l,u,c) is equivalent to

Vi=ln-q+1: 1<3 (xi€8) su ¢=0
Vi=1l.n: l < Z?:_é (X(+j-1)%m+1 €S) <u c#0
Function Prototype:
cp: :Sequence(

inspectedBinding,
inspectedvalues,

(input) an index binding
(input/output) an expression

!
!
TookupValues, I (input) a set valued expression
sequencelength, ! (input) an expression
TowerBound, I (input) an expression
upperBound, I (input) an expression
cyclic I (optional, input) an expression
)
Arguments:
inspectedBinding

The index binding for which the inspectedValues expression should
be inspected on occurences of values in the TookupValues set.

inspectedValues
The expression indexed over inspectedBinding for which the number
of occurrences of the values in TookupValues is limited per
subsequence. This expression may involve variables, but can only
contain integer or element values (i.e. no strings, fractional or unit
values).

lookupValues
The set containing the particular values that should occur only a
limited number of times in each subsequence. This set valued
expression should be a subset of the range of inspectedValues and
does not involve variables.

Chapter 10. Constraint Programming Functions

sequenceLength
The sequence length. An expression that does not involve variables.
This argument should be in the range
{1..card(range(inspectedValues))}.

lowerBound
The lower bound on the number of occurences. This expression does
not involve variables. This argument should be in the range
{0..upperBound}.

upperBound
The upper bound on the number of occurences. This expression does
not involve variables. This argument should be in the range
{TowerBound..sequencelLength}.

cyclic
An optional expression that indicates whether cyclic subsequences
should also be inspected. E.g. when you have a set 1,2,3,4,5 then 4,5,1
is a cyclic subsequence of length 3. The cyclic expression cannot
involve variables and the default of this argument is 0.

Return value:

This function returns 1 if the above condition is met.

Examples:

In car sequencing the constraint below ensures that no more cars of class
¢ with option o are built in a sequence of length blockSize(o) than
maxCarsPerBlock (o). Here, the indexed set classesHavingOption(o) is, for
each option o, the classes of car that have that option.

Constraint respectCapacity {
IndexDomain : (0);
Definition : {
cp::Sequence(
inspectedBinding : 1,

inspectedvValues : car(i),

TookupValues : classesHavingOption(o),
sequencelength : blockSize(o),
TowerBound .0,

upperBound : maxCarsPerBlock(o))

}

In crew scheduling the constraint below ensures that after a flight an
attendant att has at least two days off (works at most one day in each
sequence of three days). The value 1 is converted to the set {1} by AIMMS.

300

Chapter 10. Constraint Programming Functions

Constraint AssureDaysOff {
IndexDomain : (att);
Definition : {
cp::Sequence(
inspectedBinding : f,
inspectedvalues : CrewOnFlight(att, f),

TookupValues :1,
sequenceLength : 3,
TowerBound 0,
upperBound 1,
cyclic 1
}
}
See also:

m The functions cp::Count and cp::Cardinality.
m Chapter 22 on Constraint Programming in the Language Reference.
m The global constraint catalog
www.emn. fr/z-info/sdemasse/gccat/Camong_seq.htm] which
references this function as among_seg.

301

www.emn.fr/z-info/sdemasse/gccat/Camong_seq.html

Chapter 10. Constraint Programming Functions

cp::SequentialSchedule

The function cp: :SequentialSchedule(j,s;,d;,e;) models a resource that can
handle only one job at a time. A job j is scheduled from start time s; until,
but not including, end time e; and over a number of periods d;. This function
returns 1 if the jobs are scheduled such that no two jobs overlap.

Mathematical Formulation:
cp::SequentialSchedule(j,s;j,d;,e;) is equivalent to

Vi, j,i+=j:(si+di<sj)Vv(sj+d;=<s;)
Vj:sj+dj=ej

Function Prototype:

cp::SequentialSchedule(

jobBinding, ! (input) an index binding
jobBegin, I (input) an expression
jobDuration, ! (input) an expression
jobEnd I (input) an expression
)
Arguments:
JjobBinding
An index binding that specifies and possibly limits the scope of
indices. This argument follows the syntax of the index binding
argument of iterative operators.
JjobBegin
An expression that involves variables. The result is a vector with an
element for each possible value of the indices in jobBinding.
jobDuration

An expression that may involve variables. The result of this
expression is an integer non-negative value. The result is a vector
with an element for each possible value of the indices in jobBinding.

JjobEnd
An expression that involves variables. This expression has the same
data type as jobBegin. The result is a vector with an element for each
possible value of the indices in jobBinding.

Return value:

This function returns 1 if the jobs can be scheduled such that no two jobs
overlap. If the index binding argument job is empty, this function will
return 1. Otherwise it returns O.

302

Chapter 10. Constraint Programming Functions

Remarks:

m The arguments to this function involve discrete AIMMS variables and
AIMMS parameters, not AIMMS activities.

m This and similar constraints are also known in the Constraint
Programming literature as unary or disjunctive constraints.

Examples:

The following example models the intuitive idea that with an increase in
the size of a task also the time window in which that task is to be
executed increases.

Parameter nrTasks {

Definition : 10;
}
Parameter smallestWidth {
Definition : 4;
}
Set tasks {
Index HE
Definition : elementrange(1, nrTasks, 1, ’task’);
}
Parameter release {
IndexDomain : (t);
Definition : Ord(t);
}
Parameter deadline {
IndexDomain : (t);
Definition : 2*nrTasks-Ord(t)+smallestWidth;
}
Parameter processingTime {
IndexDomain : (t);
Definition : ceil(0.125*(deadline(t) - release(t)));
}
Variable startTime {
IndexDomain : (t);
Range HERt
{release(t) .. deadline(t)}
}
}
Variable endTime {
IndexDomain : (t);
Range o {
{release(t) .. deadline(t)}
}
}
Constraint UnaryResource {
Definition : {
cp::SequentialSchedule(t, startTime(t),
processingTime(t), endTime(t))
}
}

This leads to the following results (extracted from the listing file):

name Tower Tevel upper
startTime(’ task01’) 1 1 23

303

The following Gantt chart illustrates that the solution satisfies the

startTime(’ task02’)
startTime(’task03’)
startTime(’task04’)
startTime(’ task05”)
startTime(’ task06”)
startTime(’task07’)
startTime(’task08’)
startTime(’task09”)
startTime(’task10’)
endTime(’task01’)
endTime(’task02’)
endTime(’task03’)
endTime(’task04’)
endTime(’task05”)
endTime(’task06’)
endTime(’task07’)
endTime(’task08’)
endTime(’task09’)
endTime(’task10’)

Chapter 10. Constraint Programming Functions

=

=

QWO ~NOUTEAE WNEHE OWOo~NO VI A WN

18
15
4
13
6
11
8
9
10
4
21
18
6
15
8
13
9
10
11

restricition imposed by cp: :SequentialSchedule.

taskO1

task02
task03
taskD4
taskOS
taskOE
taskO7
taskDs
taskO9
task10

M startTime:

17

23

Figure 10.2: Gantt chart for solution of cp::SequentialSchedule

See also:

m The examples at the function cp::A11Different illustrate how the index
binding and vector arguments are used.

m Chapter 22 on Constraint Programming in the Language Reference.

m The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Cdisjunctive.html which

references this function as disjunctive.

304

www.emn.fr/z-info/sdemasse/gccat/Cdisjunctive.html

Chapter 11

Scheduling Functions

A1MMS supports the following functions for scheduling:

cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp:
cp::
cp:
cp:
cp:
cp:
cp::
cp:
cp:
cp:
cp:
cp:

:ActivityBegin
:ActivityEnd
:ActivitylLength
:ActivitySize
:Alternative
:BeginAtBegin
:BeginAtEnd
:BeginBeforeBegin
:BeginBeforeEnd
:BeginOfNext
:BeginOfPrevious
:EndAtBegin
:EndAtEnd
:EndBeforeBegin

EndBeforeEnd

:EndOfNext
:EndOfPrevious
:GroupOfNext
:GroupOfPrevious

LengthOfNext

:LengthOfPrevious
:SizeOfNext
:SizeOfPrevious
:Span
:Synchronize

Chapter 11. Scheduling Functions

cp::ActivityBegin

The function cp: :ActivityBegin(a,d) returns the begin of activity a when it is
present or default value d when it is absent.

Mathematical Formulation:

The function cp: :ActivityBegin(a,d) is equivalent to

a.begin if a.present
a otherwise

This function is typically used in scheduling problems to link activities to
other components of the problem.

cp::ActivityBegin(

optionalActivity, ! (input) an expression
absentValue I (input) an expression
)
Arguments:
optionalActivity
An expression resulting in an activity. This activity may have the
property optional.
absentValue

An expression that results in the value used when activity
optionalActivity is absent. The result of this expression is an
element in the schedule domain of the activity. This expression
cannot involve variables.

Return value:

This function returns an element in the schedule domain of the activity
and this element is the begin of an activity when that activity is present or
a specified default value when it is not.

Examples:

In the example below, we require that the beginning of the shift
represented by element variable evShift matches the begin of the optional
activity myAct.

Constraint TinkShiftActivity {

Definition : cp::ActivityBegin(myAct, first(myCal)) = beginHour(evShift));
}

See also:

The functions cp::Count and cp: :ActivityEnd.

306

Chapter 11. Scheduling Functions

cp::ActivityEnd

The function cp::ActivityEnd(a,d) returns the end of activity a if it is
present or default value d when it is absent.

Mathematical Formulation:
The function cp::ActivityEnd(a,d) is equivalent to

a.end if a.present
d otherwise

This function is typically used in scheduling problems to link activities to
other components of the problem.

cp::ActivityEnd(

optionalActivity, ! (input) an expression
absentValue I (input) an expression
)
Arguments:
optionalActivity
An expression resulting in an activity. This activity may have the
property optional.
absentValue

An expression that results in the value used when activity
optionalActivity is absent. The result of this expression is an
element in the schedule domain of the activity. This expression
cannot involve variables.

Return value:

This function returns an element in the schedule domain of the activity
and this element is the end of an activity when that activity is present or a
specified default value when it is not.

Examples:

In the example below, we require that the end of the shift represented by
element variable evShift matches the end of the optional activity myAct.

Constraint TinkShiftActivity {

Definition : cp::ActivityEnd(myAct, last(myCal)) = endHour(evShift);
}

See also:

The functions cp::Count and cp: :ActivityBegin.

307

Chapter 11. Scheduling Functions

cp::ActivityLength

The function cp::ActivitylLength(a,d) returns the length of activity a when
present and default value d when absent.

Mathematical Formulation:

The function cp::ActivitylLength(a,d) is equivalent to

a.length if a.present
a otherwise

This function is typically used in scheduling problems to link activities to
other components of the problem.

cp::ActivitylLength(

optionalActivity, ! (input) an expression
absentValue I (input) an expression
)
Arguments:
optionalActivity
An expression resulting in an activity. This activity may have the
property optional.
absentValue

An expression that results in the value used when activity
optionalActivity is absent. This expression cannot involve variables.

Return value:

This function returns the length of an activity when that activity is present
or a specified default value when it is not.

Examples:

In the example below, we require that the length of an activity is 36,
whether or not it is present. When the length of an activity is fixed, if it is
present, then this type of constraint might improve the performance of
the CP solver.

Constraint TinkShiftActivity {

Definition : cp::ActivityLength(myAct, 36) = 36;
}

Note that the above constraint is automatically generated when the length
attribute of activity myAct is specified as 36.

See also:

The functions cp::Count and cp: :ActivityBegin.

308

Chapter 11. Scheduling Functions

cp::ActivitySize

The function cp: :ActivitySize(a,d) returns the size of activity a when it is
present or default value d when it is absent.

Mathematical Formulation:

The function cp::ActivitySize(a,d) is equivalent to

a.size if a.present
d otherwise

This function is typically used in scheduling problems to link activities to
other components of the problem.

cp::ActivitySize(

optionalActivity, ! (input) an expression
absentValue I (input) an expression
)
Arguments:
optionalActivity
An expression resulting in an activity. This activity may have the
property optional.
absentValue

An expression that results in the value used when activity
optionalActivity is absent. This expression cannot involve variables.

Return value:

This function returns the size of an activity when that activity is present
or a specified default value when it is not.

Examples:

In the example below, we require that the size of the shift represented by
element variable evShift matches the size of the optional activity myAct.

Constraint TinkShiftActivity {

Definition : cp::ActivitySize(myAct, 3) =, shiftSize(evShift);
}

See also:

The functions cp::Count and cp: :ActivityBegin.

309

Chapter 11. Scheduling Functions

cp::Alternative

The function cp::Alternative(g,i,a;,n), returns

m if activity g is not present, the value 1 if none of the activities a; are
present and O otherwise.

m if activity g is present, the value 1 if precisely n activities a; are present
and these present activities match the activity g.

The function cp::Alternative(g,i,a;i,n) is equivalent to
g.Present =0 < Vi:a;.Present=0

and

>;ai.Present =n
g-Begin = a;.Begin
g.End = a;.End

.Present =1 ,
9 < Vi:ai.Present > {

This function is typically used in scheduling problems to denote selected
(matching) activities.

cp::Alternative(

globalActivity, ! (input) an expression
activityBinding, ! (input) an activity binding
subActivity, I (input) an expression
noSelected I (optional) an expression
)
Arguments:
globalActivity
An expression resulting in an activity.
activityBinding
An index domain that specifies and possibly limits the scope of
indices. This argument follows the syntax of the index domain
argument of iterative operators.
subActivity
An expression resulting in an activity. The result is a vector with an
element for each possible value of the indices in index domain
activityBinding.
noSelected

The number of alternatives, the default being 1. This expression may
involve variables.

Return value:

This function returns 1 if the above condition is satisfied, or otherwise 0.
When the index domain activityBinding is empty this function will return
an error.

310

Chapter 11. Scheduling Functions

Examples:

In the example below we require precisely one of the activities altAct(i)
to match the activity chosenAct(i).

Constraint PreciselyOneAlternativeMatches {
Definition : «cp::Alternative(chosenAct, i, altAct(i));
}

We could change the above example to allow multiple matches as follows:

Variable noMatches {

Range o {
{1..n}
}
}
Constraint AtLeastOneAlternativeMatches {
Definition : cp::Alternative(chosenAct, i, altAct(i), noMatches);
}

Here, the number of matches is counted in the integer variable noMatches.

See also:

The functions cp::Span and cp: :Synchronize.

311

Chapter 11. Scheduling Functions

cp::BeginAtBegin

The function cp: :BeginAtBegin(a,b,d) returns 1 if one of the activities a and
b is absent, or if the begin of activity a plus a nonnegative time period 4 is
equal to the begin of activity b. The function cp: :BeginAtBegin(a,b,d) is
equivalent to

a.Present =0 \%

b.Present =0 Y

a.Begin+d = b.Begin

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp::BeginAtBegin(

firstActivity, ! (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginBeforeBegin and cp: :BeginBeforeEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

312

Chapter 11. Scheduling Functions

cp::BeginAtEnd

The function cp::BeginAtEnd(a,b,d) returns 1 if one of the activities a and b
is absent, or if the begin of activity a plus a nonnegative time period d is
equal to the begin of activity b. The function cp: :BeginAtEnd(a,b,d) is
equivalent to

a.Present =0 \%

b.Present =0 %

a.Begin+d = b.End

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :BeginAtEnd(

firstActivity, ! (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginBeforeBegin and cp: :BeginBeforeEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

313

Chapter 11. Scheduling Functions

cp::BeginBeforeBegin

The function cp: :BeginBeforeBegin(a,b,d) returns 1 if one of the activities a
and b is absent, or if the begin of activity a plus a nonnegative time period d
is equal to the begin of activity b. The function cp: :BeginBeforeBegin(a,b,d)
is equivalent to

a.Present =0 \%

b.Present =0 %

a.Begin+d < b.Begin

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :BeginBeforeBegin(

firstActivity, I (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginAtBegin and cp: :BeginBeforeEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

314

Chapter 11. Scheduling Functions

cp::BeginBeforeEnd

The function cp: :BeginBeforeEnd(a,b,d) returns 1 if one of the activities a
and b is absent, or if the begin of activity a plus a nonnegative time period d
is equal to the begin of activity b. The function cp: :BeginBeforeEnd(a,b,d) is

equivalent to
a.Present =0 \Y

b.Present =0 %
a.Begin+d < b.End

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :BeginBeforeEnd(

firstActivity, I (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginBeforeBegin and cp: :BeginAtEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

315

Chapter 11. Scheduling Functions

cp::BeginOfNext

The function cp: :BeginOfNext refers to the begin of the next activity in a
sequence of activities.

For a resource 7, an activity a, timeslots I and d, the function
cp::BeginOfNext(+,a,l,d) returns

m d if a is absent,

m lif a is present and scheduled as the last activity on ¥, and

m n.begin if a is present and not scheduled as the last activity on 7, and
n is the next activity of a scheduled on 7.

cp: :BeginOfNext(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
TastValue, I (optional) an expression
absentValue I (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
lastValue
An optional expression that results in an element in the problem
schedule domain. The default value of this expression is the last
element in the schedule domain of the sequential resource.
absentValue

An optional expression that results in an element in the problem
schedule domain. The default value of this expression is the first
element in the problem schedule domain.

Return value:
This function returns an element in the problem schedule domain.

See also:

m The functions cp: :BeginOfPrevious and cp: :End0fNext, and
m Chapter 22 on Constraint Programming in the Language Reference.

316

Chapter 11. Scheduling Functions

cp::BeginOfPrevious

The function cp: :BeginOfPrevious refers to the begin of the previous activity
in a sequence of activities.

For a resource 7, an activity a, timeslots I and d, the function
cp::BeginOfNext(+,a,l,d) returns

m d if a is absent,

m lif a is present and scheduled as the first activity on r, and

m p.beginif a is present and not scheduled as the last activity on 7, and
p is the previous activity of a scheduled on 7.

cp: :BeginOfPrevious(

sequentialResource, ! (input) an expression
scheduledActivity, ! (input) an expression
firstValue, I (optional) an expression
absentValue I (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
firstValue
An optional expression that results in an element in the problem
schedule domain. The default value of this expression is the first
element in the schedule domain of the sequential resource.
absentValue

An optional expression that results in an element in the problem
schedule domain. The default value of this expression is the first
element in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.
See also:

m The functions cp: :BeginOfNext and cp: :EndOfPrevious, and
m Chapter 22 on Constraint Programming in the Language Reference.

317

Chapter 11. Scheduling Functions

cp::EndAtBegin

The function cp: :EndAtBegin(a,b,d) returns 1 if one of the activities a and b
is absent, or if the begin of activity a plus a nonnegative time period d is
equal to the begin of activity b. The function cp: :EndAtBegin(a,b,d) is
equivalent to

a.Present =0 \%

b.Present =0 %

a.End+ d = b.Begin

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :EndAtBegin(

firstActivity, ! (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginBeforeBegin and cp: :BeginBeforeEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

318

Chapter 11. Scheduling Functions

cp:EndAtEnd

The function cp: :EndAtEnd(a,b,d) returns 1 if one of the activities a and b is
absent, or if the end of activity a plus a nonnegative time period d is equal to
the end of activity b. The function cp: :EndAtEnd(a,b,d) is equivalent to

a.Present =0 Vv
b.Present =0 %
a.End +d = b.End

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :EndAtEnd(

firstActivity, I (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginBeforeBegin and cp: :BeginBeforeEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

319

Chapter 11. Scheduling Functions

cp::EndBeforeBegin

The function cp: :EndBeforeBegin(a,b,d) returns 1 if one of the activities a
and b is absent, or if the end of activity a plus a nonnegative time period d is
less than or equal to the begin of activity b. The function

cp: :EndBeforeBegin(a,b,d) is equivalent to

a.Present =0 \Y
b.Present =0 Vv
a.End+d < b.Begin

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :EndBeforeBegin(

firstActivity, ! (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :BeginBeforeBegin and cp: :BeginBeforeEnd, and
m Chapter 22 on Constraint Programming in the Language Reference.

320

Chapter 11. Scheduling Functions

cp::EndBeforeEnd

The function cp: :EndBeforeEnd(a,b,d) returns 1 if one of the activities a and
b is absent, or if the end of activity a plus a nonnegative time period d is less
than or equal to the end of activity b. The function cp: :EndBeforeEnd(a,b,d)

is equivalent to
a.Present =0 \%

b.Present =0 Vv
a.End+d < b.End

This function is typically used in scheduling constraints to place a sequencing
restriction on activities.

cp: :EndBeforeEnd(

firstActivity, I (input) an expression
secondActivity, ! (input) an expression
delay ! (optional) an expression
)
Arguments:
firstActivity
An expression that results in an activity.
secondActivity
An expression that results in an activity.
delay

An optional expression that results in an integer number of time
slots. This expression may involve variables. The default value of this
expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.
See also:

m The functions cp: :EndAtEnd and cp: :EndBeforeBegin, and
m Chapter 22 on Constraint Programming in the Language Reference.

321

Chapter 11. Scheduling Functions

cp:-:EndOfNext

The function cp: :EndOfNext refers to the end of the next activity in a sequence
of activities.

For a resource 7, an activity a, timeslots I and d, the function
cp::EndOfNext(r,a,l,d) returns

m d if a is absent,

m lif a is present and scheduled as the last activity on ¥, and

m n.end if a is present and not scheduled as the last activity on v, and n
is the next activity of a scheduled on 7.

cp: :EndOfNext(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
TastValue, I (optional) an expression
absentValue I (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
lastValue
An optional expression that results in an element in the problem
schedule domain. The default value of this expression is the last
element in the schedule domain of the sequential resource.
absentValue

An optional expression that results in an element in the problem
schedule domain. The default value of this expression is the first
element in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.
See also:

m The functions cp: :BeginOfNext and cp: :EndOfPrevious, and
m Chapter 22 on Constraint Programming in the Language Reference.

322

Chapter 11. Scheduling Functions

cp::EndOfPrevious

The function cp: :EndOfPrevious refers to the end of the previous activity in a
sequence of activities.

For a resource 7, an activity a, timeslots f and d, the function
cp: :EndOfPrevious(v,a, f,d) returns

m d if a is absent,

m f if a is present and scheduled as the first activity on 7, and

m p.end if a is present and not scheduled as the first activity on v, and p
is the previous activity of a scheduled on 7.

cp: :EndOfPrevious(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
firstvalue, I (optional) an expression
absentValue I (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
firstValue
An optional expression that results in an element in the problem
schedule domain. The default of this expression is the first element
in the schedule domain of the sequential resource.
absentValue

An optional expression that results in an element in the problem
schedule domain. The default of this expression is the first element
in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.
See also:

m The functions cp: :BeginOfPrevious and cp: :EndOfNext, and
m Chapter 22 on Constraint Programming in the Language Reference.

323

Chapter 11. Scheduling Functions

cp::GroupOfNext

The function cp: :GroupOfNext refers to the group of the next activity in a
sequence of activities. The group of an activity is specified in the group
definition attribute of the sequential resource to ensure the sequencing.

For a resource v, an activity a, groups [and d, the function
cp: :GroupOfNext(v,a,l,d) returns

m d if a is absent,

m lif a is present and scheduled as the last activity on ¥, and

m GroupO f(r,n) if a is present and not scheduled as the last activity on
v, and n is the next activity of a scheduled on r.

cp: :GroupOfNext(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
TastValue, I (optional) an expression
absentValue ! (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
lastValue
An optional expression that results in a group. The default value of
this expression is the last element in the group set of the sequential
resource.
absentValue

An optional expression that results in a group. The default value of
this expression is the last element in the group set of the sequential
resource.

Return value:

This function returns a group.
See also:

m The functions cp: :BeginOfNext and cp::EndOfPrevious, and
m Chapter 22 on Constraint Programming in the Language Reference.

324

Chapter 11. Scheduling Functions

cp::GroupOfPrevious

The function cp: :GroupOfPrevious refers to the group of the previous activity
in a sequence of activities. The group of an activity is specified in the group
definition attribute of the sequential resource to ensure the sequencing.

For a resource 7, an activity a, groups f and d, the function
cp: :GroupOfPrevious(r,a, f,d) returns

m d if a is absent,

m f if a is present and scheduled as the first activity on 7, and

m GroupO f(r,p) if a is present and not scheduled as the first activity
on v, and p is the previous activity of a scheduled on 7.

cp: :GroupOfPrevious(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
firstvalue, I (optional) an expression
absentValue I (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
firstValue
An optional expression that results in a group. The default value of
this expression is the first element of the group set of the sequential
resource.
absentValue

An optional expression that results in a group. The default value of
this expression is the first element of the group set of the sequential
resource.

Return value:

This function returns a group.
See also:

m The functions cp: :BeginOfPrevious and cp: :EndOfNext, and
m Chapter 22 on Constraint Programming in the Language Reference.

325

Chapter 11. Scheduling Functions

cp::LengthOfNext

The function cp: :LengthOfNext refers to the length of the next activity in a
sequence of activities. A length is an integer in the range
{0..card(problemscheduledomain) — 1}.

For a resource v, an activity a, lengths | and d, the function
cp: :LengthOfNext(+,a,l,d) returns

m d if a is absent,

m lif a is present and scheduled as the last activity on v, and

m n.length if a is present and not scheduled as the last activity on 7, and
n is the next activity of a scheduled on r.

cp: :LengthOfNext (

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
TastValue, I (optional) an expression
absentValue ! (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
lastValue
An optional expression that results in a length. The default value of
this expression is 0.
absentValue

An optional expression that results in a length. The default value of
this expression is 0.

Return value:

This function returns a length.
See also:

m The functions cp: :BeginOfNext and cp::EndOfPrevious, and
m Chapter 22 on Constraint Programming in the Language Reference.

326

Chapter 11. Scheduling Functions

cp::LengthOfPrevious

The function cp: :LengthOfPrevious refers to the length of the previous activity
in a sequence of activities. A size is an integer in the range
{0..card(problemscheduledomain) — 1}.

For a resource 7, an activity a, sizes f and d, the function
cp::LengthOfPrevious(r,a, f,d) returns

m d if a is absent,

m f if a is present and scheduled as the first activity on 7, and

m p.length if a is present and not scheduled as the first activity on r, and
p is the previous activity of a scheduled on 7.

cp: :LengthOfPrevious(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
firstvalue, I (optional) an expression
absentValue I (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
firstValue
An optional expression that results in a length. The default value of
this expression is 0.
absentValue

An optional expression that results in a length. The default value of
this expression is 0.

Return value:

This function returns a length.
See also:

m The functions cp: :BeginOfPrevious and cp: :EndOfNext, and
m Chapter 22 on Constraint Programming in the Language Reference.

327

Chapter 11. Scheduling Functions

cp::SizeOfNext

The function cp::SizeOfNext refers to the size of the next activity in a
sequence of activities. A size is an integer in the range
{0..card(problemscheduledomain) — 1}.

For a resource 7, an activity a, sizes | and d, the function
cp::SizeOfNext(r,a,l,d) returns

m d if a is absent,

m lif a is present and scheduled as the last activity on ¥, and

m n.sizeif a is present and not scheduled as the last activity on 7, and n
is the next activity of a scheduled on 7.

cp::SizeOfNext(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
TastValue, I (optional) an expression
absentValue ! (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
lastValue
An optional expression that results in a size. The default value of this
expression is 0.
absentValue

An optional expression that results in a size. The default value of this
expression is 0.

Return value:

This function returns a size.
See also:

m The functions cp: :BeginOfNext and cp::EndOfPrevious, and
m Chapter 22 on Constraint Programming in the Language Reference.

328

Chapter 11. Scheduling Functions

cp::SizeOfPrevious

The function cp::SizeOfPrevious refers to the size of the previous activity in a
sequence of activities. A size is an integer in the range
{0..card(problemscheduledomain) — 1}.

For a resource 7, an activity a, sizes f and d, the function
cp::SizeOfPrevious(v,a, f,d) returns

m d if a is absent,

m f if a is present and scheduled as the first activity on 7, and

m p.size if a is present and not scheduled as the first activity on 7, and p
is the previous activity of a scheduled on r.

cp::SizeOfPrevious(

sequentialResource, ! (input) an expression
scheduledActivity, I (input) an expression
firstValue, I (optional) an expression
absentValue ! (optional) an expression
)
Arguments:
sequentialResource
An expression that results in a sequential resource.
scheduledActivity
An expression that results in an activity.
firstValue
An optional expression that results in a size. The default of this
expression is 0.
absentValue

An optional expression that results in a size. The default of this
expression is 0.

Return value:

This function returns a size.
See also:

m The functions cp: :BeginOfPrevious and cp: :EndOfNext, and
m Chapter 22 on Constraint Programming in the Language Reference.

329

Chapter 11. Scheduling Functions

cp::Span

The function cp::Span(g,i,a;) returns 1 if activity g and activities a; are all
not present, or if the begin of present activity g is equal to the first present
activity a; and the end of activity g is equal to the end of the last present
activity a;. The function cp::Span(g,i,a;) is equivalent to

g.Present =0 < Vi:a;.Present=0

and
dila;.Present

g-Present =1 < {1 g.Begin = min;jj4, present ai.Begin
g-End = max;a, present ai.End

This function is typically used in scheduling problems to split an activity into
sub activities.

cp::Span(
globalActivity, ! (input) an expression
activityBinding, ! (input) an index domain
subActivity I (input) an expression
)
Arguments:
globalActivity

An expression resulting in an activity.

activityBinding
An index domain that specifies and possibly limits the scope of
indices. This argument follows the syntax of the index domain
argument of iterative operators.

subActivity
An expression resulting in an activity. The result is a vector with an
element for each possible value of the indices in index domain
activityBinding.

Return value:

This function returns 1 if the above condition is satisfied, 0 otherwise.
When the index domain i is empty this function will return an error.

See also:

The functions cp::Alternative and cp::Synchronize.

330

Chapter 11. Scheduling Functions

cp::Synchronize

The function cp::Synchronize(g,i,a;) returns 1 if activity g is not present, or
if all present activities a; match activity g. The function
cp::Synchronize(g,i,a;) is equivalent to

g-Begin = a;.Begin

g.Present = Vila;.Present: { g.End = a;.End

This function is typically used in scheduling problems to synchronize
activities.

cp::Synchronize(

globalActivity, ! (input) an expression
activityBinding, ! (input) an index domain
subActivity I (input) an expression
)
Arguments:
globalActivity
An expression resulting in an activity.
activityBinding
An index domain that specifies and possibly limits the scope of
indices. This argument follows the syntax of the index domain
argument of iterative operators.
subActivity

An expression resulting in an activity. The result is a vector with an
element for each possible value of the indices in index domain
activityBinding.

Return value:

This function returns 1 if the above condition is satisfied, 0 otherwise.
When the index domain activityBinding is empty this function will return
an error.

See also:

The functions cp::Alternative and cp::Span.

331

Chapter 12

The gGMP library

Through the GmP library you have direct access to mathematical program
instances generated by AIMMS, allowing you to implement advanced
algorithms in an efficient manner. The GMP routines can also be used for
nonlinear models, unless specified otherwise. All procedures and
functions in the GMmp library are part of the GMP namespace in AIMMS. This
namespace is subdivided into the following functional namespaces:

Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:
Procedures and functions in the GMP:

:Benders namespace
:Coefficient namespace
:Column namespace

:Event namespace
:Instance namespace
:Linearization namespace
:ProgressWindow namespace
:QuadraticCoefficient namespace
:Robust namespace

:Row namespace

:SoTution namespace
:Solver namespace
:SolverSession namespace
:Stochastic namespace
:Tuning namespace

Chapter 12. The G™mP library

12.1 GMP:Benders Procedures and Functions

AiMMSs supports the following procedures and functions for implementing an
automatic Benders’ decomposition algorithm:

GMP:
GMP:
GMP:
GMP:
GMP:

:Benders:
:Benders:
:Benders:
:Benders:
:Benders:

:AddFeasibilityCut
:AddOptimalityCut
:CreateMasterProblem
:CreateSubProblem
:UpdateSubProblem

333

Chapter 12. The G™mP library

GMP::Benders::AddFeasibilityCut

The procedure GMP: :Benders: :AddFeasibilityCut generates a feasibility cut for
a Benders’ master problem using the solution of a Benders’ subproblem (or
the corresponding feasibility problem). This procedure is typically used in a
Benders’ decomposition algorithm.

GMP: :Benders: :AddFeasibiTityCut(

GMP1, I (input) a generated mathematical program
GMP2, I (input) a generated mathematical program
solution, I (input) a solution
cutNo, I (input) a scalar reference
[tighten] I (optional, default 0) a scalar binary expression
)
Arguments:
GMP1

An element in the set Al1GeneratedVMathematicalPrograms representing
a Benders’ master problem.

GMP2
An element in the set Al1GeneratedVMathematicalPrograms representing
a Benders’ subproblem (or the corresponding feasibility problem).

solution
An integer scalar reference to a solution of GMP2.

cutNo
An integer scalar reference to a cut number.

tighten
A scalar binary value to indicate whether the feasibility cut should be
tightened. If the value is 1, tightening is attempted.

Return value:

The procedure returns 1 on success, or 0 otherwise.
Remarks:

m The GMPI should have been created using the function
GMP: :Benders: :CreateMasterProblem.

m The GMP2 should have been created using the function
GMP: :Benders: :CreateSubProblem or the function
GMP: :Instance::CreateFeasibility.

m If the GMP that was created by GMP: :Benders: :CreateSubProblem
represents the dual of the Benders’ subproblem then this GMP should
be used as argument GMP2. If it represents the primal of the Benders’
subproblem then first the feasibility problem should be created which
then should be used as argument GMP2.

334

Chapter 12. The G™mP library 335

m The solution of the Benders’ subproblem or feasibility problem
(represented by GMP?2) is used to generate an optimality cut for the
Benders’ master problem (represented by GMPI).

m A feasibility cut a”x > b can be tightened to 17x > 1 if x is a vector of
binary variables and a; = b > 0 for all 1.

Examples:

In the examples below we assume that the Benders’ subproblem is
infeasible. The way GMP: :Benders: :AddFeasibilityCut is called depends on
whether the primal or dual of the Benders’ subproblem was generated. In
the first example we use the dual. In that case an unbounded extreme ray
is used to create a feasibility cut. See Section 21.3 of the Language
Reference.

I Initialization.
myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,
'BendersMasterProblem’, 0, 0);

gmpS := CMP::Benders::CreateSubProblem(myGMP, masterCMP, ’BendersSubProblem’,
useDual : 1, normalizationType : 0);

NumberOfFeasibilityCuts := 1;

! Switch on solver option for calculating unbounded extreme ray.
GMP: :Instance::SetOptionvalue(gmpS, ’unbounded ray’, 1);

I First iteration of Benders’ decomposition algorithm (simplified).
GMP: :Instance::Solve(gmpM);

GMP: :Benders: :UpdateSubProblem(gmpS, gmpM, 1, round : 1);
GMP: :Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Unbounded’) then
GMP: :Benders: :AddFeasibilityCut(gmpM, gmpS, 1, NumberOfFeasibilityCuts);
NumberOfFeasibilityCuts += 1;

endif;

In the second example we use the primal of the Benders’ subproblem. If
that problem turns out to be infeasible then we solve a feasibility problem
to get a solution of minimum infeasibility (according to some
measurement). The shadow prices of the constraints and the reduced
costs of the variables in that solution are used to create a feasibility cut.
See Section 21.5.1 of the Language Reference.

I Initialization.
myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,
'BendersMasterProblem’, 0, 0);

gmpS := CMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

Chapter 12. The G™mP library

useDual : 0, normalizationType : 0);
NumberOfFeasibilityCuts := 1;

! First iteration of Benders’ decomposition algorithm (simplified).
GMP: :Instance::Solve(gmpM);

GMP: :Benders: :UpdateSubProblem(gmpS, gmpM, 1, round : 1);
GMP: :Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;
if (ProgramStatus = 'Infeasible’) then
gmpF := GMP::Instance::CreateFeasibility(gmpS, "FeasProb", useMinMax : 1);

GMP: :Instance::Solve(gmpF);

GMP: :Benders: :AddFeasibilityCut(gmpM, gmpF, 1, NumberOfFeasibilityCuts);
NumberOfFeasibilityCuts += 1;
endif;

See also:

The routines GMP: :Benders: :CreateMasterProblem,

GMP: :Benders: :CreateSubProbTem, GMP: :Benders: :AddOptimalityCut,
GMP::Instance::CreateFeasibility,

GMP::SolverSession: :AddBendersFeasibilityCut and
GMP::SolverSession: :AddBendersOptimalityCut.

336

Chapter 12. The G™mP library

GMP::Benders::AddOptimalityCut

The procedure GMP: :Benders: :AddOptimalityCut generates an optimality cut
for a Benders’ master problem using the (dual) solution of a Benders’
subproblem. This procedure is typically used in a Benders’ decomposition
algorithm.

GMP: :Benders: :AddOptimalityCut(

GMP1, I (input) a generated mathematical program
GMP2, I (input) a generated mathematical program
solution, I (input) a solution
cutNo I (input) a scalar reference
)
Arguments:
GMP1

An element in the set Al1GeneratedVMathematicalPrograms representing
a Benders’ master problem.

GMP2
An element in the set Al1GeneratedVMathematicalPrograms representing
a Benders’ subproblem.

solution
An integer scalar reference to a solution of GMP2.

cutNo
An integer scalar reference to a cut number.

Return value:

The procedure returns 1 on success, or 0 otherwise.
Remarks:

m The GMPI should have been created using the function
GMP: :Benders: :CreateMasterProblem.

m The GMP2 should have been created using the function
GMP: :Benders: :CreateSubProblem.

m The solution of the Benders’ subproblem (represented by GMP2) is used
to generate an optimality cut for the Benders’ master problem
(represented by GMPI). More precise, the shadow prices of the
constraints and the reduced costs of the variables in the Benders’
subproblem are used.

Examples:

In the example below we assume that the Benders’ subproblem is feasible.
Its program status is stored in the element parameter ProgramStatus with

337

Chapter 12. The G™mP library

range Al1SolutionStates. Note that the subproblem is updated before it is
solved.

I Initialization.
myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,
'BendersMasterProblem’, 0, 0);

gmpS := CMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,
0, 0);

NumberOfOptimalityCuts := 1;

! First iteration of Benders’ decomposition algorithm (simplified).
GMP: :Instance::Solve(gmpM);

GMP: :Benders: :UpdateSubProblem(gmpS, gmpM, 1, round : 1);
GMP: :Instance::Solve(gmpS);

ProgramStatus := CMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Optimal’) then
GMP: :Benders: :AddOptimalityCut(gmpM, gmpS, 1, NumberOfOptimalityCuts);
NumberOfOptimalityCuts += 1;

endif;

See also:

The routines GMP: :Benders: :CreateMasterProblem,

GMP::Benders: :CreateSubProblem, GMP: :Benders: :AddFeasibilityCut,
GMP::SolverSession: :AddBendersFeasibilityCut and

GMP: :SolverSession: :AddBendersOptimalityCut.

338

Chapter 12. The G™mP library

GMP::Benders::CreateMasterProblem

The function GMP: :Benders: :CreateMasterProblem creates a Benders’ master
problem for a generated mathematical program. This master problem is
typically used in a Benders’ decomposition algorithm.

GMP: :Benders: :CreateMasterProblem(
GMP, I (input) a generated mathematical program
VariabTes, I (input) a set of variables
name, I (input) a string expression
!
!

[feasibilityOnly], (optional, default 0) a scalar value
[addConstraints] (optional, default 0) a scalar value
)
Arguments:
GMP
An element in the set Al1GeneratedMathematicalPrograms.
Variables
Variables
A subset of Al1Variables.
name
A string that holds the name for the Benders’ master problem.
feasibilityOnly
A scalar binary value to indicate whether this function should
(temporary) reformulate the original problem such that the Benders’
subproblem becomes a pure feasibility problem.
addConstraints

A scalar binary value to indicate whether this function should try to
automatically add tightening constraints to the Benders’ master
problem.

Return value:

A new element in the set Al1GeneratedMathematicalPrograms with the name
as specified by the name argument.

Remarks:

m A call to GMP: :Benders: :CreateMasterProblem is typically followed by a
call to the function GMP: :Benders: :CreateSubProbTem.

m The GMP must have type LP, MIP or RMIP.

m This function cannot be used if the GMP is created by the function
GMP: :Instance::GenerateStochasticProgram.

m The Variables argument specifies the variables that become part of the
Benders’ master problem. All other variables will become part of the

339

Chapter 12. The G™mP library

Benders’ subproblem. The objective variable should be part of the set of
master problem variables; if the objective variable is not included in the
set Variables then this procedure will automatically add it.

m If the GMP contains integer variables then they all must be included in
the set Variables.

m The feasibilityOnly argument is discussed in more detail in
Section 21.5.2 of the Language Reference.

m The addConstraints argument is discussed in more detail in
Section 21.5.5 of the Language Reference.

Examples:

If the math program has type MIP then often the set of master problem
variables equals the set Al1IntegerVariables.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,
'BendersMasterProblem’, 0, 0);

See also:

The routines CMP: :Benders: :CreateSubProblem,
GMP: :Benders: :AddFeasibilityCut and GMP::Benders::AddOptimalityCut.

340

Chapter 12. The G™mP library

GMP::Benders::CreateSubProblem

The function GMP: :Benders: :CreateSubProblem creates a Benders’ subproblem
for a generated mathematical program. This subproblem is typically used in a
Benders’ decomposition algorithm.

GMP: :Benders: :CreateSubProblem(

GMP1, I (input) a generated mathematical program
GMP2, I (input) a generated mathematical program
name, I (input) a string expression
[useDual], ! (optional, default 0) a scalar value
[normalizationType] ! (optional, default 0) a scalar value
)
Arguments:
GMPI
An element in the set Al1GeneratedMathematicalPrograms.
GMP?2
An element in the set Al1GeneratedMathematicalPrograms representing
a Benders’ master problem.
name
A string that holds the name for the Benders’ subproblem.
useDual
A scalar binary value to indicate whether this function should create
the primal (value 0) or dual (value 1) of the subproblem.
normalizationType

A scalar value to indicate which kind of normalization this function
should use. Value 0 implies that the standard normalization is used.
Value 1 implies that the normalization condition introduced by
Fischetti, Salvagnin and Zanette (2010) is used. The normalization
condition is added as a constraint to the subproblem.

Return value:

A new element in the set Al1GeneratedMathematicalPrograms with the name
as specified by the name argument.

Remarks:

m The GMPI must have type LP, MIP or RMIP.

m The GMP2 should have been created using the function
GMP: :Benders: :CreateMasterProblem. Note that the call to that function
specifies how the variables (and constraints) are divided among the
master and subproblem.

m The useDual argument is discussed in more detail in Section 21.5.1 of
the Language Reference.

341

Chapter 12. The G™mP library

m The normalizationType argument is discussed in more detail in
Section 21.5.3 of the Language Reference.

Examples:

If the math program has type MIP then often the set of master problem
variables equals the set Al1IntegerVariables. All other variables
automatically become part of the subproblem.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,
"BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’'BendersSubProblem’,
0, 0);

See also:

The routines GMP: :Benders: :CreateMasterProblem,
GMP: :Benders: :AddFeasibilityCut, GMP: :Benders: :AddOptimalityCut,
GMP: :Benders: :UpdateSubProbTem and GMP::Instance::CreateFeasibility.

342

Chapter 12. The G™mP library

GMP::Benders::UpdateSubProblem

The procedure GMP: :Benders: :UpdateSubProblem updates a Benders’
subproblem (or the corresponding feasibility problem) using the solution of a
Benders’ master problem. This procedure is typically used in a Benders’
decomposition algorithm.

GMP: :Benders: :UpdateSubProblem(

GMP1, I (input) a generated mathematical program
GMP2, I (input) a generated mathematical program
solution, I (input) a solution
[round] I (optional, default 0) a scalar value
)
Arguments:
GMP1

An element in the set Al1GeneratedVMathematicalPrograms representing
a Benders’ subproblem.

GMP2
An element in the set Al1GeneratedVMathematicalPrograms representing
a Benders’ master problem.

solution
An integer scalar reference to a solution of GMP2.

round
A binary scalar indicating whether the level values of the integer
variables (if any) should be rounded to the nearest integer value in
the solution used to update the subproblem.

Return value:

The procedure returns 1 on success, or 0 otherwise.
Remarks:

m The GMPI should have been created using the function
GMP: :Benders: :CreateSubProblem or the function
GMP: :Instance::CreateFeasibility.

m The GMP2 should have been created using the function
GMP: :Benders: :CreateMasterProblem.

m The solution of the Benders’ master problem (represented by GMP2) is
used to update the Benders’ subproblem (represented by GMPI1). That
is, the right-hand-side values of the constraints in the subproblem are
reevaluated using the level values of the variables in the solution of the
Benders’ master problem.

343

Chapter 12. The G™mP library

Examples:

Before solving the subproblem it should be updated using a solution of
the master problem. In the example below we use the solution at position
1 in the solution repository of the GMP belonging to the master problem.

myGMP := GMP::Instance::Generated(MP);

gmpM := CMP::Benders::CreateMasterProblem(myGMP, All1IntegerVariables,
'BendersMasterProblem’, 0, 0);

gmpS := CMP::Benders::CreateSubProblem(myGMP, masterCGMP, ’BendersSubProblem’,
0, 0);

GMP: :Instance::Solve(gmpM);
GMP: :Benders: :UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP: :Instance::Solve(gmpS);

See also:

The functions CMP: :Benders: :CreateMasterProblem,
GMP: :Benders: :CreateSubProblem and CMP: :Instance: :CreateFeasibility.

344

Chapter 12. The G™mP library

12.2 GMP::Coefficient Procedures and Functions

AIMMS supports the following procedures and functions for modifying the
coefficient matrix associated with a generated mathematical program

instance:

m GMP::Coefficient:
GMP: :Coefficient:
GMP: :Coefficient:
GMP: :Coefficient:
GMP: :Coefficient:

:Get
:GetQuadratic
:Set
:SetMulti
:SetQuadratic

345

Chapter 12. The G™mP library

GMP::Coefficient::Get

The function GMP: :Coefficient::Get retrieves a (linear) coefficient in a
generated mathematical program.

GMP: :Coefficient::Get(

GMP, I (input) a generated mathematical program
row, I (input) a scalar reference or row number
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

row
A scalar reference to an existing row in the model or the number of
that row in the range {0..m — 1} where m is the number of rows in
the matrix.

column
A scalar reference to an existing column in the model or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:

The value of the specified coefficient in the generated mathematical
program.

Remarks:

In case the generated mathematical program is nonlinear, this function
will return 0 if the column is part of a nonlinear term in the row. However,
if the row is pure quadratic then this function will return the linear
coefficient value for a quadratic column.

Examples:

Consider a GMP containing a constraint el with definition

2*x1 + 3*x2 + x2"3 = 0. Then GMP: :Coefficient::Get(CMP,el,x1) will
return 2. Because column x2 is part of the nonlinear term x2"3,
GMP::Coefficient::Get(GMP,el,x2) will return O.

See also:

The routines CMP: : Coefficient::Set and CMP: :QuadraticCoefficient::Cet.

346

Chapter 12. The G™mP library

GMP::Coefficient::GetQuadratic

The function GMP: :Coefficient::CGetQuadratic retrieves the value of a
quadratic product between two columns in a generated mathematical
program.

GMP: :Coefficient: :GetQuadratic(

GMP, I (input) a generated mathematical program
columnl, I (input) a scalar reference or column number
column2 I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

columnl,column?2
A scalar reference to an existing column in the model or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:

The value of the specified quadratic term in the generated mathematical
program.

Remarks:

m If columnl equals columnZ then AiMmMs multiplies the quadratic
coefficient by 2 before it is returned by this function.

m This function operates on the objective. To get a quadratic coefficient in
a row the function GMP: :QuadraticCoefficient::Get should be used.

See also:

The routines GMP: : Coefficient::SetQuadratic and
CMP: :QuadraticCoefficient: :Get.

347

Chapter 12. The G™mP library

GMP::Coefficient::Set

The procedure GMP: : Coefficient::Set sets the value of a (linear) coefficient in
a generated mathematical program.

GMP: :Coefficient::Set(

GMP, I (input) a generated mathematical program
row, I (input) a scalar reference or row number
column, I (input) a scalar reference or column number
value I (input) a scalar numerical value
)
Arguments:
GMP

An element in Al1CeneratedMathematicalPrograms.

row
A scalar reference to an existing row in the model or the number of
that row in the range {0..m — 1} where m is the number of rows in
the matrix.

column
A scalar reference to an existing column in the model or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

value
A scalar numerical value indicating the value for the coefficient.

Return value:

The procedure returns 1 on success, or 0 otherwise.
Remarks:

m Use GMP::Coefficient::SetMulti if many coefficients have to be set
because that will be more efficient.

m This procedure cannot be used if the column refers to the objective
variable.

m In case the generated mathematical program is nonlinear, this
procedure will fail if the column is part of a nonlinear term in the row.
However, if the row is pure quadratic, then this procedure can be used
to set the linear coefficient value for a quadratic column.

m GMP procedures operate on a generated mathematical program in which
all variables are moved to the left-hand-side of each constraint. This can
have an influence on the sign of the coeffients as demonstrated in the
example below.

348

Chapter 12. The G™mP library 349

Examples:

Assume that we have the following variable and constraint declarations (in
aim format):.

Variable vy;
Variable z;
Variable x1;
Constraint el {
Definition : x1 - 2%y - 3%z = 0;
}
Variable x2 {
Definition : 2%y + 3%z;

}

To change the coefficient of variable y in constraint el to 4 we use:

GMP: :Coefficient::Set(myGMP, el, vy, 4);

This results in the row x1 + 4%y - 3*z = 0.

The definition of variable x2 is generated as the row x2 - 2*y - 3%z = 0 by
AimmMs. Therefore, using

GMP: :Coefficient::Set(myGMP, x2_definition, y, -4);
will result in the row x2 - 4%y - 3%z = 0.
See also:

The routines GMP: :Coefficient::Get, GMP: :Coefficient::SetMulti and
GMP: :QuadraticCoefficient::Set.

Chapter 12. The G™mP library

GMP::Coefficient::SetMulti

The procedure GMP: : Coefficient::SetMulti sets the value of a range of (linear)
coefficients for a group of columns and rows, belonging to a variable and
constraint, in a generated mathematical program.

GMP: :Coefficient::SetMulti(
GMP, I (input) a generated mathematical program
binding, I (input) an index binding

row, I (input) a constraint expression

column, I (input) a variable expression

value I (input) a numerical expression

)

Arguments:

GMP
An element in Al1CeneratedMathematicalPrograms.

binding
An index binding that specifies and possibly limits the scope of
indices.

row
A constraint that, combined with the binding domain, specifies the
TOWS.

column
A variable that, combined with the binding domain, specifies the
columns.

value
The new coefficient for each combination of row and column, defined
over the binding domain binding.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

m This procedure cannot be used if the column refers to the objective
variable.

m In case the generated mathematical program is nonlinear, this
procedure will fail if one the columns is part of a nonlinear term in one
of the rows. However, if the row is pure quadratic, then this procedure
can be used to set the linear coefficient value for a quadratic column.

m GMP procedures operate on a generated mathematical program in which
all variables are moved to the left-hand-side of each constraint. This can
have an influence on the sign of the coeffients as demonstrated in the
example of procedure GMP: : Coefficient::Set.

350

Chapter 12. The G™mP library

Examples:

To set the coefficients of variable x(j) in constraint c(i) to coef(i,j) we
can use:

for (i,j) do
GMP::Column::Set(myGMP, c(i), x(j), coef(i,j));
endfor;

It is more efficient to use:

GMP: :Coefficient::SetMulti(myCMP, (i,3), c(i), x(3), coef(i,j));

If we only want to set the coefficients of those x(j) for which dom(j) is
unequal to zero, then we use:

GMP: :Coefficient::SetMulti(myCMP, (i,3) | dom(3), c(i), x(3), coef(i,j));
See also:

The routines GMP: : Coefficient::Get, GMP: :Coefficient::Set and
GMP: :QuadraticCoefficient::Set.

351

Chapter 12. The G™mP library

GMP::Coefficient::SetQuadratic

The procedure GMP: : Coefficient::SetQuadratic sets the value of a quadratic
product between two columns in a generated mathematical program.

GMP: :Coefficient::SetQuadratic(

GMP, I (input) a generated mathematical program
columnl, I (input) a scalar value or column number
column2, I (input) a scalar value or column number
value | (input) a scalar numerical value
)

Arguments:

GMP
An element in Al1CeneratedMathematicalPrograms.

columnl,Column2
A scalar reference to an existing column in the model or the number

of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

value
A scalar numerical value indicating the value for the quadratic term.

Return value:
The procedure returns 1 on success, or 0 otherwise.

Remarks:

m If columnl equals columnZ then AiMmMs multiplies the quadratic
coefficient by 0.5 before it is stored (and passed to the solver).

m This procedure operates on the objective. To set a quadratic coefficient
in a row the procedure GMP: :QuadraticCoefficient::Set should be used.

See also:

The routines GMP: : Coefficient::GetQuadratic and
CMP: :QuadraticCoefficient::Set.

352

Chapter 12. The GMP library 353

12.3 GMP::Column Procedures and Functions

AIMMS supports the following procedures and functions for creating and
managing matrix columns associated with a generated mathematical program
instance:

GMP: :Column: :Add

GMP::Column: :Delete
GMP::Column: :Freeze
GMP::Column: :FreezeMulti

GMP: :Column: :GetLowerBound

GMP: :Column: :GetName

GMP: :Column: :GetScale

GMP: :Column: :GetStatus

GMP: :Column: :GetType

GMP: :Column: :GetUpperBound

GMP: :Column: :SetAsMultiObjective
GMP: :Column: :SetAsObjective
GMP: :Column: :SetDecomposition
GMP: :Column: : SetDecompositionMulti
GMP: :Column: :SetLowerBound

GMP: :Column: :SetLowerBoundMulti
GMP: :Column: :SetType

GMP: :Column: : SetUpperBound

GMP: :Column: :SetUpperBoundMulti
GMP::Column: :Unfreeze

GMP: :Column: :UnfreezeMulti

Chapter 12. The G™mP library

GMP::Column::Add

The procedure GMP: :CoTumn: :Add adds a column to the matrix of a generated
mathematical program.

GMP: :CoTumn: :Add(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference
)
Arguments:
GMP

An element in Al1GeneratedMathematicalPrograms.

column
A scalar reference to a column.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

Coefficients for this column can be added to the matrix by using the
procedure GMP: :Coefficient::Set. After calling GMP: :Column: :Add the type
and the lower and upper bound of the column are set according to the
definition of the corresponding symbolic variable. By using the
procedures GMP: :Column: :SetType, GMP: :CoTumn: : SetLowerBound and

GMP: :Column: : SetUpperBound the column type and the lower and upper
bound can be changed.

See also:

The routines GMP: : Instance: :Generate, GMP: :Coefficient: :Set,
GMP: :Column::Delete, GMP: :Column: :SetType, GMP: :CoTumn: : SetLowerBound
and GMP: :Column: :SetUpperBound.

354

Chapter 12. The G™mP library

GMP::Column::Delete

The procedure GMP: :Column: :Delete marks a column in the matrix of a
generated mathematical program as deleted.

GMP: :CoTumn: :Delete(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:
The procedure returns 1 on success, or 0 otherwise.
Remarks:

m The column will not be printed in the constraint listing, nor be visible in
the math program inspector and it will be removed from any solver
maintained copies.

m Use GMP::Column: :Add to undo this action.

See also:

The routines GMP: :Instance: :Generate and GMP::CoTumn: :Add.

355

Chapter 12. The G™mP library

GMP::Column::Freeze

The procedure GMP: :Column: :Freeze freezes a column in the matrix of a
generated mathematical program at the given value.

GMP: :CoTumn: :Freeze(

GMP, I (input) a generated mathematical program
column, I (input) a scalar reference or column number
value I (input) a numerical expression
)
Arguments:
GMP

An element in Al1CeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

value
The new value that should be used to freeze the column value.

Return value:

The procedure returns 1 on success, and 0 otherwise.
Remarks:

m Use GMP::Column: :FreezeMulti if many columns corresponding to some
variable have to be frozen, because that will be more efficient.

m The column remains visible in the constraint listing and math program
inspector. In addition, it will be retained in solver maintained copies of
the generated math program.

m Use CMP::Column: :Unfreeze to undo the freezing.

m During a call to function GMP: :Column: : Freeze AIMMS stores the upper
and lower bound of the column before the function was called. This
information is used when function GMP: :Column: :Unfreeze is called
thereafter. This information is not copied by the function
GMP: :Instance: :Copy.

See also:

The routines GMP: :Instance: :Generate, GMP::Column: :FreezeMulti,
GMP::Column: :Unfreeze and GMP::Instance: :Copy.

356

Chapter 12. The G™mP library

GMP::Column::FreezeMulti

The procedure GMP::Column: :FreezeMulti freezes a group of columns,
belonging to a variable, in the matrix of a generated mathematical program.

GMP: :CoTumn: :FreezeMulti(

GMP, I (input) a generated mathematical program
binding, I (input) an index binding
column, I (input) a variable expression
value I (input) a numerical expression
)
Arguments:

GMP
An element in Al1GeneratedMathematicalPrograms.

binding
An index binding that specifies and possibly limits the scope of
indices.

column
A variable that, combined with the binding domain, specifies the
columns.

value

The new value for each column, defined over the binding domain
binding, that should be used to freeze the column value.

Return value:

The procedure returns 1 on success, and 0 otherwise.
Remarks:

m The columns remain visible in the constraint listing and math program
inspector. In addition, it will be retained in solver maintained copies of
the generated math program.

m Use GMP::CoTumn: :UnfreezeMulti to undo the freezing.

m During a call to function GMP: :CoTumn: :FreezeMulti AIMMS stores the
upper and lower bound of the column before the function was called.
This information is used when function GMP: :Column: :UnfreezeMulti is
called thereafter. This information is not copied by the function
GMP: :Instance: :Copy.

Examples:
To freeze variable x(i) to demand(i) we can use:
for (i) do

GMP::Column: :Freeze(myGMP, x(i), demand(i));
endfor;

357

Chapter 12. The G™mP library

It is more efficient to use:

GMP::Column: :FreezeMulti(myGMP, i, x(i), demand(i));

If we only want to freeze those x(i) for which dom(i) is unequal to zero,
then we use:

GMP::Column: :FreezeMulti(myGMP, i | dom(i), x(i), demand(i));
See also:

The routines GMP: :Instance: :Generate, GMP: :Column: :Freeze,
GMP::Column: :UnfreezeMulti and GMP::Instance: :Copy.

358

Chapter 12. The G™mP library

GMP::Column::GetLowerBound

The function GMP: :Column: :GetLowerBound returns the lower bound of a
column in the generated mathematical program.

GMP: :CoTumn: : GetLowerBound(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:
The lower bound value for the specified column.
Remarks:

m If the column has a unit then the scaled lower bound is returned
(without unit).

m This function can be used to retrieve the lower bound after presolving
in case the GMP was created by GMP: :Instance: :CreatePresolved, even if
the column was deleted.

Examples:

Assume that 'x1’ is a variable in mathematical program 'MP’ with a unit as
defined by:

Quantity SI_Mass {

BaseUnit t kg;
Conversions : ton -> kg : # -> # * 1000;
}
Parameter min_wght {
Unit : ton;
Initialvalue : 20;
}
Variable x1 {
Range : [min_wght, inf);
Unit : ton;
}

If we want to multiply the lower bound by 1.5 and assign it as the new
value by using function GMP: : CoTumn: :SetLowerBound we can use

359

Chapter 12. The G™mP library

Tbl := 1.5 * (GMP::CoTlumn::GetLowerBound(’'MP’, x1)) [ton];
GMP: :Column: :SetLowerBound('MP’, x1, Thl);
if ’Ib1’ is a parameter with unit [ton], or we can use
Tb2 := 1.5 * GMP::Column::GetLowerBound('MP’, x1);
GMP: :Column: :SetLowerBound(’'MP’, x1, Tb2 * GMP::Column::GetScale('MP’, x1));

if 'Ib2’ is a parameter without a unit.

See also:

The routines GMP: :Instance: :Generate, GMP: :Column: : SetLowerBound,
GMP: :Column: :GetUpperBound, GMP: : Column: :GetScale and
GMP::Instance::CreatePresolved.

360

Chapter 12. The G™mP library

GMP::Column::GetName

The function GMP: :Column: :GetName returns the name of a column in the
matrix of a generated mathematical program.

GMP: :CoTumn: : GetName(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in Al1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:
The function returns a string.

See also:

The routines GMP: :Instance: :Generate and GMP: :row: :GetName.

361

Chapter 12. The G™mP library

GMP::Column::GetScale

The function GMP: :Column: :GetScale returns the scaling factor of a column in
the generated mathematical program.

GMP: :CoTumn: :GetScale(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in Al1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:
The scaling factor for the specified column.

See also:

The routines GMP: :Instance: :Generate and GMP: :Row: :GetScale.

362

Chapter 12. The G™mP library 363

GMP::Column::GetStatus

The function GMP: :Column: :GetStatus returns the status of a column in the
matrix of a generated mathematical program.

GMP: :CoTumn: :GetStatus(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:

An element in the predefined set A1TRowColumnStatuses. The set
ATTRowCoTumnStatuses contains the following elements:

m Active,

m Deactivated,

m Deleted,

m NotGenerated,
m PresolveDeleted.

Remarks:

m This function will return 'PresolveDeleted’ only if the generated
mathematical program has been created with
GMP::Instance::CreatePresolved. Status 'PresolveDeleted’ means that the
column was generated for the original generated mathematical program
but deleted when the presolved mathematical program was created.

m Status ’Deactivated’ is not possible for columns.

See also:

The routines GMP: :Instance: :Generate and GMP: :Instance::CreatePresolved.

Chapter 12. The G™mP library

GMP::Column::GetType

The function GMP: :CoTumn: :GetType returns the type of a column in the matrix
of a generated mathematical program.

GMP: :CoTumn: :GetType(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in Al1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:
An element in the predefined set AT1CoTumnTypes.
See also:

The routines GMP: :Instance: :Generate and GMP::Column: :SetType.

364

Chapter 12. The G™mP library

GMP::Column::GetUpperBound

The function GMP: :CoTumn: :GetUpperBound returns the upper bound of a
column in the generated mathematical program.

GMP: :CoTumn: :GetUpperBound(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:
The upper bound value for the specified column.

Remarks:

m If the column has a unit then the scaled upper bound is returned
(without unit).

m This function can be used to retrieve the upper bound after presolving
in case the GMP was created by GMP: :Instance: :CreatePresolved, even if
the column was deleted.

Examples:

Assume that 'x1’ is a variable in mathematical program 'MP’ with a unit as
defined by:

Quantity SI_Mass {

BaseUnit N H
Conversions : ton -> kg : # -> # * 1000;
}
Parameter max_wght {
Unit : ton;
Initialvalue : 20;
}
Variable x1 {
Range : [0, max_wght];
Unit : ton;
}

If we want to multiply the upper bound by 1.5 and assign it as the new
value by using function GMP: : Column: : SetUpperBound we can use

365

Chapter 12. The G™mP library

ubl := 1.5 * (GMP::CoTumn::GetUpperBound('MP’, x1)) [ton];

GMP: :Column: : SetUpperBound('MP’, x1, ubl);

if 'ub1’ is a parameter with unit [ton], or we can use
ub2 := 1.5 * GMP::Column::GetUpperBound('MP’, x1);

GMP: :Column: : SetUpperBound('MP’, x1, ub2 * GMP::Column::GetScale('MP’, x1));
if 'ub?2’ is a parameter without a unit.

See also:

The routines CMP: :Instance: :Generate, GMP: :CoTumn: : SetUpperBound,
GMP: :Column: :GetLowerBound, GMP: : CoTumn: :GetScale and
GMP::Instance::CreatePresolved.

366

Chapter 12. The G™mP library

GMP::Column::SetAsMultiObjective

The procedure GMP: :CoTumn: :SetAsMultiObjective sets a column as one of the
multi-objectives of a generated mathematical program, thereby creating a
multi-objective optimization problem.

GMP: :CoTumn: :SetAsMuTtiObjective(

GMP, (input) a generated mathematical program
column, (input) a scalar reference or column number
priority, (input) a numerical expression

1
|
|
weight, I (input) a numerical expression
|
|

[abstol], (input/optional) a numerical expression
[reltol] (input/optional) a numerical expression
)

Arguments:

GMP
An element in Al1CeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

priority
A scalar value specifying the priority of the objective. An objective
with the highest priority is considered first.

weight
A scalar value specifying the weight of the objective. It defines the
weight by which the objective coefficients are multiplied when
forming a blended objective, i.e., if multiple objectives have the same
priority.

abstol
A scalar value specifying the absolute tolerance by which a solution
may deviate from the optimal value of the objective of the previous
optimization problem. The default value is 0.0.

reltol
A scalar value specifying the relative tolerance by which a solution
may deviate from the optimal value of the objective of the previous
optimization problem. The default value is 0.0.

Return value:

The procedure returns 1 on success, and 0 otherwise.

367

Chapter 12. The G™mP library 368

Remarks:

m The column should be linear and have at exactly one coefficient in the
matrix.

m The column should be free, i.e., not have a lower or upper bound.

m If GMP: :Column::SetAsMultiObjective is called twice for the same column
then only the information from the second call is used (and the
information from the first call is ignored).

m Use the procedure GMP: :Instance: :DeleteMultiObjectives to delete all
multi-objectives.

m Multi-objective optimization is only supported by CPLEX 12.9 or higher,
and GUROBI 8.0 or higher.

m The meaning of the relaxation of the objective, which is controlled by
the abstol and reltol arguments, depends on whether the multi-objective
problem is an LP or MIP. See the Multi-Objective Optimization section in
the CpLEX Help or the GUROBI Help for more information.

Examples:
In the example below two multi-objectives are specified::
myGMP := GMP::Instance::Generate(MP);

GMP: :Column: :SetAsMultiObjective(myGMP, TotalDist, 2,
GMP: :Column: :SetAsMultiObjective(myGMP, TotalTime, 1,

GMP: :Instance::Solve(myGMP);
We can now switch the priorities of the two objectives by adding:

GMP: :Column: :SetAsMultiObjective(myGMP, TotalDist, 1, 1.0, 0, 0.1);
GMP: :Column: :SetAsMultiObjective(myGMP, TotalTime, 2, 1.0, 0, 0.0);

GMP: :Instance::Solve(myGMP);
See also:

The procedure GMP: :Instance: :DeleteMultiObjectives.

Chapter 12. The G™mP library

GMP::Column::SetAsObjective

The procedure GMP: :Column::SetAsObjective sets a column as the new
objective of a generated mathematical program.

GMP: :CoTumn: :SetAsObjective(

GMP, I (input) a generated mathematical program
column I (input) a scalar reference or column number
)
Arguments:
GMP

An element in AT1GeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

Return value:

The procedure returns 1 on success, and 0 otherwise.
Remarks:

m The column should be linear and have at least one coefficient in the
matrix.

m The column should be free, i.e., not have a lower or upper bound.

m After a call to GMP: :Column: :SetAsObjective the old objective column will
be treated as a normal column.

See also:

The routines GMP: :CoTlumn: :Add and GMP: :Instance::CreateDual.

369

Chapter 12. The G™mP library

GMP::Column::SetDecomposition

The procedure GMP: :Column: : SetDecomposition can be used to specify a
decomposition to be used by a solver. It changes the decomposition value of
a single column in the generated mathematical program.

This procedure can be used to specify a decomposition for the Benders
algorithm in CPLEX by assigning the columns to the master problem or a
subproblem. It can also be used to specify a decompostion for ODH-CPLEX.
And it can be used to specify a partition for GUROBI to be used by its
partition heuristic.

GMP: :CoTumn: :SetDecomposition(

GMP, I (input) a generated mathematical program
column, I (input) a scalar reference or column number
value I (input) a numerical expression
)
Arguments:
GMP

An element in Al1CeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

value
The decomposition value assigned to the column.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

m Use Column: :SetDecompositionMulti if the decomposition value of many
columns corresponding to some variable have to be set, because that
will be more efficient.

m This procedure can be used to specify the decomposition in the Benders
algorithm of CpLEX 12.7 or higher. See the CPLEX option Benders
strategy for more information.

m For CPLEX, use a value of 0 to assign a column to the master problem,
and a value between 1 and N to assign a column to one of the N
subproblems (N can be 1 if you only want to use one subproblem). A
value of -1 indicates that the column is not assigned to the master
problem or a subproblem.

m This procedure can be used to specify model structure or a
decomposition used by ODH-CPLEX.

370

Chapter 12. The G™mP library

m For ODH-CPLEX, use a value between 1 and N to assign a column to one
of the N subproblems. A value of 0 or lower indicates that the column
is not assigned to any subproblem.

m This procedure can be used to specify a partition used by the partition
heuristic of GUROBI 8.0 or higher. See the GUROBI option Partition
heuristic for more information.

m For GUROBI, use a positive value to indicate that the column should be
included when the correspondingly numbered sub-MIP is solved, a value
of 0 to indicate that the column should be included in every sub-MIP,
and a value of -1 to indicate that the column should not be included in
any sub-MIP. (Variables that are not included in the sub-MIP are fixed to
their values in the current incumbent solution.)

m This procedure is not used by the Automatic Benders Decomposition
module in AIMMS.

Examples:

The first example shows how to specify a decomposition for the Benders
algorithm in CPLEX. The integer variable IntVar is assigned to the master
problem while the continuous variable ContVar is assigned to the
subproblem.

myGMP := GMP::Instance::Generate(MP);

! Switch on CPLEX option for using Benders strategy with decomposition specified by user.
GMP: :Instance::SetOptionvalue(myGMP, ’benders strategy’, 1);

for (i) do
GMP: :Column: :SetDecomposition(myGMP, IntVar(i), 0);
endfor;

for (j) do
GMP: :Column: : SetDecomposition(myGMP, ContVar(j), 1);
endfor;
GMP: :Instance::Solve(myGMP);
The second example shows how to specify model structure used by

ODH-CPLEX. All columns X(i,j) and Y(i,j,k) with the same ’i’ are
assigned to the same subproblem.

myGMP := GMP::Instance::Generate(MP);

for (i,j) do
GMP: :Column: : SetDecomposition(myGMP, X(i,j), Ord(i));
endfor;

for (i,j,k) do
GMP: :Column: : SetDecomposition(myGMP, Y(i,j,k), Ord(i));
endfor;

GMP: :Instance::Solve(myGMP);

371

Chapter 12. The GMP library 372

See also:

The routines GMP: : Instance: :Generate, GMP: :Instance::Solve and
GMP: :Column: :SetDecompositionMulti.

Chapter 12. The G™mP library

GMP::Column::SetDecompositionMulti

The procedure GMP: :Column: : SetDecompositionMulti can be used to specify a
decomposition to be used by a solver. It changes the decomposition value of
a group of columns, belonging to a variable, in the generated mathematical
program.

This procedure can be used to specify a decomposition for the Benders
algorithm in CPLEX by assigning the columns to the master problem or a
subproblem. It can also be used to specify a decompostion for ODH-CPLEX.
And it can be used to specify a partition for GUROBI to be used by its
partition heuristic.

GMP: :CoTumn: :SetDecompositionMulti (

GMP, I (input) a generated mathematical program
binding, I (input) an index binding
column, I (input) a scalar reference or column number
value I (input) a numerical expression
)
Arguments:

GMP
An element in Al1CeneratedMathematicalPrograms.

binding
An index binding that specifies and possibly limits the scope of
indices.

column
A variable that, combined with the binding domain, specifies the
columns.

value

The new decomposition value for each column, defined over the
binding domain binding.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

m This procedure can be used to specify the decomposition in the Benders
algorithm of CPLEX 12.7 or higher. See the CPLEX option Benders
strategy for more information.

m For CPLEX, use a value of 0 to assign a column to the master problem,
and a value between 1 and N to assign a column to one of the N
subproblems (N can be 1 if you only want to use one subproblem). A
value of -1 indicates that the column is not assigned to the master
problem or a subproblem.

373

Chapter 12. The G™mP library

m This procedure can be used to specify model structure or a
decomposition used by ODH-CPLEX.

m For ODH-CPLEX, use a value between 1 and N to assign a column to one
of the N subproblems. A value of 0 or lower indicates that the column
is not assigned to any subproblem.

m This procedure can be used to specify a partition used by the partition
heuristic of GUROBI 8.0 or higher. See the GUROBI option Partition
heuristic for more information.

m For GUROBI, use a positive value to indicate that the column should be
included when the correspondingly numbered sub-MIP is solved, a value
of 0 to indicate that the column should be included in every sub-MIP,
and a value of -1 to indicate that the column should not be included in
any sub-MIP. (Variables that are not included in the sub-MIP are fixed to
their values in the current incumbent solution.)

m This procedure is not used by the Automatic Benders Decomposition
module in AIMMS.

Examples:

The first example shows how to specify a decomposition for the Benders
algorithm in CPLEX. The integer variable IntVar is assigned to the master
problem while the continuous variable ContVar is assigned to the
subproblem.

myGMP := GMP::Instance::Generate(MP);

! Switch on CPLEX option for using Benders strategy with decomposition specified by user.
GMP: :Instance::SetOptionvalue(myGMP, ’benders strategy’, 1);

GMP: :Column: : SetDecompositionMulti(myGMP, i, IntVar(i), 0);
GMP: :Column: : SetDecompositionMulti(myGMP, j, ContVar(j), 1);

GMP: :Instance::Solve(myGMP);

The second example shows how to specify model structure used by
ODH-CPLEX. All columns X(i,j) and Y(i,j,k) with the same ’i’ are
assigned to the same subproblem.

myGMP := GMP::Instance::Generate(MP);
GMP: :Column: : SetDecompositionMulti(myGMP, (i,3), X(i,j), Ord(i));
GMP: :Column: : SetDecompositionMulti(myGMP, (i,3j,k), Y(i,j,k), Ord(i));

GMP: :Instance::Solve(myGMP);

See also:

The routines GMP: :Instance: :Generate, GMP: :Instance::Solve and
GMP: :Column: :SetDecomposition.

374

Chapter 12. The G™mP library

GMP::Column::SetLowerBound

The procedure GMP: :CoTumn: : SetLowerBound changes the lower bound of a
column in the generated mathematical program.

GMP: :CoTumn: : SetLowerBound(

GMP, I (input) a generated mathematical program
column, I (input) a scalar reference or column number
value I (input) a numerical expression
)
Arguments:
GMP

An element in Al1CeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

value
The new value assigned to the lower bound of the column.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

m Use GMP::Column: :SetLowerBoundMulti if the lower bound of many
columns corresponding to some variable have to be set, because that
will be more efficient.

m If the column has a unit then value should have the same unit. If value
has no unit then you should multiply it by the column scale, as returned
by the function GMP: :CoTumn: :GetScale.

Examples:

Assume that ’x1’ is a variable in mathematical program 'MP’ with a unit as
defined by:

Quantity SI_Mass {

BaseUnit : kg;
Conversions : ton -> kg : # -> # * 1000;
}
Parameter min_wght {
Unit : ton;
Initialvalue : 20;
}
Variable x1 {
Range : [min_wght, inf);
Unit : ton;

375

Chapter 12. The G™mP library

Then if we run the following code

GMP: :Column: :SetLowerBound(’'MP’, x1, 20 [ton]);
Tbl := GMP::Column::GetLowerBound(’MP’, x1);
display 1bl;

GMP: :Column: :SetLowerBound(’'MP’, x1, 30);
Th2 := CGMP::Column::GetLowerBound(’MP’, x1);
display 1b2;

GMP: :Column: :SetLowerBound(’'MP’, x1, 40 * CGMP::Column::GetScale(’MP’, x1));
Tb3 := CGMP::Column::GetLowerBound(’MP’, x1);
display 1b3;

(where ’Ib1’, ’1b2’ and ’Ib3’ are parameters without a unit) we get the
following results:

bl := 20 ;
1b2 := 0.030 ;
1b3 := 40 ;
See also:

The routines GMP: :Instance: :Generate, GMP::Column: :SetLowerBoundMulti,
GMP: :Column: :SetUpperBound, GMP: : Column: :GetLowerBound and
GMP: :Column: :GetScale.

376

Chapter 12. The G™mP library

GMP::Column::SetLowerBoundMulti

The procedure GMP: :CoTumn: : SetLowerBoundMulti changes the lower bound of a
group of columns, belonging to a variable, in the generated mathematical
program.

GMP: :CoTumn: :SetLowerBoundMulti (

GMP, I (input) a generated mathematical program
binding, I (input) an index binding
column, I (input) a variable expression
value I (input) a numerical expression
)
Arguments:

GMP
An element in Al1CeneratedMathematicalPrograms.

binding
An index binding that specifies and possibly limits the scope of
indices.

column
A variable that, combined with the binding domain, specifies the
columns.

value

The new lower bound for each column, defined over the binding
domain binding.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

If the variable has a unit then value should have the same unit. If value
has no unit then you should multiply it by the column scale, as returned
by the function GMP: :Column: :GetScale. See GMP: :Column: :SetLowerBound for
an example with units.

Examples:
To set the lower bounds of variable x(i) to 1b(i) we can use:
for (i) do

GMP: :Column: :SetLowerBound(myGMP, x(i), Tb(i));
endfor;

It is more efficient to use:

GMP: :Column: : SetLowerBoundMulti(myGMP, i, x(i), Th(i));

377

Chapter 12. The G™mP library

If we only want to set the lower bounds of those x(i) for which dom(i) is
unequal to zero, then we use:

GMP: :Column: : SetLowerBoundMulti(myGMP, i | dom(i), x(i), 1b(i));

See also:

The routines GMP: :Instance: :Generate, GMP: :Column: :SetLowerBound,
GMP: :Column: :SetUpperBound, GMP: : Column: :GetLowerBound and
GMP: :Column: :GetScale.

378

Chapter 12. The G™mP library

GMP::Column::SetType

The procedure GMP: :Column: : SetType changes the type of a column in the
matrix of a generated mathematical program.

GMP: :CoTumn: :SetType(

GMP, I (input) a generated mathematical program
column, I (input) a scalar reference or column number
type I (input) a element in Al1ColumnTypes
)
Arguments:
GMP

An element in Al1CeneratedMathematicalPrograms.

column
A scalar reference to an existing column in the matrix or the number
of that column in the range {0..n — 1} where n is the number of
columns in the matrix.

type
An element in AT1CoTumnTypes.

Return value:
The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP: :Instance::Generate and GMP::Column: :GetType.

379

Chapter 12. The G™mP library

GMP::Column::SetUpperBound

The procedure GMP: :Column: : SetUpperBound changes the upper bound of a
column in the generated mathematical program.

GMP: :CoTumn: : SetUpperBound(

GMP, I (input) a generated mathematical program
column, I (input) a scalar reference or column number
value I (input) a numerical expression
)
Arguments:
GMP

An element