
AIMMS
The Function Reference

AIMMS AIMMS 4

September 16, 2019

Contents

Contents ii

Part I Elementary Computational Operations 2

1 Arithmetic Functions 2

Abs . 4

ArcCos . 5

ArcCosh . 6

ArcSin . 7

ArcSinh . 8

ArcTan . 9

ArcTanh . 10

Ceil . 11

Cos . 12

Cosh . 13

Cube . 14

Degrees . 15

Div . 16

ErrorF . 17

Exp . 18

Floor . 19

Log . 20

Log10 . 21

MapVal . 22

Max . 23

Min . 24

Mod . 25

Power . 26

Precision . 27

Radians . 28

Round . 29

ScalarValue . 30

Sign . 31

Contents iii

Sin . 32

Sinh . 33

Sqr . 34

Sqrt . 35

Tan . 36

Tanh . 37

Trunc . 38

Val . 39

2 Set Related Functions 40

ActiveCard . 41

Card . 42

CloneElement . 44

Element . 47

ElementCast . 48

ElementRange . 49

FindUsedElements . 50

First . 51

Last . 52

Ord . 53

RestoreInactiveElements . 54

RetrieveCurrentVariableValues 55

SetAddRecursive . 56

SetElementAdd . 57

SetElementRename . 58

StringToElement . 59

SubRange . 60

3 String Manipulation Functions 61

Character . 62

CharacterNumber . 63

FindNthString . 64

FindReplaceNthString . 66

FindReplaceStrings . 68

FindString . 69

FormatString . 70

GarbageCollectStrings . 71

RegexSearch . 72

StringCapitalize . 74

StringLength . 75

StringOccurrences . 76

StringToLower . 77

StringToUpper . 78

SubString . 79

Contents iv

4 Unit Functions 80

AtomicUnit . 81

ConvertUnit . 82

EvaluateUnit . 83

StringToUnit . 84

Unit . 85

5 Time Functions 86

Aggregate . 87

ConvertReferenceDate . 88

CreateTimeTable . 89

CurrentToMoment . 90

CurrentToString . 91

CurrentToTimeSlot . 92

DaylightSavingEndDate . 93

DaylightSavingStartDate . 94

DisAggregate . 95

MomentToString . 96

MomentToTimeSlot . 97

PeriodToString . 98

StringToMoment . 99

StringToTimeSlot . 100

TestDate . 101

TimeSlotCharacteristic . 102

TimeSlotToMoment . 103

TimeSlotToString . 104

TimeZoneOffSet . 105

6 Financial Functions 106

6.1 General Conversions . 107

PriceDecimal . 108

PriceFractional . 109

RateEffective . 110

RateNominal . 111

6.2 Day Count Bases and Dates . 112

Format of date arguments 112

Day count bases . 112

Date differences . 113

DateDifferenceDays . 114

DateDifferenceYearFraction 115

6.3 Depreciations . 116

DepreciationLinearLife 118

DepreciationLinearRate 120

DepreciationNonLinearSumOfYear 122

DepreciationNonLinearLife 124

DepreciationNonLinearFactor 126

Contents v

DepreciationNonLinearRate 128

DepreciationSum . 130

6.4 Investments . 132

InvestmentConstantPresentValue 134

InvestmentConstantFutureValue 135

InvestmentConstantPeriodicPayment 136

InvestmentConstantInterestPayment 138

InvestmentConstantPrincipalPayment 140

InvestmentConstantCumulativeInterestPayment . . . 142

InvestmentConstantCumulativePrincipalPayment . . 144

InvestmentConstantNumberPeriods 146

InvestmentConstantRateAll 147

InvestmentConstantRate 149

InvestmentVariablePresentValue 151

InvestmentVariablePresentValueInPeriodic 153

InvestmentSingleFutureValue 155

InvestmentVariableInternalRateReturnAll 156

InvestmentVariableInternalRateReturn 158

InvestmentVariableInternalRateReturnInPeriodicAll . 160

InvestmentVariableInternalRateReturnInPeriodic . . . 162

InvestmentVariableInternalRateReturnModified 164

6.5 Securities . 166

SecurityDiscountedPrice 170

SecurityDiscountedRedemption 171

SecurityDiscountedYield 172

SecurityDiscountedRate 173

TreasuryBillPrice . 174

TreasuryBillYield . 175

TreasuryBillBondEquivalent 176

SecurityMaturityPrice . 177

SecurityMaturityCouponRate 179

SecurityMaturityYield . 181

SecurityMaturityAccruedInterest 183

SecurityCouponNumber 184

SecurityCouponPreviousDate 185

SecurityCouponNextDate 186

SecurityCouponDays . 187

SecurityCouponDaysPreSettlement 188

SecurityCouponDaysPostSettlement 189

SecurityPeriodicPrice . 190

SecurityPeriodicRedemption 192

SecurityPeriodicCouponRate 194

SecurityPeriodicYieldAll 196

SecurityPeriodicYield . 198

SecurityPeriodicAccruedInterest 200

SecurityPeriodicDuration 202

Contents vi

SecurityPeriodicDurationModified 204

7 Distribution and Combinatoric Functions 206

Binomial . 208

Geometric . 209

HyperGeometric . 210

NegativeBinomial . 211

Poisson . 212

Beta . 213

Exponential . 214

ExtremeValue . 215

Gamma . 216

Logistic . 217

LogNormal . 218

Normal . 219

Pareto . 220

Triangular . 221

Uniform . 222

Weibull . 223

DistributionCumulative . 224

DistributionInverseCumulative 225

DistributionDensity . 226

DistributionInverseDensity . 227

DistributionMean . 228

DistributionDeviation . 229

DistributionVariance . 230

DistributionSkewness . 231

DistributionKurtosis . 232

Combination . 233

Factorial . 234

Permutation . 235

8 Histogram Functions 236

HistogramAddObservation . 237

HistogramAddObservations . 238

HistogramCreate . 239

HistogramDelete . 240

HistogramGetAverage . 241

HistogramGetBounds . 242

HistogramGetDeviation . 243

HistogramGetFrequencies . 244

HistogramGetKurtosis . 245

HistogramGetObservationCount 246

HistogramGetSkewness . 247

HistogramSetDomain . 248

Contents vii

9 Forecasting Functions 250

9.1 Introduction . 250

9.2 Time series forecasting . 251

9.2.1 Notational conventions time series forecasting 251

forecasting::MovingAverage 253

forecasting::WeightedMovingAverage 256

forecasting::ExponentialSmoothing 259

forecasting::ExponentialSmoothingTrend 262

forecasting::ExponentialSmoothingTrendSeasonality 265

forecasting::ExponentialSmoothingTune 268

forecasting::ExponentialSmoothingTrendTune 269

forecasting::ExponentialSmoothingTrendSeasonalityTune 271

9.3 Simple Linear Regression . 273

9.3.1 Notational conventions for simple linear regression . 273

forecasting::SimpleLinearRegression 276

Part II Algorithmic Capabilities 281

10 Constraint Programming Functions 281

cp::AllDifferent . 282

cp::BinPacking . 284

cp::Cardinality . 288

cp::Channel . 290

cp::Count . 292

cp::Lexicographic . 294

cp::ParallelSchedule . 297

cp::Sequence . 299

cp::SequentialSchedule . 302

11 Scheduling Functions 305

cp::ActivityBegin . 306

cp::ActivityEnd . 307

cp::ActivityLength . 308

cp::ActivitySize . 309

cp::Alternative . 310

cp::BeginAtBegin . 312

cp::BeginAtEnd . 313

cp::BeginBeforeBegin . 314

cp::BeginBeforeEnd . 315

cp::BeginOfNext . 316

cp::BeginOfPrevious . 317

cp::EndAtBegin . 318

cp::EndAtEnd . 319

Contents viii

cp::EndBeforeBegin . 320

cp::EndBeforeEnd . 321

cp::EndOfNext . 322

cp::EndOfPrevious . 323

cp::GroupOfNext . 324

cp::GroupOfPrevious . 325

cp::LengthOfNext . 326

cp::LengthOfPrevious . 327

cp::SizeOfNext . 328

cp::SizeOfPrevious . 329

cp::Span . 330

cp::Synchronize . 331

12 The gmp library 332

12.1 GMP::Benders Procedures and Functions 333

GMP::Benders::AddFeasibilityCut 334

GMP::Benders::AddOptimalityCut 337

GMP::Benders::CreateMasterProblem 339

GMP::Benders::CreateSubProblem 341

GMP::Benders::UpdateSubProblem 343

12.2 GMP::Coefficient Procedures and Functions 345

GMP::Coefficient::Get . 346

GMP::Coefficient::GetQuadratic 347

GMP::Coefficient::Set . 348

GMP::Coefficient::SetMulti 350

GMP::Coefficient::SetQuadratic 352

12.3 GMP::Column Procedures and Functions 353

GMP::Column::Add . 354

GMP::Column::Delete . 355

GMP::Column::Freeze . 356

GMP::Column::FreezeMulti 357

GMP::Column::GetLowerBound 359

GMP::Column::GetName 361

GMP::Column::GetScale 362

GMP::Column::GetStatus 363

GMP::Column::GetType 364

GMP::Column::GetUpperBound 365

GMP::Column::SetAsMultiObjective 367

GMP::Column::SetAsObjective 369

GMP::Column::SetDecomposition 370

GMP::Column::SetDecompositionMulti 373

GMP::Column::SetLowerBound 375

GMP::Column::SetLowerBoundMulti 377

GMP::Column::SetType 379

GMP::Column::SetUpperBound 380

GMP::Column::SetUpperBoundMulti 382

Contents ix

GMP::Column::Unfreeze 384

GMP::Column::UnfreezeMulti 385

12.4 GMP::Event Procedures and Functions 387

GMP::Event::Create . 388

GMP::Event::Delete . 389

GMP::Event::Reset . 390

GMP::Event::Set . 391

12.5 GMP::Instance Procedures and Functions 392

GMP::Instance::AddIntegerEliminationRows 394

GMP::Instance::CalculateSubGradient 397

GMP::Instance::Copy . 399

GMP::Instance::CreateDual 400

GMP::Instance::CreateFeasibility 403

GMP::Instance::CreateMasterMIP 406

GMP::Instance::CreatePresolved 407

GMP::Instance::CreateProgressCategory 409

GMP::Instance::CreateSolverSession 410

GMP::Instance::Delete . 411

GMP::Instance::DeleteIntegerEliminationRows 412

GMP::Instance::DeleteMultiObjectives 413

GMP::Instance::DeleteSolverSession 414

GMP::Instance::FindApproximatelyFeasibleSolution . 415

GMP::Instance::FixColumns 418

GMP::Instance::Generate 420

GMP::Instance::GenerateRobustCounterpart 422

GMP::Instance::GenerateStochasticProgram 424

GMP::Instance::GetBestBound 426

GMP::Instance::GetColumnNumbers 427

GMP::Instance::GetDirection 429

GMP::Instance::GetMathematicalProgrammingType . . 430

GMP::Instance::GetMemoryUsed 431

GMP::Instance::GetNumberOfColumns 432

GMP::Instance::GetNumberOfIndicatorRows 433

GMP::Instance::GetNumberOfIntegerColumns 434

GMP::Instance::GetNumberOfNonlinearColumns . . . 435

GMP::Instance::GetNumberOfNonlinearNonzeros . . . 436

GMP::Instance::GetNumberOfNonlinearRows 437

GMP::Instance::GetNumberOfNonzeros 438

GMP::Instance::GetNumberOfRows 439

GMP::Instance::GetNumberOfSOS1Rows 440

GMP::Instance::GetNumberOfSOS2Rows 441

GMP::Instance::GetObjective 442

GMP::Instance::GetObjectiveColumnNumber 443

GMP::Instance::GetObjectiveRowNumber 444

GMP::Instance::GetOptionValue 445

GMP::Instance::GetRowNumbers 447

Contents x

GMP::Instance::GetSolver 449

GMP::Instance::GetSymbolicMathematicalProgram . . 450

GMP::Instance::MemoryStatistics 451

GMP::Instance::Rename 453

GMP::Instance::SetCallbackAddCut 454

GMP::Instance::SetCallbackAddLazyConstraint 455

GMP::Instance::SetCallbackBranch 457

GMP::Instance::SetCallbackCandidate 459

GMP::Instance::SetCallbackHeuristic 461

GMP::Instance::SetCallbackIncumbent 462

GMP::Instance::SetCallbackIterations 463

GMP::Instance::SetCallbackStatusChange 465

GMP::Instance::SetCallbackTime 466

GMP::Instance::SetCutoff 468

GMP::Instance::SetDirection 469

GMP::Instance::SetIterationLimit 470

GMP::Instance::SetMathematicalProgrammingType . . 471

GMP::Instance::SetMemoryLimit 472

GMP::Instance::SetOptionValue 473

GMP::Instance::SetSolver 475

GMP::Instance::SetStartingPointSelection 476

GMP::Instance::SetTimeLimit 477

GMP::Instance::Solve . 478

12.6 GMP::Linearization Procedures and Functions 479

GMP::Linearization::Add 480

GMP::Linearization::AddSingle 482

GMP::Linearization::Delete 485

GMP::Linearization::GetDeviation 486

GMP::Linearization::GetDeviationBound 487

GMP::Linearization::GetLagrangeMultiplier 488

GMP::Linearization::GetType 489

GMP::Linearization::GetWeight 490

GMP::Linearization::RemoveDeviation 491

GMP::Linearization::SetDeviationBound 492

GMP::Linearization::SetType 493

GMP::Linearization::SetWeight 494

12.7 GMP::ProgressWindow Procedures and Functions 495

GMP::ProgressWindow::DeleteCategory 496

GMP::ProgressWindow::DisplayLine 497

GMP::ProgressWindow::DisplayProgramStatus 498

GMP::ProgressWindow::DisplaySolver 499

GMP::ProgressWindow::DisplaySolverStatus 500

GMP::ProgressWindow::FreezeLine 501

GMP::ProgressWindow::Transfer 502

GMP::ProgressWindow::UnfreezeLine 504

12.8 GMP::QuadraticCoefficient Procedures and Functions 505

Contents xi

GMP::QuadraticCoefficient::Get 506

GMP::QuadraticCoefficient::Set 507

12.9 GMP::Robust Procedures and Functions 508

GMP::Robust::EvaluateAdjustableVariables 509

12.10 GMP::Row Procedures and Functions 511

GMP::Row::Activate . 512

GMP::Row::Add . 513

GMP::Row::Deactivate . 514

GMP::Row::Delete . 515

GMP::Row::DeleteIndicatorCondition 516

GMP::Row::Generate . 517

GMP::Row::GetConvex . 519

GMP::Row::GetIndicatorColumn 520

GMP::Row::GetIndicatorCondition 521

GMP::Row::GetLeftHandSide 522

GMP::Row::GetName . 524

GMP::Row::GetRelaxationOnly 525

GMP::Row::GetRightHandSide 526

GMP::Row::GetScale . 528

GMP::Row::GetStatus . 529

GMP::Row::GetType . 530

GMP::Row::SetConvex . 531

GMP::Row::SetIndicatorCondition 532

GMP::Row::SetLeftHandSide 533

GMP::Row::SetPoolType 535

GMP::Row::SetPoolTypeMulti 537

GMP::Row::SetRelaxationOnly 539

GMP::Row::SetRightHandSide 540

GMP::Row::SetRightHandSideMulti 542

GMP::Row::SetType . 544

12.11 GMP::Solution Procedures and Functions 545

GMP::Solution::Check . 547

GMP::Solution::ConstraintListing 548

GMP::Solution::ConstructMean 553

GMP::Solution::Copy . 554

GMP::Solution::Count . 555

GMP::Solution::Delete . 556

GMP::Solution::DeleteAll 557

GMP::Solution::GetBestBound 558

GMP::Solution::GetColumnValue 559

GMP::Solution::GetDistance 560

GMP::Solution::GetFirstOrderDerivative 561

GMP::Solution::GetIterationsUsed 562

GMP::Solution::GetMemoryUsed 563

GMP::Solution::GetNodesUsed 564

GMP::Solution::GetObjective 565

Contents xii

GMP::Solution::GetPenalizedObjective 566

GMP::Solution::GetProgramStatus 568

GMP::Solution::GetRowValue 569

GMP::Solution::GetSolutionsSet 570

GMP::Solution::GetSolverStatus 571

GMP::Solution::GetTimeUsed 572

GMP::Solution::IsDualDegenerated 573

GMP::Solution::IsInteger 574

GMP::Solution::IsPrimalDegenerated 575

GMP::Solution::Move . 576

GMP::Solution::RandomlyGenerate 577

GMP::Solution::RetrieveFromModel 579

GMP::Solution::RetrieveFromSolverSession 580

GMP::Solution::SendToModel 581

GMP::Solution::SendToModelSelection 582

GMP::Solution::SendToSolverSession 584

GMP::Solution::SetColumnValue 585

GMP::Solution::SetIterationCount 587

GMP::Solution::SetMIPStartFlag 588

GMP::Solution::SetObjective 590

GMP::Solution::SetProgramStatus 591

GMP::Solution::SetRowValue 592

GMP::Solution::SetSolverStatus 594

GMP::Solution::UpdatePenaltyWeights 595

12.12 GMP::Solver Procedures and Functions 596

GMP::Solver::FreeEnvironment 597

GMP::Solver::GetAsynchronousSessionsLimit 599

GMP::Solver::InitializeEnvironment 601

12.13 GMP::SolverSession Procedures and Functions 603

GMP::SolverSession::AddBendersFeasibilityCut 604

GMP::SolverSession::AddBendersOptimalityCut 607

GMP::SolverSession::AddLinearization 610

GMP::SolverSession::AsynchronousExecute 612

GMP::SolverSession::CreateProgressCategory 614

GMP::SolverSession::Execute 616

GMP::SolverSession::ExecutionStatus 617

GMP::SolverSession::GenerateBinaryEliminationRow . 618

GMP::SolverSession::GenerateBranchLowerBound . . . 620

GMP::SolverSession::GenerateBranchRow 621

GMP::SolverSession::GenerateBranchUpperBound . . . 622

GMP::SolverSession::GenerateCut 623

GMP::SolverSession::GetBestBound 625

GMP::SolverSession::GetCallbackInterruptStatus . . . 626

GMP::SolverSession::GetCandidateObjective 627

GMP::SolverSession::GetInstance 628

GMP::SolverSession::GetIterationsUsed 629

Contents xiii

GMP::SolverSession::GetMemoryUsed 630

GMP::SolverSession::GetNodeNumber 631

GMP::SolverSession::GetNodeObjective 632

GMP::SolverSession::GetNodesLeft 633

GMP::SolverSession::GetNodesUsed 634

GMP::SolverSession::GetNumberOfBranchNodes . . . 635

GMP::SolverSession::GetObjective 636

GMP::SolverSession::GetOptionValue 637

GMP::SolverSession::GetProgramStatus 638

GMP::SolverSession::GetSolver 639

GMP::SolverSession::GetSolverStatus 640

GMP::SolverSession::GetTimeUsed 641

GMP::SolverSession::Interrupt 642

GMP::SolverSession::RejectIncumbent 643

GMP::SolverSession::SetObjective 644

GMP::SolverSession::SetOptionValue 645

GMP::SolverSession::Transfer 647

GMP::SolverSession::WaitForCompletion 648

GMP::SolverSession::WaitForSingleCompletion 649

12.14 GMP::Stochastic Procedures and Functions 650

GMP::Stochastic::AddBendersFeasibilityCut 651

GMP::Stochastic::AddBendersOptimalityCut 652

GMP::Stochastic::BendersFindFeasibilityReference . . 654

GMP::Stochastic::BendersFindReference 655

GMP::Stochastic::CreateBendersRootproblem 656

GMP::Stochastic::GetObjectiveBound 657

GMP::Stochastic::GetRelativeWeight 658

GMP::Stochastic::GetRepresentativeScenario 659

GMP::Stochastic::MergeSolution 660

GMP::Stochastic::UpdateBendersSubproblem 661

12.15 GMP::Tuning Procedures and Functions 662

GMP::Tuning::SolveSingleMPS 663

GMP::Tuning::TuneMultipleMPS 665

GMP::Tuning::TuneSingleGMP 667

Part III Model Handling 670

13 Model Query Functions 670

AttributeToString . 672

CallerAttribute . 673

CallerLine . 674

CallerNode . 675

CallerNumberOfLocations . 676

Contents xiv

ConstraintVariables . 677

DeclaredSubset . 679

DomainIndex . 681

IdentifierAttributes . 682

IdentifierDimension . 683

IdentifierShowAttributes . 684

IdentifierShowTreeLocation . 685

IdentifierElementRange . 686

IdentifierText . 687

IdentifierType . 688

IdentifierUnit . 689

IndexRange . 690

IsRuntimeIdentifier . 691

ReferencedIdentifiers . 692

SectionIdentifiers . 693

VariableConstraints . 694

14 Model Edit Functions 695

me::AllowedAttribute . 696

me::ChangeType . 697

me::ChangeTypeAllowed . 698

me::ChildTypeAllowed . 699

me::Children . 700

me::Compile . 701

me::Create . 702

me::CreateLibrary . 703

me::Delete . 704

me::ExportNode . 705

me::GetAttribute . 706

me::ImportLibrary . 707

me::ImportNode . 708

me::IsRunnable . 709

me::Move . 710

me::Parent . 711

me::Rename . 712

me::SetAttribute . 713

Part IV Data Management 715

15 Case management 715

CaseFileLoad . 717

CaseFileMerge . 718

CaseFileSave . 719

CaseCompareIdentifier . 720

Contents xv

CaseCreateDifferenceFile . 721

CaseFileGetContentType . 723

CaseFileSectionExists . 724

CaseFileSectionGetContentType 725

CaseFileSectionLoad . 726

CaseFileSectionMerge . 727

CaseFileSectionRemove . 728

CaseFileSectionSave . 729

CaseFileURLtoElement . 730

CaseFileSetCurrent . 732

CaseCommandLoadAsActive . 733

CaseCommandLoadIntoActive 734

CaseCommandMergeIntoActive 735

CaseCommandNew . 736

CaseCommandSave . 737

CaseCommandSaveAs . 738

CaseDialogConfirmAndSave . 739

CaseDialogSelectForLoad . 740

CaseDialogSelectForSave . 741

CaseDialogSelectMultiple . 742

DataManagementExit . 743

16 Data Change Monitor Functions 744

DataChangeMonitorCreate . 745

DataChangeMonitorDelete . 747

DataChangeMonitorHasChanged 748

DataChangeMonitorReset . 749

17 Database Functions 750

CloseDataSource . 751

CommitTransaction . 752

DirectSQL . 753

LoadDatabaseStructure . 754

RollbackTransaction . 755

SaveDatabaseStructure . 756

StartTransaction . 757

TestDataSource . 758

TestDatabaseTable . 759

TestDatabaseColumn . 760

GetDataSourceProperty . 761

SQLNumberOfColumns . 762

SQLNumberOfDrivers . 763

SQLNumberOfTables . 764

SQLNumberOfViews . 765

SQLColumnData . 766

SQLDriverName . 768

Contents xvi

SQLTableName . 769

SQLViewName . 770

SQLCreateConnectionString . 771

18 Spreadsheet Functions 773

Spreadsheet::ColumnName . 774

Spreadsheet::ColumnNumber . 775

Spreadsheet::SetVisibility . 776

Spreadsheet::SetActiveSheet . 777

Spreadsheet::SetUpdateLinksBehavior 778

Spreadsheet::SetOption . 780

Spreadsheet::AssignValue . 781

Spreadsheet::RetrieveValue . 782

Spreadsheet::AssignSet . 783

Spreadsheet::RetrieveSet . 784

Spreadsheet::AssignParameter 785

Spreadsheet::RetrieveParameter 787

Spreadsheet::AssignTable . 789

Spreadsheet::RetrieveTable . 792

Spreadsheet::ClearRange . 794

Spreadsheet::CopyRange . 795

Spreadsheet::AddNewSheet . 797

Spreadsheet::DeleteSheet . 798

Spreadsheet::GetAllSheets . 799

Spreadsheet::RunMacro . 800

Spreadsheet::CreateWorkbook 802

Spreadsheet::SaveWorkbook . 803

Spreadsheet::CloseWorkbook . 804

Spreadsheet::Print . 805

19 XML Functions 807

GenerateXML . 808

ReadGeneratedXML . 809

ReadXML . 810

WriteXML . 811

Part V User Interface Related Functions 813

20 Dialog Functions 813

DialogAsk . 814

DialogError . 815

DialogGetColor . 816

DialogGetDate . 817

DialogGetElementByData . 818

Contents xvii

DialogGetElement . 819

DialogGetElementByText . 820

DialogGetNumber . 821

DialogGetPassword . 822

DialogGetString . 823

DialogMessage . 824

DialogProgress . 825

StatusMessage . 826

21 Page Functions 827

PageClose . 828

PageCopyTableToClipboard . 829

PageCopyTableToExcel . 830

PageGetActive . 832

PageGetAll . 833

PageGetChild . 834

PageGetFocus . 835

PageGetNext . 836

PageGetNextInTreeWalk . 837

PageGetParent . 838

PageGetPrevious . 839

PageGetTitle . 840

PageGetUsedIdentifiers . 841

PageOpen . 842

PageOpenSingle . 843

PageRefreshAll . 844

PageSetCursor . 845

PageSetFocus . 846

PivotTableDeleteState . 847

PivotTableReloadState . 848

PivotTableSaveState . 850

PrintEndReport . 852

PrintPage . 853

PrintPageCount . 855

PrintStartReport . 856

PrinterGetCurrentName . 857

PrinterSetupDialog . 858

ShowMessageWindow . 859

ShowProgressWindow . 860

22 User colors 861

UserColorAdd . 862

UserColorDelete . 863

UserColorGetRGB . 864

UserColorModify . 865

Contents xviii

Part VI Development Support 867

23 Profiler and Debugger 867

DebuggerBreakPoint . 868

ProfilerStart . 869

ProfilerPause . 870

ProfilerContinue . 871

ProfilerRestart . 872

ProfilerCollectAllData . 873

24 Application Information 875

IdentifierGetUsedInformation . 876

IdentifierMemory . 877

IdentifierMemoryStatistics . 878

ListExpressionSubstitutions . 880

MemoryInUse . 881

MemoryStatistics . 882

ShowHelpTopic . 884

Part VII System Interaction 886

25 Error Handling Functions 886

errh::Adapt . 887

errh::Attribute . 888

errh::Category . 889

errh::Code . 890

errh::Column . 891

errh::CreationTime . 892

errh::Filename . 893

errh::InsideCategory . 894

errh::IsMarkedAsHandled . 895

errh::Line . 896

errh::Message . 897

errh::MarkAsHandled . 898

errh::Multiplicity . 899

errh::Node . 900

errh::NumberOfLocations . 901

errh::Severity . 902

Contents xix

26 Option manipulation 903

OptionGetDefaultString . 904

OptionGetKeywords . 905

OptionGetString . 906

OptionGetValue . 907

OptionSetString . 908

OptionSetValue . 909

27 Licensing Functions 910

LicenseExpirationDate . 911

LicenseMaintenanceExpirationDate 912

LicenseNumber . 913

LicenseStartDate . 914

LicenseType . 915

ProjectDeveloperMode . 916

SecurityGetGroups . 917

SecurityGetUsers . 918

SolverGetControl . 919

SolverReleaseControl . 920

28 Environment Functions 921

AimmsRevisionString . 922

EnvironmentGetString . 923

EnvironmentSetString . 925

GeoFindCoordinates . 926

TestInternetConnection . 928

29 Invoking actions 929

Delay . 930

Execute . 931

ExitAimms . 932

OpenDocument . 933

ScheduleAt . 934

SessionArgument . 935

30 File and Directory Functions 936

DirectoryCopy . 937

DirectoryCreate . 938

DirectoryDelete . 939

DirectoryExists . 940

DirectoryGetCurrent . 941

DirectoryGetFiles . 942

DirectoryGetSubdirectories . 944

DirectoryMove . 946

DirectorySelect . 947

FileAppend . 948

FileCopy . 949

Contents xx

FileDelete . 950

FileEdit . 951

FileExists . 952

FileGetSize . 953

FileMove . 954

FilePrint . 955

FileRead . 956

FileSelect . 957

FileSelectNew . 958

FileTime . 960

FileTouch . 961

FileView . 962

Part VIII Predefined Identifiers 964

31 System Settings Related Identifiers 964

AllAuthorizationLevels . 965

AllAvailableCharacterEncodings 966

ASCIICharacterEncodings . 967

ASCIIUnicodeCharacterEncodings 968

UnicodeCharacterEncodings . 969

AllCharacterEncodings . 970

AllColors . 973

AllIntrinsics . 974

AllKeywords . 975

AllOptions . 976

AllPredeclaredIdentifiers . 977

AllSolvers . 978

AllSymbols . 979

ProfilerData . 980

CurrentAuthorizationLevel . 981

CurrentGroup . 982

CurrentSolver . 983

CurrentUser . 984

AllAimmsStringConstantElements 985

AimmsStringConstants . 986

32 Language Related Identifiers 987

AggregationTypes . 989

AllAttributeNames . 990

AllBasicValues . 991

AllCaseComparisonModes . 992

AllColumnTypes . 993

AllDataColumnCharacteristics 994

Contents xxi

AllDataSourceProperties . 995

AllDifferencingModes . 996

AllExecutionStatuses . 997

AllGMPExtensions . 998

AllIdentifierTypes . 999

AllIsolationLevels . 1001

AllFileAttributes . 1002

AllMathematicalProgrammingTypes 1003

AllMatrixManipulationDirections 1004

AllMatrixManipulationProgrammingTypes 1005

AllProfilerTypes . 1006

AllRowTypes . 1007

AllConstraintProgrammingRowTypes 1008

AllMathematicalProgrammingRowTypes 1009

AllSolutionStates . 1010

AllSolverInterrupts . 1011

AllStochasticGenerationModes 1012

AllSuffixNames . 1013

AllValueKeywords . 1014

AllViolationTypes . 1015

ContinueAbort . 1016

DiskWindowVoid . 1017

Integers . 1018

MaximizingMinimizing . 1019

MergeReplace . 1020

OnOff . 1021

TimeSlotCharacteristics . 1022

YesNo . 1023

33 Model Related Identifiers 1024

AllAssertions . 1025

AllConstraints . 1026

AllConventions . 1027

AllDatabaseTables . 1028

AllDefinedParameters . 1029

AllDefinedSets . 1030

AllFiles . 1031

AllFunctions . 1032

AllGMPEvents . 1033

AllIdentifiers . 1034

AllIndices . 1035

AllIntegerVariables . 1036

AllMacros . 1037

AllMathematicalPrograms . 1038

AllNonLinearConstraints . 1039

AllParameters . 1040

Contents xxii

AllProcedures . 1041

AllQuantities . 1042

AllSections . 1043

AllSets . 1044

AllSolverSessionCompletionObjects 1045

AllSolverSessions . 1046

AllStochasticConstraints . 1047

AllStochasticParameters . 1048

AllStochasticVariables . 1049

AllUpdatableIdentifiers . 1050

AllVariables . 1051

AllVariablesConstraints . 1052

34 Execution State Related Identifiers 1053

AllGeneratedMathematicalPrograms 1054

AllProgressCategories . 1055

AllStochasticScenarios . 1056

CurrentAutoUpdatedDefinitions 1057

CurrentErrorMessage . 1058

CurrentFile . 1059

CurrentFileName . 1060

CurrentInputs . 1061

CurrentMatrixBlockSizes . 1062

CurrentMatrixColumnCount . 1063

CurrentMatrixRowCount . 1064

CurrentPageNumber . 1065

ODBCDateTimeFormat . 1066

35 Case Management Related Identifiers 1067

AllCases . 1068

AllCaseTypes . 1070

AllDataCategories . 1071

AllDataFiles . 1072

AllDataSets . 1073

CurrentCase . 1074

CurrentCaseSelection . 1075

CurrentDataSet . 1076

CurrentDefaultCaseType . 1077

CurrentCaseFileContentType . 1078

AllCaseFileContentTypes . 1079

CaseFileURL . 1080

36 Date-Time Related Identifiers 1081

AllAbbrMonths . 1082

AllAbbrWeekdays . 1083

AllMonths . 1084

AllTimeZones . 1085

Contents xxiii

AllWeekdays . 1086

LocaleAllAbbrMonths . 1087

LocaleAllAbbrWeekdays . 1088

LocaleAllMonths . 1089

LocaleAllWeekdays . 1090

LocaleLongDateFormat . 1091

LocaleShortDateFormat . 1092

LocaleTimeFormat . 1093

LocaleTimeZoneName . 1094

LocaleTimeZoneNameDST . 1095

37 Error Handling Related Identifiers 1096

errh::PendingErrors . 1097

errh::ErrorCodes . 1098

errh::AllErrorCategories . 1099

errh::AllErrorSeverities . 1101

Part IX Suffices 1103

38 Common Suffices 1103

38.1 Example . 1103

.dim . 1104

.txt . 1105

.type . 1106

.unit . 1107

39 Horizon Suffices 1108

.past . 1109

.planning . 1110

.beyond . 1111

40 Variable and Constraint Suffices 1112

.Basic . 1113

.Level . 1114

.Lower . 1115

.Stochastic . 1116

.Upper . 1117

.Violation . 1118

.ExtendedConstraint . 1119

.ExtendedVariable . 1120

Contents xxiv

41 Variable Suffices 1121

.ReducedCost . 1122

.Nonvar . 1123

.Relax . 1124

.Complement . 1125

.DefinitionViolation . 1126

.Derivative . 1127

.Priority . 1128

.SmallestCoefficient . 1129

.NominalCoefficient . 1130

.LargestCoefficient . 1131

.SmallestValue . 1132

.LargestValue . 1133

42 Constraint Suffices 1134

.ShadowPrice . 1135

.Convex . 1136

.RelaxationOnly . 1137

.SmallestShadowPrice . 1138

.LargestShadowPrice . 1139

.SmallestRightHandSide . 1140

.NominalRightHandSide . 1141

.LargestRightHandSide . 1142

43 Mathematical Program Suffices 1143

.bratio . 1145

.cutoff . 1146

.domlim . 1147

.iterlim . 1148

.limrow . 1149

.nodlim . 1150

.optca . 1151

.optcr . 1152

.reslim . 1153

.tolinfrep . 1154

.workspace . 1155

.SolverStatus . 1156

.ProgramStatus . 1157

.SolverCalls . 1158

.objective . 1159

.Incumbent . 1160

.BestBound . 1161

.Nodes . 1162

.GenTime . 1163

.SolutionTime . 1164

.Iterations . 1165

Contents xxv

.NumberOfBranches . 1166

.NumberOfConstraints . 1167

.NumberOfFails . 1168

.NumberOfNonzeros . 1169

.NumberOfVariables . 1170

.NumberOfInfeasibilities . 1171

.SumOfInfeasibilities . 1172

.CallbackProcedure . 1173

.CallbackIterations . 1174

.CallbackTime . 1175

.CallbackStatusChange . 1176

.CallbackIncumbent . 1177

.CallbackReturnStatus . 1178

.CallbackAOA . 1179

.CallbackAddCut . 1180

44 File Suffices 1181

.Ap . 1183

.blank zeros . 1184

.case . 1185

.PageNumber . 1186

.PageMode . 1187

.PageSize . 1188

.PageWidth . 1189

.TopMargin . 1190

.LeftMargin . 1191

.BottomMargin . 1192

.BodyCurrentColumn . 1193

.BodyCurrentRow . 1194

.BodySize . 1195

.FooterCurrentColumn . 1196

.FooterCurrentRow . 1197

.FooterSize . 1198

.HeaderCurrentColumn . 1199

.HeaderCurrentRow . 1200

.HeaderSize . 1201

.lj . 1202

.lw . 1203

.nd . 1204

.nj . 1205

.nr . 1206

.nw . 1207

.nz . 1208

.sj . 1209

.sw . 1210

.tf . 1211

Contents xxvi

.tj . 1212

.tw . 1213

Part X Deprecated 1215

45 Deprecated Language Elements 1215

45.1 Deprecated keywords . 1215

The deprecated keyword abort 1216

The deprecated keywords yes and no 1216

The deprecated keyword system 1216

45.2 Deprecated intrinsic procedures and functions 1217

45.3 Deprecated suffixes . 1217

46 Matrix Manipulation Functions 1220

MatrixActivateRow . 1222

MatrixAddColumn . 1223

MatrixAddRow . 1224

MatrixDeactivateRow . 1225

MatrixFreezeColumn . 1226

MatrixGenerate . 1227

MatrixModifyCoefficient . 1228

MatrixModifyColumnType . 1229

MatrixModifyDirection . 1230

MatrixModifyLeftHandSide . 1231

MatrixModifyLowerBound . 1232

MatrixModifyQuadraticCoefficient 1233

MatrixModifyRightHandSide . 1234

MatrixModifyRowType . 1235

MatrixModifyType . 1236

MatrixModifyUpperBound . 1237

MatrixRegenerateRow . 1238

MatrixRestoreState . 1239

MatrixSaveState . 1240

MatrixSolve . 1241

MatrixUnfreezeColumn . 1242

GenerateCut . 1243

47 Outer Approximation Functions 1244

MasterMIPAddLinearizations . 1246

MasterMIPDeleteIntegerEliminationCut 1247

MasterMIPDeleteLinearizations 1248

MasterMIPEliminateIntegerSolution 1249

MasterMIPGetCPUTime . 1250

MasterMIPGetIterationCount . 1251

Contents xxvii

MasterMIPGetNumberOfColumns 1252

MasterMIPGetNumberOfNonZeros 1253

MasterMIPGetNumberOfRows . 1254

MasterMIPGetObjectiveValue . 1255

MasterMIPGetProgramStatus . 1256

MasterMIPGetSolverStatus . 1257

MasterMIPGetSumOfPenalties . 1258

MasterMIPIsFeasible . 1259

MasterMIPLinearizationCommand 1260

MasterMIPSetCallback . 1262

MasterMIPSolve . 1263

MINLPGetIncumbentObjectiveValue 1264

MINLPGetOptimizationDirection 1265

MINLPIncumbentIsFeasible . 1266

MINLPIncumbentSolutionHasBeenFound 1267

MINLPSetIncumbentSolution . 1268

MINLPSetIterationCount . 1269

MINLPSetProgramStatus . 1270

MINLPSolutionDelete . 1271

MINLPSolutionRetrieve . 1272

MINLPSolutionSave . 1273

NLPGetCPUTime . 1274

NLPGetIterationCount . 1275

NLPGetNumberOfColumns . 1276

NLPGetNumberOfNonZeros . 1277

NLPGetNumberOfRows . 1278

NLPGetObjectiveValue . 1279

NLPGetProgramStatus . 1280

NLPGetSolverStatus . 1281

NLPIsFeasible . 1282

NLPLinearizationPointHasBeenFound 1283

NLPSolutionIsInteger . 1284

NLPSolve . 1285

48 Data management via a single data manager file 1286

48.1 Cases . 1286

CaseCreate . 1287

CaseDelete . 1288

CaseFind . 1289

CaseGetChangedStatus 1290

CaseGetDatasetReference 1291

CaseGetType . 1292

CaseLoadCurrent . 1293

CaseLoadIntoCurrent . 1295

CaseMerge . 1297

CaseNew . 1299

Contents xxviii

CaseSave . 1300

CaseSaveAll . 1301

CaseSaveAs . 1302

CaseSelect . 1303

CaseSelectMultiple . 1304

CaseSelectNew . 1305

CaseSetChangedStatus 1306

CaseSetCurrent . 1307

CaseReadFromSingleFile 1308

CaseWriteToSingleFile 1309

48.2 Datasets . 1310

DatasetCreate . 1311

DatasetDelete . 1312

DatasetFind . 1313

DatasetGetCategory . 1314

DatasetGetChangedStatus 1315

DatasetLoadCurrent . 1316

DatasetLoadIntoCurrent 1317

DatasetMerge . 1318

DatasetNew . 1319

DatasetSave . 1320

DatasetSaveAll . 1321

DatasetSaveAs . 1322

DatasetSelect . 1323

DatasetSelectNew . 1324

DatasetSetChangedStatus 1325

DatasetSetCurrent . 1326

48.3 Data Manager files . 1327

CaseTypeCategories . 1328

CaseTypeContents . 1329

DataCategoryContents 1330

DataFileCopy . 1331

DataFileExists . 1332

DataFileGetAcronym . 1333

DataFileGetComment . 1334

DataFileGetDescription 1335

DataFileGetGroup . 1336

DataFileGetName . 1337

DataFileGetOwner . 1338

DataFileGetPath . 1339

DataFileGetTime . 1340

DataFileReadPermitted 1341

DataFileSetAcronym . 1342

DataFileSetComment . 1343

DataFileWritePermitted 1344

DataImport220 . 1345

Contents xxix

DataManagerFileNew . 1346

DataManagerFileOpen . 1347

DataManagerFileGetCurrent 1348

DataManagerExport . 1349

DataManagerImport . 1350

49 Deprecated AIMMS 220 Functions 1351

ListingFileCopy . 1352

ListingFileDelete . 1353

Part XI Appendices 1355

Index 1355

Part I

Elementary Computational

Operations

Chapter 1

Arithmetic Functions

Aimms supports the following arithmetic functions:

� Abs

� ArcCosh

� ArcCos

� ArcSin

� ArcSinh

� ArcTanh

� ArcTan

� Ceil

� Cos

� Cosh

� Cube

� Degrees

� Div

� ErrorF

� Exp

� Floor

� Log

� Log10

� MapVal

� Max

� Min

� Mod

� Power

� Precision

� Radians

� Round

� ScalarValue

� Sign

� Sin

� Sinh

� Sqr

� Sqrt

� Tan

� Tanh

Chapter 1. Arithmetic Functions 3

� Trunc

� Val

Chapter 1. Arithmetic Functions 4

Abs

Abs(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Abs returns the absolute value of x.

Remarks:

The function Abs can be used in constraints of nonlinear mathematical

programs. However, nonlinear solvers may experience convergence

problems if the argument assumes values around 0.

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the

Language Reference.

Chapter 1. Arithmetic Functions 5

ArcCos

ArcCos(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range [−1,1].

Return value:

The ArcCos function returns the arccosine of x in the range 0 to π radians.

Remarks:

� A run-time error results if x is outside the range [−1,1].

� The function ArcCos can be used in constraints of nonlinear

mathematical programs.

See also:

The functions ArcSin, ArcTan, Cos. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 6

ArcCosh

ArcCosh(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range [1,∞).

Return value:

The ArcCosh function returns the inverse hyperbolic cosine of x in the

range from 0 to ∞.

Remarks:

� A run-time error results if x is outside the range [1,∞].
� The function ArcCosh can be used in constraints of nonlinear

mathematical programs.

See also:

The functions ArcSinh, ArcTanh, Cosh. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 7

ArcSin

ArcSin(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range [−1,1].

Return value:

The ArcSin function returns the arcsine of x in the range −π/2 to π/2

radians.

Remarks:

� A run-time error results if x is outside the range [−1,1].

� The function ArcSin can be used in constraints of nonlinear

mathematical programs.

See also:

The functions ArcCos, ArcTan, Sin. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 8

ArcSinh

ArcSinh(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The ArcSinh function returns the inverse hyperbolic sine of x in the range

from −∞ to ∞.

Remarks:

The function ArcSinh can be used in constraints of nonlinear mathematical

programs.

See also:

The functions ArcCosh, ArcTanh, Sinh. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 9

ArcTan

ArcTan(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The ArcTan function returns the arctangent of x in the range −π/2 to π/2

radians.

Remarks:

The function ArcTan can be used in constraints of nonlinear mathematical

programs.

See also:

The functions ArcSin, ArcCos, Tan. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 10

ArcTanh

ArcTanh(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range (−1,1).

Return value:

The ArcTanh function returns the inverse hyperbolic tangent of x.

Remarks:

� A run-time error results if x is outside the range (−1,1).

� The function ArcTanh can be used in constraints of nonlinear

mathematical programs.

See also:

The functions ArcCosh, ArcSinh, Tanh. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 11

Ceil

Ceil(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Ceil returns the smallest integer value ≥ x.

Remarks:

� The function Ceil will round to the nearest integer, if it lies within the

equality tolerances equality absolute tolerance and

equality relative tolerance.

� The function Ceil can be used in the constraints of nonlinear

mathematical programs. However, nonlinear solvers may experience

convergence problems around integer values.

� When the numerical expression contains a unit, the function Ceil will

first convert the expression to the corresponding base unit, before

evaluating the function itself.

See also:

The functions Floor, Round, Precision, Trunc. Arithmetic functions are

discussed in full detail in Section 6.1.4 of the Language Reference.

Numeric tolerances are discussed in Section 6.2.2 of the Language

Reference.

Chapter 1. Arithmetic Functions 12

Cos

Cos(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in radians.

Return value:

The Cos function returns the cosine of x in the range −1 to 1.

Remarks:

The function Cos can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Sin, Tan, ArcCos. Arithmetic functions are discussed in full

detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 13

Cosh

Cosh(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The Cosh function returns the hyperbolic cosine of x in the range 1 to ∞.

Remarks:

The function Cosh can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Sinh, Tanh, ArcCosh. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 14

Cube

Cube(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Cube returns x3.

Remarks:

The function Cube can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Power, Sqr, and Sqrt. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 15

Degrees

Degrees(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Degrees returns the value of x converted from radians to

degrees.

Remarks:

The function Degrees can be used in constraints of linear and nonlinear

mathematical programs.

See also:

The function Radians. Arithmetic functions are discussed in full detail in

Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 16

Div

Div(

x, ! (input) numerical expression

y ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

y

A scalar numerical expression unequal to 0.

Return value:

The function Div returns x divided by y rounded down to an integer.

Remarks:

A run-time error results if y equals 0.

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the

Language Reference.

Chapter 1. Arithmetic Functions 17

ErrorF

ErrorF(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function ErrorF returns the error function value
1√
2π

∫ x
−∞ e

− t2

2 dt.

Remarks:

The function ErrorF can be used in constraints of nonlinear mathematical

programs.

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the

Language Reference.

Chapter 1. Arithmetic Functions 18

Exp

Exp(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Exp returns the exponential value ex .

Remarks:

The function Exp can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Log, Log10. Arithmetic functions are discussed in full detail

in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 19

Floor

Floor(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Floor returns the largest integer value ≤ x.

Remarks:

� The function Floor will round to the nearest integer, if it lies within the

equality tolerances equality absolute tolerance and

equality relative tolerance.

� The function Floor can be used in the constraints of nonlinear

mathematical programs. However, nonlinear solvers may experience

convergence problems around integer values.

� When the numerical expression contains a unit, the function Floor will

first convert the expression to the corresponding base unit, before

evaluating the function itself.

See also:

The functions Ceil, Round, Precision, Trunc. Arithmetic functions are

discussed in full detail in Section 6.1.4 of the Language Reference.

Numeric tolerances are discussed in Section 6.2.2 of the Language

Reference.

Chapter 1. Arithmetic Functions 20

Log

Log(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range (0,∞).

Return value:

The function Log returns the natural logarithm ln(x).

Remarks:

� A run-time error results if x is outside the range (0,∞).
� The function Log can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Exp, Log10. Arithmetic functions are discussed in full detail

in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 21

Log10

Log10(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range (0,∞).

Return value:

The function Log10 returns the base-10 logarithm of x.

Remarks:

� A run-time error results if x is outside the range (0,∞).
� The function Log10 can be used in constraints of nonlinear

mathematical programs.

See also:

The functions Exp, Log. Arithmetic functions are discussed in full detail in

Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 22

MapVal

MapVal(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function MapVal returns the (integer) mapping value of any real or

special number x, according to the following table.

Value x Description MapVal

value

number any valid real number 0

UNDF undefined (result of an arithmetic error) 4

NA not available 5

INF +∞ 6

-INF −∞ 7

ZERO numerically indistinguishable from

zero, but has the logical value of one.

8

See also:

Special numbers in Aimms and the MapVal function are discussed in full

detail in Section 6.1.1 of the Language Reference.

Chapter 1. Arithmetic Functions 23

Max

Max(

x1, ! (input) numerical, string or element expression

x2, ! (input) numerical, string or element expression

..

)

Arguments:

x1,x2,. . .

Multiple numerical, string or element expressions.

Return value:

The function Max returns the largest number, the string highest in the

lexicographical ordering, or the element value with the highest ordinal

value, among x1, x2, . . .

Remarks:

The function Max can be used in constraints of nonlinear mathematical

programs. However, nonlinear solvers may experience convergence

problems if the first order derivatives of two arguments between which

the Max function switches are discontinous.

See also:

The function Min. Arithmetic functions are discussed in full detail in

Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 24

Min

Min(

x1, ! (input) numerical, string or element expression

x2, ! (input) numerical, string or element expression

..

)

Arguments:

x1,x2,. . .

Multiple numerical, string or element expressions.

Return value:

The function Min returns the smallest number, the string lowest in the

lexicographical ordering, or the element value with the lowest ordinal

value, among x1, x2, . . .

Remarks:

The function Min can be used in constraints of nonlinear mathematical

programs. However, nonlinear solvers may experience convergence

problems if the first order derivatives of two arguments between which

the Min function switches are discontinous.

See also:

The function Max. Arithmetic functions are discussed in full detail in

Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 25

Mod

Mod(

x, ! (input) numerical expression

y ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

y

A scalar numerical expression unequal to 0.

Return value:

The function Mod returns the remainder of x after division by |y|. For

y > 0, the result is an integer in the range 0, . . . , y − 1 if both x and y are

integers, or in the interval [0, y) otherwise. For y < 0, the result is an

integer in the range y − 1, . . . ,0 if both x and y are integers, or in the

interval (y,0] otherwise.

Remarks:

� A run-time error results if y equals 0.

� The function Mod can be used in constraints of mathematical programs.

However, nonlinear solver may experience convergence problems if x

assumes values around multiples of y .

See also:

Arithmetic functions are discussed in full detail in Section 6.1.4 of the

Language Reference.

Chapter 1. Arithmetic Functions 26

Power

Power(

x, ! (input) numerical expression

y ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

y

A scalar numerical expression.

Return value:

The function Power returns x raised to the power y .

Remarks:

� The following combination of arguments is allowed:

– x > 0

– x = 0 and y > 0

– x < 0 and y integer

In all other cases a run-time error will result.

� The function can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Cube, Sqr, and Sqrt. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 27

Precision

Precision(

x, ! (input) numerical expression

y ! (input) integer expression

)

Arguments:

x

A scalar numerical expression.

y

An integer expression.

Return value:

The function Precision returns x rounded to y significant digits.

Remarks:

� The function Precision can be used in constraints of nonlinear

mathematical programs. However, nonlinear solvers may experience

convergence problems around the discontinuities of the Precision

function.

� When the numerical expression contains a unit, the function Precision

will first convert the expression to the corresponding base unit, before

evaluating the function itself.

See also:

The functions Round, Ceil, Floor, Trunc. Arithmetic functions are discussed

in full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 28

Radians

Radians(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Radians returns the value of x converted from degrees to

radians.

Remarks:

The function Radians can be used in constraints of linear and nonlinear

mathematical programs.

See also:

The function Degrees. Arithmetic functions are discussed in full detail in

Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 29

Round

Round(

x, ! (input) numerical expression

decimals ! (optional) integer expression

)

Arguments:

x

A scalar numerical expression.

decimals (optional)

An integer expression.

Return value:

The function Round returns the integer value nearest to x. In the presence

of the optional argument n the function Round returns the value of x

rounded to n decimal places left (decimals < 0) or right (decimals > 0)

of the decimal point.

Remarks:

� The function Round can be used in constraints of nonlinear

mathematical programs. However, nonlinear solvers may experience

convergence problems around the discontinuities of the Round function.

� When the numerical expression contains a unit, the function Round will

first convert the expression to that unit, before evaluating the function

itself. See also the option rounding compatibility in the option category

backward compatibility.

See also:

The functions Precision, Ceil, Floor, Trunc. Arithmetic functions are

discussed in full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 30

ScalarValue

ScalarValue(

identifier, ! (input) element expression into AllIdentifiers

suffix ! (optional) element expression into AllSuffixNames

)

Arguments:

identifier

A scalar element expression into AllIdentifiers

suffix

A scalar element expression into AllSuffixNames

Return value:

The function ScalarValue returns the value contained in the scalar

identifier identifier or scalar reference identifier.suffix.

Remarks:

When identifier or identifier.suffix is not a scalar numerical valued

reference, the function ScalarValue returns 0.0.

See also:

The function Val.

The ScalarValue function is a function that operates on subsets of

AllIdentifiers. Other functions that operate on subsets of AllIdentifiers

are referenced in Section 25.4 of the Language Reference.

Chapter 1. Arithmetic Functions 31

Sign

Sign(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Sign returns +1 if x > 0, −1 if x < 0 and 0 if x = 0.

Remarks:

The function Sign can be used in constraints of nonlinear mathematical

programs. However, nonlinear solver may experience convergence

problems round 0.

See also:

The function Abs. Arithmetic functions are discussed in full detail in

Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 32

Sin

Sin(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in radians.

Return value:

The Sin function returns the sine of x in the range −1 to 1.

Remarks:

The function Sin can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Cos, Tan, ArcSin. Arithmetic functions are discussed in full

detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 33

Sinh

Sinh(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The Sinh function returns the hyperbolic sine of x in the range −∞ to ∞.

Remarks:

The function Sinh can be used in the constraints of nonlinear

mathematical programs.

See also:

The functions Cosh, Tanh, ArcSinh. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 34

Sqr

Sqr(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Sqr returns x2.

Remarks:

The function Sqr can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Power, Cube, and Sqrt. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 35

Sqrt

Sqrt(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in the range [0,∞).

Return value:

The function Sqrt returns the
√
x.

Remarks:

� A run-time error results if x is outside the range [0,∞).
� The function Sqrt can be used in the constraints of nonlinear

mathematical programs.

See also:

The functions Power, Cube, and Sqr. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 36

Tan

Tan(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression in radians.

Return value:

The Tan function returns the tangent of x in the range −∞ to ∞.

Remarks:

The function Tan can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Cos, Sin, ArcTan. Arithmetic functions are discussed in full

detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 37

Tanh

Tanh(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The Tanh function returns the hyperbolic tangent of x in the range −1 to 1.

Remarks:

The function Tanh can be used in constraints of nonlinear mathematical

programs.

See also:

The functions Cosh, Sinh, ArcTanh. Arithmetic functions are discussed in

full detail in Section 6.1.4 of the Language Reference.

Chapter 1. Arithmetic Functions 38

Trunc

Trunc(

x ! (input) numerical expression

)

Arguments:

x

A scalar numerical expression.

Return value:

The function Trunc returns the truncated value of x: Sign(x)·Floor(Abs(x)).

Remarks:

� The function Trunc will round to the nearest integer, if it lies within the

equality tolerances equality absolute tolerance and equality relative

tolerance.

� The function Trunc can be used in the constraints of nonlinear

mathematical programs. However, nonlinear solver may experience

convergence problems around integer argument values.

� When the numerical expression contains a unit, the function Trunc will

first convert the expression to the corresponding base unit, before

evaluating the function itself.

See also:

The functions Ceil, Floor, Round, Precision. Arithmetic functions are

discussed in full detail in Section 6.1.4 of the Language Reference.

Numeric tolerances are discussed in Section 6.2.2 of the Language

Reference.

Chapter 1. Arithmetic Functions 39

Val

Val(

str ! (input) string or element expression

)

Arguments:

str

A scalar string or element expression.

Return value:

The function Val returns the numerical value represented by the string or

element str.

Remarks:

If str cannot be interpreted as a numerical value, a runtime error may

occur, see option suppress error messages of val function.

See also:

The Val function is discussed in full detail in Section 5.2.1 of the Language

Reference.

Chapter 2

Set Related Functions

Aimms supports the following set related functions:

� ActiveCard

� Card

� CloneElement

� Element

� ElementCast

� ElementRange

� FindUsedElements

� First

� Last

� Ord

� RestoreInactiveElements

� RetrieveCurrentVariableValues

� SetAddRecursive

� SetElementAdd

� SetElementRename

� StringToElement

� SubRange

Chapter 2. Set Related Functions 41

ActiveCard

The function ActiveCard returns the cardinality of active elements in its

identifier argument, or the cardinality of active elements of a suffix of that

identifier.

Card(

Identifier, ! (input) identifier reference

[Suffix] ! (optional) element in the set AllSuffixNames

)

Arguments:

Identifier

A reference to a set or an indexed identifier.

Suffix

An element in the predefined set AllSuffixNames.

Return value:

If Identifier is a set, the function ActiveCard returns the number of active

elements in Identifier. If Identifier is an indexed identifier, the function

ActiveCard returns the number of nondefault values stored for Identifier.

If Suffix is given, the number of nondefault values stored for the given

suffix of Identifier.

Remarks:

The ActiveCard function cannot be applied to slices of indexed identifiers.

In such a case, you can use the Count operator to count the number of

nondefault elements.

See also:

The function Card and Count operator (see also Section 6.1.6 of the

Language Reference).

Chapter 2. Set Related Functions 42

Card

The function Card returns the cardinality of its identifier argument, or of the

cardinality of a suffix of that identifier.

Card(

Identifier, ! (input) identifier reference

[Suffix] ! (optional) element in the set AllSuffixNames

)

Arguments:

Identifier

A reference to a set or an indexed identifier.

Suffix

An element in the predefined set of AllSuffixNames.

Return value:

If Identifier is a set, the function Card returns the number of elements in

Identifier. If Identifier is an indexed identifier, the function Card returns

the number of nondefault values stored for Identifier. If Suffix is given, the

number of nondefault values stored for the given suffix of Identifier.

Remarks:

� The Card function cannot be applied to slices of indexed identifiers. In

such a case, you can use the Count operator to count the number of

nondefault elements.

� When the Card function is used inside the definition of a parameter or a

set and the first argument is an index or element parameter into the set

AllIdentifiers then the definition depends on all identifiers that can

appear on the left hand side of an assignment (sets without a definition,

parameters without a definition, variables and constraints). The

cardinality will be computed for all identifiers, including those with a

definition. These definitions will not be made up to date, however. This

is illustrated in the following example.

Parameter A;

Parameter B {

Definition : A + 1;

}

Parameter TheCards {

IndexDomain : IndexIdentifiers;

Definition : Card(IndexIdentifiers, ’Level’);

}

Body:

A := 1;

display TheCards;

Chapter 2. Set Related Functions 43

Here TheCards is computed in the display statement because A just

changed. The definition of TheCards, that is made up to date by the

display statement, will, however, not invoke the computation of B,

although it is not up to date. This is done in order to avoid circular

references while making set and parameter definitions up to date. In

order to make B up to date consider using the Update statement, see also

Section 7.3 of the Language Reference.

See also:

The function ActiveCard and the Count operator (see also Section 6.1.6 of

the Language Reference).

Chapter 2. Set Related Functions 44

CloneElement

The procedure CloneElement copies the data associated with a particular

element to another element.

CloneElement(

updateSet, ! (input, output) a set identifier

originalElement, ! (input) an element in the set

cloneName, ! (input) a string that is the name of the clone

cloneElement, ! (output) an element parameter

includeDefinedSubsets) ! (optional) an integer, default 0.

The procedure CloneElement performs the following actions:

1. It creates or finds an element with name cloneName: cloneElement. The

element cloneElement is inserted into updateSet if it is not already there.

This insertion is only permitted if updateSet does not have a definition.

2. For each domain set of updateSet, say insertDomainSet, the element

cloneElement is inserted into insertDomainSet if it is not already there.

Such an insertion is only permitted if insertDomainSet does not have a

definition.

3. For each subset of updateSet, say insertSubset in which originalElement

is an element, cloneElement is also inserted into insertSubset. If

includeDefinedSubsets is 0, then insertSubset is skipped if it is a defined

subset.

4. The domain sets of steps 1 and 2, and the sets modified in step 3 form a

set, say modifiedSets.

5. Identifiers declared over a set in modifiedSets that meet one of the

following criteria, are selected:

� It is a non-local multi-dimensional set without a definition.

� It is a non-local parameter without a definition.

� It is a variable.

� It is a constraint.

These identifiers form the set modifiedIdentifiers.

6. For each identifier in the set modifiedIdentifiers, and all suffixes of this

identifier, the data associated with element originalElement is copied to

cloneElement.

Arguments:

updateSet

A one-dimensional set.

originalElement

An element valued expression that should result in an element in

updateSet.

cloneName

A string expression that should result in a name that is in the set

updateSet or can be added to that set.

Chapter 2. Set Related Functions 45

cloneElement

An element parameter, in which the resulting element is stored.

includeDefinedSubsets

When non-zero, defined subsets are included in the modifiedSets as

well. When these defined subsets are evaluated thereafter again, this

may result in the creation of inactive data. Inactive data can be

removed by a CLEANUP or CLEANDEPENDENTS statement, see Section 25.3

of the Language Reference. Defined subsets that are defined as an

enumeration are never included.

Return value:

The procedure returns 1 if successful and 0 otherwise. Possible reasons

for returning 0 are:

� originalElement is not in updateSet.

� cloneName equals name of originalElement.

� There are no identifiers modified.

Remarks:

If you want to make sure that the string cloneName is not yet an element in

updateSet, use a statement like:

if (not (cloneName in updateSet)) then

CloneElement(...);

endif ;

Example:

With the following declarations (and initial data):

Set S {

Index : i, j;

Parameter : ep;

InitialData : data { a };

}

Parameter P {

IndexDomain : i;

InitialData : data { a : 1 };

}

Parameter Q {

IndexDomain : (i,j);

InitialData : data { (a, a) : 1 };

}

the statement

CloneElement(S, ’a’, "b", ep);

results in S, P, Q and ep having the following data:

S := data { a, b } ;

P := data { a : 1, b : 1 } ;

Q := data { (a, a) : 1, (a, b) : 1, (b, a) : 1, (b, b) : 1 } ;

ep := ’b’ ;

Chapter 2. Set Related Functions 46

See also:

The function StringToElement, the procedure FindUsedElements and the

procedure RestoreInactiveElements.

Chapter 2. Set Related Functions 47

Element

With the function Element you can retrieve the n-th element from a set.

Element(

Set, ! (input) set reference

n ! (input) integer expression

)

Arguments:

Set

The set from which an element is to be returned.

n

An integer expression indicating the ordinal number of the element to

be returned.

Return value:

The function Element returns the n-th element of set Set.

Remarks:

If there is no n-th element in Set, the function returns the empty element

’’ instead.

Chapter 2. Set Related Functions 48

ElementCast

With the function ElementCast you can cast an element of one set to an

(existing) element with the same name in a set with a different root set.

ElementCast(

set, ! (input) a set expression

element, ! (input) a scalar element expression

[create] ! (optional) 0 or 1

)

Arguments:

set

A set in which you want to find a specific element name.

element

A scalar element expression, representing the element that you want

to convert to a different root set hierarchy.

create (optional)

An indicator whether or not a nonexisting element are added to the

set during the call.

Return value:

The function returns the existing element or, if the element cannot be

converted to an existing element and the argument create is not set to 1,

the function returns the empty element. If create is set to 1, nonexisting

elements will be created on the fly.

See also:

The procedure SetElementAdd.

Chapter 2. Set Related Functions 49

ElementRange

With the function ElementRange you can create a set with elements in which

each element can be constructed using a prefix string, a postfix string, and a a

sequential number.

ElementRange(

from, ! (input) integer expression

to, ! (input) integer expression

[incr,] ! (optional) integer expression

[prefix,] ! (optional) string expression

[postfix,] ! (optional) string expression

[fill] ! (optional) 0 or 1

)

Arguments:

from

The integer value for which the first element must be created

to

The integer value for which the last element must be created

incr (optional)

The integer-valued interval length between two consecutive elements.

If omitted, then the default interval length of 1 is used.

prefix (optional)

The prefix string for every element. If omitted, then the elements

have no prefix (and thus start with the number).

postfix (optional)

The postfix string for every element. If omitted, then the elements

have no postfix (and thus end with the number).

fill (optional)

This logical indicator specifies whether the numbers must be padded

with leading zeroes. If omitted, then the default value 1 is used.

Return value:

The function returns a set containing the created elements.

Chapter 2. Set Related Functions 50

FindUsedElements

The procedure FindUsedElements finds all elements of a particular set that are

in use in a given collection of indexed model identifiers.

FindUsedElements(

SearchSet, ! (input) a set

SearchIdentifiers, ! (input) a subset of AllIdentifiers

UsedElements ! (output) a subset

)

Arguments:

SearchSet

The set for which you want to find the used elements.

SearchIdentifiers

A subset of AllIdentifiers, holding identifiers that are indexed over

SearchSet.

UsedElements

A subset of SearchSet. On return this subset will contain the elements

that are currently used (i.e. have corresponding nondefault values) in

the identifiers contained in SearchIdentifiers.

Chapter 2. Set Related Functions 51

First

With the function First you can retrieve the first element from a set.

First(

Set, ! (input) set reference

)

Arguments:

Set

The set from which the first element is to be returned.

Return value:

The function First returns the first element of set Set.

Remarks:

If there is no element in Set, the function returns the empty element ’’

instead.

Chapter 2. Set Related Functions 52

Last

With the function Last you can retrieve the last element from a set.

Last(

Set, ! (input) set reference

)

Arguments:

Set

The set from which the last element is to be returned.

Return value:

The function Last returns the last element of set Set.

Remarks:

If there is no element in Set, the function returns the empty element ’’

instead.

Chapter 2. Set Related Functions 53

Ord

The function Ord returns the ordinal number of a set element relative to a set.

Ord(

index, ! (input) element expression

[set] ! (optional) set reference

)

Arguments:

index

An element expression for which you want to obtain the ordinal

number.

set (optional)

The set with respect to which you want the ordinal number to be

taken. If omitted, set is assumed to be the range of the argument

index.

Return value:

The function Ord returns the ordinal number of index in set set.

Remarks:

A compile time error occurs if the argument set is not present, and Aimms

is unable to determine the range of index.

Chapter 2. Set Related Functions 54

RestoreInactiveElements

The procedure RestoreInactiveElements finds and restores all elements that

were previously removed from a particular set, but for which inactive data

still exists in a given collection of indexed model identifiers.

RestoreInactiveElements(

SearchSet, ! (input/output) a set

SearchIdentifiers, ! (input) a subset of AllIdentifiers

UsedElements ! (output) a subset

)

Arguments:

SearchSet

The set for which you want to find the inactive elements.

SearchIdentifiers

A subset of AllIdentifiers, holding identifiers that are indexed over

SearchSet.

UsedElements

A subset of SearchSet. On return this subset will contain all the

inactive elements that are currently used (i.e. have corresponding

nondefault values) in the identifiers contained in SearchIdentifiers.

Remarks:

The inactive elements found are placed in the result-set, but are also

automatically added to the search-set.

Chapter 2. Set Related Functions 55

RetrieveCurrentVariableValues

With the procedure RetrieveCurrentVariableValues you can obtain the variable

values for a given collection of variables during a running solution process.

This procedure can only be called from within the context of a solver callback

procedure.

RetrieveCurrentVariableValues(

Variables ! (input) a subset of AllVariables

)

Arguments:

Variables

A subset of AllVariables, holding all the variables for which you want

to retrieve the current values.

See also:

Solver callback procedures are discussed in full detail in Section 15.2 of

the Language Reference

Chapter 2. Set Related Functions 56

SetAddRecursive

With the procedure SetAddRecursive you can merge the elements of one set

into another set.

SetAddRecursive(

toSet, ! (input/output) a set

fromSet ! (input) a set

)

Arguments:

toSet

The set into which the elements of fromSet are merged.

fromSet

The set that you want to merge in toSet.

Remarks:

� The sets toSet and fromSet should have the same root set.

� The difference between this function and a regular set assignment is

that in case fromSet is not the domain of toSet all elements added to

toSet will also be added to the domain set of toSet

Chapter 2. Set Related Functions 57

SetElementAdd

With the procedure SetElementAdd you can add new elements to a set. When

you apply SetElementAdd to a root set, the element will be added to that root

set. When you apply it to a subset, the element will be added to the subset as

well as to all its supersets, up to and including its associated root set.

SetElementAdd(

Setname, ! (input/output) a set

Elempar, ! (output) an element parameter

Newname ! (input) a scalar string expression

)

Arguments:

Setname

The root set or subset to which you want to add the element.

Elempar

An element parameter into Setname, that on return will point to the

newly added element.

Newname

A string holding the name of the element to be added.

Remarks:

If the element already exists in the set, the procedure does not make any

changes to the set, and on return the element parameter Elempar will

point to the existing element.

See also:

� The function ElementCast and the procedures SetElementRename and

StringToElement.

� The lexical conventions for set elements in Section 2.3 of the Language

Reference.

Chapter 2. Set Related Functions 58

SetElementRename

With the procedure SetElementRename you can rename an element in a set.

SetElementRename(

Setname, ! (input) a set

Element, ! (input) an element parameter

Newname ! (input) a scalar string expression

)

Arguments:

Setname

The root set or subset in which you want to rename an element.

Element

The element that you want to rename.

Newname

A string holding the new name of the element.

Remarks:

� If the new name for the element already exists in the set, the procedure

will generate an execution error.

� Aimms will refuse to rename a set element, if an explicit reference to

such an element exists in the model source.

See also:

� The procedure SetElementAdd, and the function StringToElement.

� The lexical conventions for set elements in Section 2.3 of the Language

Reference.

Chapter 2. Set Related Functions 59

StringToElement

With the function StringToElement you can convert a string into an (existing)

element of a set.

StringToElement(

Set, ! (input) a set expression

Name, ! (input) a scalar string

[create] ! (optional) 0 or 1, default 0

)

Arguments:

Set

A set in which you want to find a specific element name.

Name

A scalar string expression, representing the string that you want to

convert.

create (optional)

An indicator whether or not a nonexisting element are added to the

set during the call.

Return value:

The function returns the existing element or, if the string cannot be

converted to an existing element and the argument create is not set to 1,

the function return the empty element. If create is set to 1, nonexisting

elements will be created on the fly.

See also:

� The function ElementCast and the procedure SetElementAdd.

� The lexical conventions for set elements in Section 2.3 of the Language

Reference.

Chapter 2. Set Related Functions 60

SubRange

The function SubRange extracts a subrange of consecutive elements from an

existing set.

SubRange(

Superset, ! (input) a simple set

First, ! (input) an element

Last ! (input) an element

)

Arguments:

Superset

The set containing the subrange of elements that you want to extract.

First

An element in Superset representing the first element of the subrange.

Last

An element in Superset representing the last element of the subrange.

Return value:

The function returns a set containing the subrange of elements extracted

from Superset. If the element First is positioned after Last, then the empty

set is returned.

Chapter 3

String Manipulation Functions

Aimms supports the following functions for manipulating strings:

� Character

� CharacterNumber

� FindNthString

� FindReplaceNthString

� FindReplaceStrings

� FindString

� FormatString

� GarbageCollectStrings

� RegexSearch

� StringCapitalize

� StringLength

� StringOccurrences

� StringToLower

� StringToUpper

� SubString

Chapter 3. String Manipulation Functions 62

Character

The function Character returns the string consisting of a single character

whose ordinal number is the value of the argument.

Character(

n ! (input) a numeric expression

)

Arguments:

n

A numeric expression in the range {0..55295} ∪ {57344..65535}.

Return value:

The function Character returns a string of length 1. Exception: when the

value 0 is passed it returns the empty string.

See also:

The function CharacterNumber.

Chapter 3. String Manipulation Functions 63

CharacterNumber

The function CharacterNumber returns the character number of the first

character in a string. It returns 0 for the empty string.

CharacterNumber(

text ! (input) a scalar string expression

)

Arguments:

text

The string for which you want to have the value of the first character.

Return value:

The function CharacterNumber returns a value in the range { 0 .. 65535 }.

See also:

The function Character.

Chapter 3. String Manipulation Functions 64

FindNthString

The function FindNthString searches for the n-th occurrence of a substring (a

key) within a search string.

FindNthString(

SearchString, ! (input) a scalar string expression

Key, ! (input) a scalar string expression

Nth, ! (input) an integer expession

[CaseSensitive], ! (optional) binary

[WordOnly], ! (optional) binary

[IgnoreWhite] ! (optional) binary

)

Arguments:

SearchString

The string in which you want to find the substring Key.

Key

The substring to search for.

Nth

The function will search for the Nth occurrence of the substring. If

this number is negative, then the function will search backwards

starting from the right.

CaseSensitive

The search will be case sensitive when the value is 1. The default

depends on the setting of the option

Case sensitive string comparison, and is 1 if this option is ’On’ and 0

if this option is ’Off’. The default of the option

Case sensitive string comparison is ’On’.

WordOnly

It is a word only search when this option is set to 1. The default is 0.

IgnoreWhite

The search ignores whites if this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function FindNthString

is case sensitive by default. You can modify this behavior through the

option Case Sensitive String Comparison.

Return value:

The function returns the start position of the n-th occurrence of the

substring starting from the left (or right). If the substring does not exist

within the string, or does not occur Nth times then the function returns 0.

When the argument Nth is 0, then this function will always return 0.

Chapter 3. String Manipulation Functions 65

See also:

The functions FindString, StringOccurrences, RegexSearch.

Chapter 3. String Manipulation Functions 66

FindReplaceNthString

The function FindReplaceNthString constructs a string by searching for the

Nth occurrence of a substring (a key) within a search string and replacing this

occurrence with another string. It returns the constructed string.

FindReplaceNthString(

SearchString, ! (input) a scalar string expression

Key, ! (input) a scalar string expression

Replacement, ! (input) a scalar string expression

Nth, ! (input) an integer expession

[CaseSensitive], ! (optional) binary

[WordOnly] ! (optional) binary

)

Arguments:

SearchString

The string in which you want to find the substring key.

Key

The substring to search for.

Replacement

The string used to replace Key.

Nth

The function will search for the Nth occurrence of the substring. If

this number is negative, then the function will search backwards

starting from the right.

CaseSensitive

The search will be case sensitive when the value is 1. The default

depends on the setting of the option

Case sensitive string comparison, and is 1 if this option is ’On’ and 0

if this option is ’Off’. The default of the option

Case sensitive string comparison is ’On’.

WordOnly

It is a word only search when this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function

FindReplaceNthString is case sensitive by default. You can modify this

behavior through the option Case Sensitive String Comparison.

Return value:

The function returns the resulting string. If the Nth occurrence of Key is

not found, the original string is returned.

Chapter 3. String Manipulation Functions 67

See also:

The functions FindNthString, StringOccurrences and FindReplaceStrings.

Chapter 3. String Manipulation Functions 68

FindReplaceStrings

The function FindReplaceStrings constructs a string by searching for every

occurrence of a substring (a key) within a search string and replaces it with

another string. It returns the constructed string.

FindReplaceStrings(

SearchString, ! (input) a scalar string expression

Key, ! (input) a scalar string expression

Replacement, ! (input) a scalar string expression

[CaseSensitive], ! (optional) binary

[WordOnly] ! (optional) binary

)

Arguments:

SearchString

The string in which you want to find the substring key.

Key

The substring to search for.

Replacement

The string used to replace Key.

CaseSensitive

The search will be case sensitive when the value is 1. The default

depends on the setting of the option

Case sensitive string comparison, and is 1 if this option is ’On’ and 0

if this option is ’Off’. The default of the option

Case sensitive string comparison is ’On’.

WordOnly

It is a word only search when this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function

FindReplaceStrings is case sensitive by default. You can modify this

behavior through the option Case Sensitive String Comparison.

Return value:

The function returns the resulting string. If Key is not found, the original

string is returned.

See also:

The functions FindString, StringOccurrences and FindReplaceNthString.

Chapter 3. String Manipulation Functions 69

FindString

The function FindString searches for the occurrence of a substring (a key)

within a search string.

FindString(

SearchString, ! (input) a scalar string expression

Key, ! (input) a scalar string expression

[CaseSensitive], ! (optional) binary

[WordOnly], ! (optional) binary

[IgnoreWhite] ! (optional) binary

)

Arguments:

SearchString

The string in which you want to find the substring key.

Key

The substring to search for.

CaseSensitive

The search will be case sensitive when the value is 1. The default

depends on the setting of the option

Case sensitive string comparison, and is 1 if this option is ’On’ and 0

if this option is ’Off’. The default of the option

Case sensitive string comparison is ’On’.

WordOnly

It is a word only search when this option is set to 1. The default is 0.

IgnoreWhite

The search ignores whites if this option is set to 1. The default is 0.

Remarks:

As with all string comparisons within AIMMS, the function FindString is

case sensitive by default. You can modify this behavior through the option

Case Sensitive String Comparison.

Return value:

The function returns the start position of the first occurrence of the

substring. If the substring does not exist, then the function returns 0.

See also:

The functions FindNthString, RegexSearch.

Chapter 3. String Manipulation Functions 70

FormatString

With the FormatString function you can compose a string that is built up from

combinations of numbers, strings and set elements. The FormatString

function accepts a varying number of arguments, defined by the conversion

specifiers in the format string.

FormatString(

formatstring, ! (input) a literal double quoted string

arguments, ! (input) a list of numbers, strings, and set elements

...

)

Arguments:

formatstring

A format string that specifies how the returned string is composed.

The string should contain the proper conversion specifier for each

following argument.

arguments,...

One or more arguments of type number, string or element. The order

of these arguments must coincide with the order of the conversion

specifiers in formatstring.

Return value:

The function returns the formatted string.

See also:

For a detailed description of the conversion specifiers in Aimms see

Section 5.3.2 of the Language Reference.

Chapter 3. String Manipulation Functions 71

GarbageCollectStrings

The procedure GarbageCollectStrings removes any unused strings in the

internal data structures of Aimms. If you do not call this procedure explicitly,

Aimms performs an automatic garbage collect at certain places during

execution. For example as part of the Empty statement when recently a lot of

string valued expressions have been executed.

GarbageCollectStrings()

Remarks:

Use this procedure only when you notice that Aimms uses a lot of memory

that might be related to having many strings in the model. It is a rather

expensive procedure in terms of execution time, because it needs to

enumerate all the individual entries of all string parameters in the model.

After runnig it you might see a drop in the memory that is in use by

Aimms, but be aware that because of the internal memory model of

Aimms, some memory is not given back to the operating system directly,

but has only been marked for re-use in subsequent memory requests.

Chapter 3. String Manipulation Functions 72

RegexSearch

The function RegexSearch tells if there is a substring in the search string that

matches the regex pattern.

RegexSearch(

SearchString, ! (input) a scalar string expression

Pattern, ! (input) a scalar string expression

[CaseSensitive] ! (optional) binary

)

Arguments:

SearchString

The string in which you want to find a substring matching the regex

pattern.

Pattern

The regular expressions pattern to match. Multilines are not

supported.

CaseSensitive

The search will be case sensitive when the value is 1. The default

depends on the setting of the option

Case sensitive string comparison, and is 1 if this option is ’On’ and 0

if this option is ’Off’. The default of the option

Case sensitive string comparison is ’On’.

Remarks:

� The used regular expressions grammar follows the implementation of

the modified ECMAScript regular expression grammar in the C++

Standard Library. It follows ECMA-262 grammar and POSIX grammar,

with some modifications. For further references go to this link

https://en.cppreference.com/w/cpp/regex/ecmascript

You can find more information on ESMA Script regular expressions via

this link: ECMA Regular expressions. You can find more information on

POSIX regular expressions via this link:

POSIX Basic Regular Expressions.

� To include a special character in a string, it should be escaped by the

backslash character (for more information on special characters see

also Section 5.3.2 of the Language Reference). In regular expressions

special characters also have to be escaped in order to be included in a

pattern. So, for example, in order to match a backslash character the

pattern should contain four backslashes (see the example below).

https://en.cppreference.com/w/cpp/regex/ecmascript
https://ecma-international.org/ecma-262/#sec-regexp-regular-expression-objects
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03

Chapter 3. String Manipulation Functions 73

Return value:

The function returns 1 if a substring that matches the regex pattern exists

in the search string. When the pattern is an empty string, the function

returns 1. In all other cases, the function returns 0.

Example:

The following example checks if the path contains the specified folder

name on disk C. With the following declarations (and initial data):

Parameter P;

StringParameter path {

InitialData: "C:\\ProgramFiles\\Folder\\SubFolder";

}

StringParameter regexPattern {

InitialData: "c:.*\\\\ProgramFiles(\\\\|$)";

}

the statement

P := regexsearch(path, regexPattern, 0);

results in P being 1.

The used regular expression pattern specifies that the path starts with

"c:", followed by zero or more characters (regular expression ".*"),

followed by "\ProgramFiles" (regular expression "\\\\ProgramFiles"), and

ends with a backslash or the end of line (regular expression "\\\\|$").

See also:

The functions FindString, FindNthString.

Chapter 3. String Manipulation Functions 74

StringCapitalize

The function StringCapitalize converts the first character of a string to upper

case, and all other characters to lower case.

StringCapitalize(

text ! (input) a scalar string expression

)

Arguments:

text

The string that you want to capitalize.

Return value:

The function returns the capitalized string.

See also:

The functions StringToLower, StringToUpper.

Chapter 3. String Manipulation Functions 75

StringLength

The function StringLength returns the number of characters in a string.

StringLength(

text ! (input) a scalar string expression

)

Arguments:

text

The string for which you want to retrieve the length.

Return value:

The function returns the number of characters in the string.

Chapter 3. String Manipulation Functions 76

StringOccurrences

The function StringOccurrences counts the number of occurrences of a

particular substring in a string.

StringOccurrences(

SearchString, ! (input) a string expression

Key, ! (input) a string expression

[CaseSensitive], ! (optional) binary

[WordOnly], ! (optional) binary

[IgnoreWhite] ! (optional) binary

)

Arguments:

SearchString

A string in which you want to find the substring(s).

Key

The substring.

CaseSensitive

The search will be case sensitive when the value is 1. The default

depends on the setting of the option

Case sensitive string comparison, and is 1 if this option is ’On’ and 0

if this option is ’Off’. The default of the option

Case sensitive string comparison is ’On’.

WordOnly

It is a word only search when this option is set to 1. The default is 0.

IgnoreWhite

The search ignores whites if this option is set to 1. The default is 0.

Return value:

The function returns how many occurrences of the substring Key exist in

the string SearchString.

See also:

The functions FindString, FindNthString.

Chapter 3. String Manipulation Functions 77

StringToLower

The function StringToLower converts all characters of a string to lower case.

StringToLower(

text ! (input) a scalar string expression

)

Arguments:

text

The string that you want to convert to lower case characters.

Return value:

The function returns the lower case string.

See also:

The functions StringToUpper, StringCapitalize.

Chapter 3. String Manipulation Functions 78

StringToUpper

The function StringToUpper converts all characters of a string to upper case.

StringToUpper(

text ! (input) a scalar string expression

)

Arguments:

text

The string that you want to convert to upper case characters.

Return value:

The function returns the upper case string.

See also:

The functions StringToLower, StringCapitalize.

Chapter 3. String Manipulation Functions 79

SubString

The function SubString retrieves a substring from a specific string, based on

the start and end position of this substring within this string.

SubString(

str, ! (input) a scalar string expression

from, ! (input) an integer value

to ! (input) an integer value

)

Arguments:

str

The string from which you want to retrieve the substring.

from

The start position of the substring within str.

to

The end position of the substring within str.

Return value:

The function returns the requested substring.

Remarks:

If the arguments from and to are positive, then the position is calculated

from the start of the string (i.e. the first character is on position 1). If the

arguments from and to are negative, then the position is calculated from

the end of the string (i.e. the last character is on position −1). from must

be less than or equal to to, and if either of the values exceeds the length of

the string, they are automatically set within the proper range.

Chapter 4

Unit Functions

Aimms supports the following functions for unit related functions:

� AtomicUnit

� ConvertUnit

� EvaluateUnit

� StringToUnit

� Unit

Chapter 4. Unit Functions 81

AtomicUnit

With the function AtomicUnit you can retrieve the atomic unit expression

corresponding to the unit expression passed as the argument to the function.

AtomicUnit(

unit ! (input) scalar unit expression

)

Arguments:

unit

A unit expression of which the associated atomic unit expression

must be computed

Return value:

The function returns the atomic unit expression corresponding to unit.

Remarks:

The atomic unit expression associated with a given unit is the unit

expression solely in terms of atomic unit symbols by which the given unit

differs a constant scale factor only.

See also:

Unit expressions are discussed in full detail in Chapter 32 of the Language

Reference.

Chapter 4. Unit Functions 82

ConvertUnit

With the function ConvertUnit you can compute the associated unit value of a

unit expression with respect to a given convention.

ConvertUnit(

unit, ! (input) scalar unit expression

convention ! (input) element expression

)

Arguments:

unit

A unit expression of which the associated unit value in the given

convention must be computed

convention

An element expression in to AllConventions, representing the

convention with respect to which a unit value must be computed.

Return value:

The function returns the associated unit value of unit with respect to

convention.

See also:

Unit expressions and conventions are discussed in full detail in

Chapter 32 of the Language Reference.

Chapter 4. Unit Functions 83

EvaluateUnit

With the function EvaluateUnit you can compute the numerical value (with

associated unit) of a given unit expression.

EvaluateUnit(

unit ! (input) scalar unit expression

)

Arguments:

unit

A unit expression of which the numerical value (with associated unit)

must be computed

Return value:

The function returns the numerical value (with associated unit),

corresponding to one unit of unit.

Remarks:

The function EvaluateUnit is an extension of Aimms’ local unit override

capabilities which allows computed unit expressions.

See also:

Unit expressions are discussed in full detail in Chapter 32 of the Language

Reference.

Chapter 4. Unit Functions 84

StringToUnit

With the function StringToUnit you can compute a unit value corresponding

to a given string expression.

StringToUnit(

str ! (input) scalar string expression

)

Arguments:

str

A string expression of which the associated unit value must be

computed

Return value:

The function returns the associated unit value of str, or fails if the given

string does not correspond to a string constant.

See also:

Unit expressions discussed in full detail in Chapter 32 of the Language

Reference.

Chapter 4. Unit Functions 85

Unit

The function Unit returns the unit value of a given unit constant.

Unit(

unit ! (input) scalar unit constant

)

Arguments:

unit

A unit constant of which the associated unit value must be computed

Return value:

The function returns the unit value of a unit constant unit.

Remarks:

The function Unit simply returns its argument. It exists to allow the use of

numeric constants in computed unit expressions.

See also:

Unit expressions discussed in full detail in Chapter 32 of the Language

Reference.

Chapter 5

Time Functions

Aimms supports the following time-related functions:

� Aggregate

� ConvertReferenceDate

� CreateTimeTable

� CurrentToMoment

� CurrentToString

� CurrentToTimeSlot

� DaylightSavingEndDate

� DaylightSavingStartDate

� DisAggregate

� MomentToString

� MomentToTimeSlot

� PeriodToString

� StringToMoment

� StringToTimeSlot

� TestDate

� TimeSlotCharacteristic

� TimeSlotToMoment

� TimeSlotToString

� TimeZoneOffSet

Chapter 5. Time Functions 87

Aggregate

With the procedure Aggregate you can aggregate time-dependent data from a

calendar time scale (time slots) to a horizon time scale (periods).

Aggregate(

TimeslotData, ! (input) an indexed identifier over a calendar

PeriodData, ! (output) an indexed identifier over a horizon

TimeTable, ! (input) an AIMMS time table

Type, ! (input) an element in the set AggregationTypes

[Locus] ! (optional) a value between 0 and 1

)

Arguments:

TimeslotData

An identifier (slice) containing the data to be aggregated. The domain

sets in the index domain of this identifier should at least contain a

calendar set, and all other sets should coincide with the domain of

PeriodData.

PeriodData

An identifier (slice) that on return will contain the aggregated data.

The domain sets in the index domain of this identifier should at least

contain a horizon set, and all other sets should coincide with the

domain of TimeslotData.

TimeTable

An indexed set in a calendar and defined over a horizon. This horizon

and calendar should match with the index domains of TimeslotData

and PeriodData.

Type

An element of the pre-defined set AggregationTypes (summation,

average, maximum, minimum, or interpolation).

Locus (only for interpolation type)

A number between 0 and 1, that indicates at which moment in a

period the quantity is to be measured.

See also:

The procedure DisAggregate. Time-dependent aggregation and

disaggregation is discussed in full detail in Section 33.5 of the Language

Reference.

Chapter 5. Time Functions 88

ConvertReferenceDate

The function ConvertReferenceDate converts a reference date from one

timezone to the other.

ConvertReferenceDate(

ReferenceDate, ! (input) a string expression

FromTimezone, ! (input) an element expression

ToTimezone, ! (input) an element expression

IgnoreDST ! (optional) a numerical expression (default 0)

)

Arguments:

ReferenceDate

A string that holds a reference date in FromTimezone.

FromTimezone

An element of AllTimeZones with respect to which ReferenceDate is

expressed.

ToTimezone

An element of AllTimeZones with respect to which the resulting

reference date must be expressed.

IgnoreDST

A numerical expression indicating whether daylight saving time must

be ignored in the conversion.

Return value:

The result of ConvertReferenceDate is a reference date in ToTimezone

corresponding to the reference date ReferenceDate in FromTimezone.

See also:

Aimms support for time zones is discussed in full detail in Sections 33.7.4

and 33.10 of the Language Reference.

Chapter 5. Time Functions 89

CreateTimeTable

With the procedure CreateTimeTable you can create a timetable in Aimms.

CreateTimeTable(

Timetable, ! (output) an indexed set

CurrentTimeslot, ! (input) an element in a calendar

CurrentPeriod, ! (input) an element in a horizon

PeriodLength, ! (input) one-dimensional integer parameter

LengthDominates, ! (input) one-dimensional binary parameter

InactiveTimeSlots, ! (input) a subset of a calendar

DelimiterSlots ! (input) a subset of a calendar

)

Arguments:

Timetable

An indexed set in a calendar and defined over the horizon to be

linked to the calendar. This argument implicitly sets the calendar and

horizon used for the creation of the timetable. The other arguments

of the procedure should match with this calendar and horizon.

CurrentTimeslot

An element of a calendar (a time slot) that should be aligned with the

CurrentPeriod in the horizon.

CurrentPeriod

An element of a horizon (a period) that should be aligned with the

timeslot in the calendar.

PeriodLength

A one-dimensional integer parameter, specifying the desired length of

each period in the horizon in terms of the number of time slots to be

contained in it.

LengthDominates

A one-dimensional binary parameter, indicating whether reaching the

specified PeriodLength dominates over the presence of any delimiter

slot for every period in the horizon.

InactiveTimeSlots

A subset of the calendar, indicating the time slots that must be

excluded from the timetable.

DelimiterSlots

A subset of the calendar, indicating the time slots that will (usually)

result in starting a new period in the horizon.

See also:

The procedures Aggregate, DisAggregate. For a more detailed description

of the creation of timetables, see Section 33.4 of the Language Reference.

Chapter 5. Time Functions 90

CurrentToMoment

The function CurrentToMoment converts the current time to the elapsed time

with respect to a specific reference date.

CurrentToMoment(

Unit, ! (input) a time unit

ReferenceDate ! (input) a string expression

)

Arguments:

Unit

The time unit that is used to return the elapsed time.

ReferenceDate

A string that holds the begin date using the fixed format for date and

time, see paragraph Reference date format on page 544 of the

Language Reference.

Return value:

The result of CurrentToMoment is the elapsed time in Unit since

ReferenceDate.

See also:

� The function StringToMoment.

� The Aimms blog post: Creating StopWatch in AIMMS to time execution

illustrates the use of some time functions. The purpose of

CurrentToMoment in that post is to compute the time since a starting

point.

http://blog.aimms.com/2011/12/creating-stopwatch-in-aimms-to-time-execution/

Chapter 5. Time Functions 91

CurrentToString

The function CurrentToString creates a string representation of the current

time in the a specified format.

CurrentToString(

Format ! (input) a string expression

)

Arguments:

Format

A string that holds the date and time format used in the returned

string. Valid format strings are described in Section 33.7.

Return value:

The result of CurrentToString is a description of the current time

according to Format.

Remarks:

There is an option Current Time in LocalDST that specifies whether this

function takes into account the effects of daylight savings time.

See also:

� The functions MomentToString, CurrentToMoment.

� The Aimms blog post: Creating StopWatch in AIMMS to time execution

illustrates the use of some time functions. The purpose of

CurrentToString in that post is to mark the starting point.

http://blog.aimms.com/2011/12/creating-stopwatch-in-aimms-to-time-execution/

Chapter 5. Time Functions 92

CurrentToTimeSlot

The function CurrentToTimeSlot determines the time slot in a calendar that

corresponds with the current time.

CurrentToTimeSlot(

Calendar ! (input) a calendar

)

Arguments:

Calendar

An identifier of type calendar.

Return value:

The function CurrentToTimeSlot returns the time slot in the calendar that

contains the current moment.

Remarks:

There is an option Current Time in LocalDST that specifies whether this

function takes into account the effects of daylight savings time.

See also:

The functions StringToTimeSlot, MomentToTimeSlot.

Chapter 5. Time Functions 93

DaylightSavingEndDate

The function DaylightSavingEndDate computes the end date of daylight saving

time for a particular year in a particular time zone.

DaylightSavingEndDate(

Year, ! (input) an element expression

Timezone ! (input) an element expression

)

Arguments:

Year

An element of a yearly calendar for the end date of daylight saving

time must be computed.

Timezone

An element in the predefined set AllTimeZones.

Return value:

The result of DaylightSavingEndDate is the end date of daylight saving

time, as a reference date, for the time zone Timezone in the year Year.

See also:

Aimms support for time zones is discussed in full detail in Sections 33.7.4

and 33.10 of the Language Reference.

Chapter 5. Time Functions 94

DaylightSavingStartDate

The function DaylightSavingStartDate computes the start date of daylight

saving time for a particular year in a particular time zone.

DaylightSavingStartDate(

Year, ! (input) an element expression

Timezone ! (input) an element expression

)

Arguments:

Year

An element of a yearly calendar for the end date of daylight saving

time must be computed.

Timezone

An element in the predefined set AllTimeZones.

Return value:

The result of DaylightSavingStartDate is the start date of daylight saving

time, as a reference date, for the time zone Timezone in the year Year.

See also:

Aimms support for time zones is discussed in full detail in Sections 33.7.4

and 33.10 of the Language Reference.

Chapter 5. Time Functions 95

DisAggregate

With the procedure DisAggregate you can disaggregate time-dependent data

from a horizon time scale (periods) to a calendar time scale (time slots).

DisAggregate(

PeriodData, ! (input) an indexed identifier over a horizon

TimeslotData, ! (output) an indexed identifier over a calendar

Timetable, ! (input) an AIMMS time table

Type, ! (input) an element in the set AggregationTypes

[Locus] ! (optional) a value between 0 and 1

)

Arguments:

PeriodData

An identifier (slice) containing the data to be disaggregated. The

domain sets in the index domain of this identifier should at least

contain a horizon set, and all other sets should coincide with the

domain of TimeslotData.

TimeslotData

An identifier (slice) that on returns will contain the disaggregated

data. The domain sets in the index domain of this identifier should at

least contain a calendar set, and all other sets should coincide with

the domain of PeriodData.

Timetable

An indexed set in a calendar and defined over a horizon. This horizon

and calendar should match with the index domains of TimeslotData

and PeriodData.

Type

An element of the pre-defined set AggregationTypes (summation,

average, maximum, minimum, or interpolation).

Locus (only for interpolation type)

A number between 0 and 1, that indicates at which moment in a

period the quantity is to be measured.

See also:

The procedure Aggregate. Time-dependent aggregation and disaggregation

is discussed in full detail in Section 33.5 of the Language Reference.

Chapter 5. Time Functions 96

MomentToString

The function MomentToString creates a string representation of a moment, that

is calculated from a given amount of elapsed time since a specific reference

date.

MomentToString(

Format, ! (input) a string expression

unit, ! (input) a time unit

ReferenceDate, ! (input) a string expression

Elapsed ! (input) a numerical expression

)

Arguments:

Format

A string that holds the date and time format used in the returned

string. Valid format strings are described in Section 33.7.

unit

The time unit that is used in the argument Elapsed.

ReferenceDate

A string that holds the begin date using the fixed format for date and

time, see paragraph Reference date format on page 544 of the

Language Reference.

Elapsed

A numerical value of the time elapsed since ReferenceDate.

Return value:

The result of MomentToString is a string describing the corresponding

moment according to Format.

See also:

The function StringToMoment.

Chapter 5. Time Functions 97

MomentToTimeSlot

The function MomentToTimeSlot determines the time slot in a calendar that

corresponds with the a moment that is specified as the elapsed time since a

specific reference date.

MomentToTimeSlot(

Calendar, ! (input) a calendar

ReferenceDate, ! (input) an element (time-slot) in the calendar

Elapsed ! (input) a numerical value

)

Arguments:

Calendar

An identifier of type calendar.

ReferenceDate

A specific time-slot in Calendar holding the reference time.

Elapsed

The elapsed time since ReferenceDate. This should be an integral

multiple of the calendar’s time unit in order to select the time slot

that is the return value of this function.

Return value:

The function MomentToTimeSlot returns the time slot in the calendar that

contains the given moment. When the time slot is outside the calendar the

empty element is returned.

See also:

The functions TimeSlotToMoment, CurrentToTimeSlot, StringToTimeSlot.

Chapter 5. Time Functions 98

PeriodToString

With the function PeriodToString you can obtain a description of a period in a

timetable that consists of multiple calendar slots.

PeriodToString(

Format, ! (input) a string expression

Timetable, ! (input) an AIMMS time table

Period ! (input) an element in a horizon

)

Arguments:

Format

A string that holds the date and time format used in the returned

string. This format string can contain period specific conversion

specifiers to generate a description referring to both the beginning

and end of the period, see Section 33.7

Timetable

An indexed set in a calendar and defined over a horizon.

Period

An element in the horizon that is defined by Timetable.

Return value:

The result of PeriodToString is a string describing the corresponding

moment according to Format.

See also:

The procedure CreateTimeTable.

Chapter 5. Time Functions 99

StringToMoment

The function StringToMoment converts a given time string (in a free time

format) to the elapsed time with a respect to a specific reference date.

StringToMoment(

Format, ! (input) a string expression

Unit, ! (input) a time unit

ReferenceDate, ! (input) a string expression

Timeslot ! (input) a string expression

)

Arguments:

Format

A string that holds the date and time format used in the fourth

argument Timeslot. Valid format strings are described in Section 33.7.

Unit

The time unit that is used to return the elapsed time.

ReferenceDate

A string that holds the begin date using the fixed format for date and

time, see paragraph Reference date format on page 544 of the

Language Reference.

Timeslot

A string representing a specific date and time moment using the

format specified in the first argument Format.

Return value:

The result of StringToMoment is the elapsed time in unit between

reference-date and date.

See also:

The functions MomentToString, CurrentToMoment.

Chapter 5. Time Functions 100

StringToTimeSlot

The function StringToTimeSlot determines the time slot in a calendar that

corresponds with the a moment that is specified using a free format string.

StringToTimeSlot(

Format, ! (input) a string expression

Calendar, ! (input) a calendar

MomentString ! (input) a string expression

)

Arguments:

Format

A string that holds the date and time format used in the third

argument MomentString. Valid format strings are described in

Section 33.7.

Calendar

An identifier of type calendar.

MomentString

A string expression of the moment (using the format given in Format)

that should be matched with the time slots in the calendar.

Return value:

The function StringToTimeSlot returns the time slot in the calendar that

contains the given moment.

See also:

The functions CurrentToTimeSlot, MomentToTimeSlot.

Chapter 5. Time Functions 101

TestDate

The function TestDate tests whether or not a particular date is according to

given format.

TestDate(

Format, ! (input) a string expression

Date, ! (input) a string expression

requireUnique ! (optional) default 1.

)

Arguments:

Format

A string that holds the date and time format used in the returned

string. Valid format strings are described in Section 33.7.

Date

It is tested whether or not this string is according to format Format.

requireUnique

When 1, it requires the year number to be present in the date.

Return value:

The result of TestDate is 1 if Date is according to format Format and an

existing data, and 0 otherwise. If the result is 0, the pre-defined identifier

CurrentErrorMessage will contain a proper error message.

Examples:

ok := TestDate("%c%y-%m-%d", "2015-xx-xx"); ! ok becomes 0; Not numeric.

ok := TestDate("%c%y-%m-%d", "2015-02-29"); ! ok becomes 0; Feb 2015 has only 28 days.

ok := TestDate("%c%y-%m-%d", "2016-02-29"); ! ok becomes 1; Feb 29, 2016 exists.

ok := TestDate("%c%y-%m-%d", "2015-04-31"); ! ok becomes 0; April 31 does not exist.

ok := TestDate("%c%y-%m-%d", "2015-04-01"); ! ok becomes 1; April 01 does exist (-;

ok := TestDate("%m-%d", "03-03", requireUnique:1); ! Not unique, ok becomes 0.

ok := TestDate("%m-%d", "03-03", requireUnique:0); ! Uniqueness not required; ok becomes 1.

See also:

The function CurrentToString.

Chapter 5. Time Functions 102

TimeSlotCharacteristic

The function TimeSlotCharacteristic obtains a numeric value which

characterizes the time slot, in terms of its day of the week, its day in the year,

etc.

TimeSlotCharacteristic(

Timeslot, ! (input) an element (time-slot) in a calendar

Characteristic, ! (input) an element in TimeslotCharacteristics

Timezone, ! (optional) an element in AllTimeZones, default Local.

IgnoreDST ! (optional) 0-1 expression, default 0.

)

Arguments:

Timeslot

A element refering to a time-slot in a calendar.

Characteristic

An element in the predefined set TimeSlotCharacteristics, each

element in this set refers to a specific value that can be retrieved for a

time slot.

Timezone

A time zone from the predefined set AllTimeZones.

IgnoreDST

A 0-1 expression indicating whether or not to ignore daylight savings

time.

Return value:

The function TimeSlotCharacteristic returns a numerical value for the

requested time slot characteristic.

See also:

The function TimeSlotCharacteristic is discussed in full detail in

Section 33.4 of the Language Reference.

Chapter 5. Time Functions 103

TimeSlotToMoment

The function TimeSlotToMoment calculates the elapsed time since a specific

reference date for a given time slot in a calendar.

TimeSlotToMoment(

Calendar, ! (input) a calendar

ReferenceDate, ! (input) an element (time-slot) in the calendar

Timeslot ! (input) an element (time-slot) in the calendar

)

Arguments:

Calendar

An identifier of type calendar.

ReferenceDate

A specific time-slot in Calendar holding the reference time.

Timeslot

A specific time slot in the calendar.

Return value:

The function TimeSlotToMoment returns the elapsed time since the

reference date for the given time slot (measured in the calendar’s unit).

See also:

The functions MomentToTimeSlot, CurrentToTimeSlot, StringToTimeSlot.

Chapter 5. Time Functions 104

TimeSlotToString

The function TimeSlotToString creates a string representation of a specific

time slot in a calendar.

TimeSlotToString(

Format, ! (input) a string expression

Calendar, ! (input) a calendar

Timeslot ! (input) an element (timeslot) in the calendar

)

Arguments:

Format

A string that holds the date and time format used in the returned

string. Valid format strings are described in Section 33.7.

Calendar

An identifier of type calendar.

Timeslot

A specific time-slot in the calendar.

Return value:

The function TimeSlotToString returns a string representation of the time

slot.

See also:

The functions MomentToString, CurrentToTimeSlot, StringToTimeSlot.

Chapter 5. Time Functions 105

TimeZoneOffSet

The function TimeZoneOffSet computes, in minutes, the offset between two

time zones.

TimeZoneOffSet(

FromTZ, ! (input) an element expression

ToTZ ! (input) an element expression

[UseDST] ! (optional) 0 or 1

)

Arguments:

FromTZ

An element from the set AllTimeZones.

ToTZ

An element from the set AllTimeZones.

UseDST (optional)

A scalar expression specifying whether or not the current setting for

daylight saving time (DST) in both time zones should be taken into

account. The default is 0, indicating DST is not used.

Return value:

The result of TimeZoneOffSet is the offset, in minutes, between FromTZ and

ToTZ.

Remarks:

The result of the function has an associated unit, namely minutes. If

FromTZ is UTC, the offset of ToTZ is the usual offset with respect to UTC

(or GMT).

See also:

Aimms support for time zones is discussed in full detail in Sections 33.7.4

and 33.10 of the Language Reference.

Chapter 6

Financial Functions

Financial functions can be of great use in modeling financial optimization

models. They perform common business calculations, such as determining

� the depreciation of an asset,

� the payments for a loan,

� the future value or net present value of an investment, and

� the values of bonds, coupons or other securities.

Having these functions available in Aimms prevents you from having to

implement such functionality into your models yourself. Common arguments

for the financial functions include:

� Values: the value of an investment, security or cash flow at a specific

time. For example, the amount paid periodically to an investment or

loan.

� Rates: the interest rate or discount rate for an investment or security.

For example, the desired internal return on investment could be 8

percent.

� Dates: the date of measurements, payments or other events. For

example, the date of settlement of a security. Aimms’ financial functions

always expects dates to be provided in the format “ccyy-mm-dd”.

� Interval lengths (in time periods): the number of periods that has to be

analyzed. For example, the useful life of an asset or the number of

payments or periods of an investment

� Type: the time when payments are made during the period. For

example, at the beginning of a month or the end of the month.

The financial functions supported by Aimms can be divided into separate

categories. Each of these categories will be shortly introduced (including the

mathematical equations underlying the functions in a category) and each of

the available functions will be described in full detail. The following

categories can be distinguished:

� General conversion functions

� Day count bases and dates

� Depreciation of assets

� Investments and loans

� Securities

Chapter 6. Financial Functions 107

6.1 General Conversions

Prices (such as security prices) are often provided as a fractional price,

whereas the financial functions in Aimms always expect decimal prices.

Aimms supports the following conversion functions between fractional and

decimal prices:

� PriceDecimal

� PriceFractional

Annual interest rates can be given as a nominal rate (just the sum of interest

rates over the number of compounding periods) or in the form of an effective

rate (including the effects of interest over interest for all compounding

periods). Aimms supports the following interest rate conversion functions:

� RateEffective

� RateNominal

Chapter 6. Financial Functions 108

PriceDecimal

The function PriceDecimal converts a price expressed as a fractional number

to a price expressed as a decimal number depending on the input parameter

FractionBase.

PriceDecimal(

FractionalPrice, ! (input) numerical expression

FractionBase ! (input) numerical expression

)

Arguments:

FractionalPrice

The price expressed as a fractional number. FractionalPrice can be

any real number.

FractionBase

The base used as the denominator of the fraction. FractionBase must

be a positive integer.

Return value:

The function PriceDecimal returns the FractionalPrice expressed as a

decimal number.

Equation:

The conversion between decimal and fractional prices is based on the

system of equations







⌊pf ⌋ = ⌊pd⌋ (integer parts)

pf − ⌊pf ⌋ = b
10⌈logb⌉

(

pd − ⌊pd⌋
)

(fractional parts)

where pd is the decimal price, pf the fractional price and b the base.

Remarks:

� For bases which are a power of 10, the decimal and fractional prices

coincide. In all other cases, the fractional price is smaller than the

decimal price.

� The function PriceDecimal is similar to the Excel function DOLLARDE.

See also:

The function PriceFractional.

Chapter 6. Financial Functions 109

PriceFractional

The function PriceFractional converts a price expressed as a decimal number

to a price expressed as a fractional number depending on the input

parameter FractionBase.

PriceFractional(

DecimalPrice, ! (input) numerical expression

FractionBase ! (input) numerical expression

)

Arguments:

DecimalPrice

The price expressed as a decimal number. DecimalPrice can be any

real number.

FractionBase

The base to be used as the denominator of the fraction. FractionBase

must be a positive integer.

Return value:

The function PriceFractional returns the DecimalPrice expressed as a

fractional number.

Remarks:

� The system of equations on which the conversion between decimal and

fractional prices is based, is explained for the function PriceDecimal (the

inverse of PriceFractional).

� The function FractionalDecimal is similar to the Excel function DOLLARFR.

See also:

The function PriceDecimal.

Chapter 6. Financial Functions 110

RateEffective

The function RateEffective returns the effective annual interest rate,

expressed as a fraction, on the basis of a nominal interest rate plus the

number of compounding periods per year.

RateEffective(

NominalRate, ! (input) numerical expression

NumberPeriods ! (input) numerical expression

)

Arguments:

NominalRate

The nominal annual interest rate expressed as a fraction.

NominalRate must be a nonnegative decimal number.

NumberPeriods

The number of compounding periods per year. NumberPeriods must

be a positive integer.

Return value:

The function RateEffective returns the effective annual interest rate

expressed as a fraction.

Equation:

The conversion between nominal and effective rates is based on the

equation

reff =
(

1+ rnom

n

)n

− 1

where reff is the effective annual rate, rnom the nominal annual rate and n

the number of compounding periods.

Remarks:

� This function can be used in an objective function or constraint, and the

input parameter NominalRate can be used as a variable.

� The function RateEffective is similar to the Excel function EFFECT.

See also:

The function RateNominal.

Chapter 6. Financial Functions 111

RateNominal

The function RateNominal returns the nominal annual interest rate, expressed

as a fraction, on the basis of an effective annual interest rate plus the number

of compounding periods per year.

RateNominal(

EffectiveRate, ! (input) numerical expression

NumberPeriods ! (input) numerical expression

)

Arguments:

EffectiveRate

The effective annual interest rate expressed as a fraction.

EffectiveRate must be a nonnegative decimal number.

NumberPeriods

The number of compounding periods per year. NumberPeriods must

be a positive integer.

Return value:

The function RateNominal returns the nominal annual interest rate

expressed as a fraction.

Remarks:

� The equation on which the conversion between nominal and effective

rates is based, is explained for the function RateEffective (the inverse of

RateNominal).

� This function can be used in an objective function or constraint, and the

input parameter EffectiveRate can be used as a variable.

� The function RateNominal is similar to the Excel function NOMINAL.

See also:

The function RateEffective.

Chapter 6. Financial Functions 112

6.2 Day Count Bases and Dates

Many financial functions require date arguments, and depend on differences

between two dates, either as a number of days or as a fraction of a year. This

chapter discusses the date format expected by Aimms’ financial functions and

the different methods to compute date differences used from which you can

choose in many functions.

Format of date arguments

All date arguments in Aimms’ financial functions should be provided in the

fixed string date format “ccyy-mm-dd”. So, 15 August, 2000 should be passed

to a financial function as the string “2000-08-15”. If you want to pass an

element from a daily calendar as a date argument, you should convert it to

the fixed string date format using the function TimeSlotToString.

Day count bases

The result of many financial functions depends on the way with which

differences between two dates are dealt with. Such functions have a day count

basis argument, which determines how the difference between two dates is

calculated, either in days or as a fraction of a year. Aimms supports 5

different day count basis methods, each of which is commonly used in the

financial markets. Each of these methods is specified by a way to count days

and a way to determine how many days are in a year.

� Method 1 - NASD Method / 360 Days: Calculating with day count basis

method 1 means that a year is assumed to consist of 12 periods of 30

days. A year consists of 360 days. The difference between this method

and method 5 is the way the last day of a month is handled.

� Method 2 - Actual / Actual: Calculating with day count basis method 2

means that both the number of days between two dates and the number

of dates in a year are actual.

� Method 3 - Actual / 360 Days: Calculating with day count basis method

3 means that the number of days between two dates is actual and that

the number of days in a year is 360. When using this method, you

should note that the year fraction of two dates that are one year apart is

larger than 1 (365/360) and that this may lead to unwanted results.

� Method 4 - Actual / 365 Days: Calculating with day count basis method

4 means that the number of days between two dates is actual and that

the number of days in a year is 365.

� Method 5 - European Method / 360 Days: Calculating with day count

basis method 5 means that a year is assumed to consist of 12 periods of

Chapter 6. Financial Functions 113

30 days. A year consists of 360 days. The difference between this

method and method 1 is the way the last day of a month is handled.

When the day count basis argument is optional, Aimms assumes the NASD

method 1 by default.

Date differences

Aimms supports the following functions for computing differences between

two dates:

� DateDifferenceDays

� DateDifferenceYearFraction

Chapter 6. Financial Functions 114

DateDifferenceDays

The function DateDifferenceDays calculates the number of days between two

dates based on the specified day count basis.

DateDifferenceDays(

FirstDate, ! (input) scalar string expression

SecondDate, ! (input) scalar string expression

[Basis] ! (optional) numerical expression

)

Arguments:

FirstDate

The first date must be in date format.

SecondDate

The second date must be in date format, and later than FirstDate.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function DateDifferenceDays returns the number of days between the

two dates.

Remarks:

The function DateDifferenceDays is similar to the Excel function DAYS300.

See also:

Day count basis methods.

Chapter 6. Financial Functions 115

DateDifferenceYearFraction

The function DateDifferenceYearFraction calculates the year fraction between

two dates based on the specified day count basis.

DateDifferenceYearFraction(

FirstDate, ! (input) scalar string expression

SecondDate, ! (input) scalar string expression

[Basis] ! (optional) numerical expression

)

Arguments:

FirstDate

The first date must be in date format.

SecondDate

The second date must be in date format, and later than FirstDate.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function DateDifferenceYearFraction returns the difference between

FirstDate and SecondDate in fractions of a year.

Remarks:

The function DateDifferenceYearFraction is similar to the Excel function

YEARFRAC.

See also:

Day count basis methods.

Chapter 6. Financial Functions 116

6.3 Depreciations

Depreciation

functions

This chapter discusses the functions available in Aimms for the depreciation

of an asset. Depreciation can be performed in many ways, for example by a

fixed amount in every period, or by depreciation amounts that decrease over

time. An asset is characterized by its purchase (or initial) cost c and its

salvage value s (the value at the end of the useful life of the asset).

Useful lifeThe accounting periods for depreciating the asset have a length of one year,

but do not necessarily have to start at January 1. The useful life of the asset is

either given as a fixed amount of L years, or is computed dynamically on the

basis of the characteristics of the depreciation. The first period is the period

from the purchase date until the beginning of the next regular accounting

period. If the purchase date does not coincide with the beginning of an

accounting period, the depreciations take place in L+ 1 accounting periods.

General

equations

The following system of equations are true for all types of depreciations

supported by Aimms, where di is the actual depreciation in period i, d̃i is the

generic depreciation computed in a method-dependent manner, and vi the

value of the asset at the beginning of period i.

di = max(0,min(d̃i, vi − s))

vi = c −
i−1
∑

j=1

dj

The equations express that generic method-dependent depreciation method

will be adapted to yield the actual depreciation value to make sure that the

value of an asset vi can never drop below its salvage value s.

Method-

dependent

equations

For each depreciation method available in Aimms, the equations used to

compute the generic method-dependent depreciation amount d̃i will be listed

in the description of the depreciation function. In most occasions these

equations use the fraction fPN , which expresses the year fraction from the

purchase date until the beginning of the next regular accounting period. Its

value depends on the selected day-count basis method.

Aimms supports the following linear depreciation by constant amounts

functions:

� DepreciationLinearLife

� DepreciationLinearRate

Aimms supports the following non-linear depreciation by linear declining

amounts functions:

Chapter 6. Financial Functions 117

� DepreciationNonLinearSumOfYear

Aimms supports the following non-linear depreciation by non-linear declining

amounts functions:

� DepreciationNonLinearLife

� DepreciationNonLinearFactor

� DepreciationNonLinearRate

� DepreciationSum

Chapter 6. Financial Functions 118

DepreciationLinearLife

The function DepreciationLinearLife returns the depreciation of an asset for

the specified period, using straight-line depreciation. The accounting periods

have a length of one year, but they don’t necessary need to start January 1.

The depreciation amounts are equal for every period. In case of partial

periods, a relatively equal part must be depreciated.

DepreciationLinearLife(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Life, ! (input) numerical expression

Period, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Life

The number of periods until the asset will be fully depreciated, also

called the useful life of the asset. Life must be a positive integer.

Period

The period for which you want to compute the depreciation. Period

an integer in the range {1,Life+ 1}. Period 1 is the (partial) period

from PurchaseDate until NextPeriodDate.

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 119

Return value:

The function DepreciationLinearLife returns the depreciation of an asset

for the specified period.

Equation:

The method-dependent depreciation d̃i is expressed by the equation

d̃1 = fPN
c − s
L

d̃i =
c − s
L

(i ≠ 1).

Remarks:

The function DepreciationLinearLife is similar to the Excel function SLN.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 120

DepreciationLinearRate

The function DepreciationLinearRate returns the depreciation of an asset for

the specified period, using linear depreciation. The accounting periods have a

length of one year, but they don’t necessary need to start January 1. The sum

of the depreciation amounts of all periods cannot be higher than the

difference between the cost and the salvage.

DepreciationLinearRate(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Period, ! (input) numerical expression

DepreciationRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Period

The period for which you want to compute the depreciation. Period

must be a positive integer. Period 1 is the (partial) period from

PurchaseDate until NextPeriodDate.

DepreciationRate

The value of the asset declines every period by an amount equal to

the depreciation rate times the Cost. DepreciationRate must be a

numerical expression in the range [0, 1
2
).

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 121

Return value:

The function DepreciationLinearRate returns the depreciation of an asset

for the specified period.

Equation:

The method-dependent depreciation d̃i is expressed by the equation

d̃1 = fPNrc
d̃i = rc (i ≠ 1)

where r is the depreciation rate.

Remarks:

� The useful life of the asset is determined by the depreciation rate, and

the requirement that the value of the asset can never drop below its

salvage value.

� The function DepreciationLinearRate is similar to the Excel function

AMORLINC.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 122

DepreciationNonLinearSumOfYear

The function DepreciationNonLinearSumOfYear returns the depreciation of an

asset for the specified period, using sum of years’ digits depreciation. The

accounting periods have a length of one year, but they don’t necessary need

to start January 1. The depreciation amounts decline linear for every

following period until the value reaches the salvage.

DepreciationNonLinearSumOfYear(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Life, ! (input) numerical expression

Period, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Life

The number of periods until the asset will be fully depreciated, also

called the useful life of the asset. Life must be a positive integer.

Period

The period for which you want to compute the depreciation. Period

an integer in the range {1,Life+ 1}. Period 1 is the (partial) period

from PurchaseDate until NextPeriodDate.

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 123

Return value:

The function DepreciationNonLinearSumOfYear returns the depreciation of

an asset for the specified period.

Equation:

The method-dependent depreciation d̃i is expressed by the equation

d̃1 =
c − s

1
2
L(L+ 1)

LfPN

d̃i =
c − s

1
2L(L+ 1)

(L+ 2− i− fPN) (i ≠ 1).

Remarks:

The function DepreciationNonLinearSumOfYear is similar to the Excel

function SYD.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 124

DepreciationNonLinearLife

The function DepreciationNonLinearLife returns the depreciation of an asset

for the specified period, using fixed declining balance depreciation. The

accounting periods have a length of one year, but they don’t necessary need

to start January 1. The depreciation amounts decline by a fixed rate for every

succeeding period.

DepreciationNonLinearLife(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Life, ! (input) numerical expression

Period, ! (input) numerical expression

[Basis,] ! (optional) numerical expression

[Mode] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Life

The number of periods until the asset will be fully depreciated, also

called the useful life of the asset. Life must be a positive integer.

Period

The period for which you want to compute the depreciation. Period

an integer in the range {1,Life+ 1}. Period 1 is the (partial) period

from PurchaseDate until NextPeriodDate.

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 125

Mode

Specifies how partial periods will be handled. Mode must be binary.

Mode = 0: we just take a relatively equal part of the depreciation for a

full year. This is mathematically incorrect, but is rather common in

the financial world. Mode = 1: the depreciation for the partial periods

is calculated so that the asset exactly equals its Salvage after its

useful life. The default is 0.

Return value:

The function DepreciationNonLinearLife returns the depreciation of an

asset for the specified period.

Equation:

The method-dependent depreciation d̃i is expressed by the equations

d̃1 =







fPNrv1 for Mode = 0
(

1− (1− r)fPN
)

v1 for Mode = 1

d̃i = rvi (i ≠ 1)

where the depreciation rate r equals

r = 1−
(

s

c

)1/L

Remarks:

The function DepreciationLinearNonLife is similar to the Excel function DB.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 126

DepreciationNonLinearFactor

The function DepreciationNonLinearFactor returns the depreciation of an asset

for the specified period, using double-declining balance depreciation or some

other method you specify. The accounting periods have a length of one year,

but they don’t necessary need to start January 1. The depreciation amounts

decline by the factor times a fixed rate for every succeeding period. The

higher the used factor, the sooner the asset is totally depreciated.

DepreciationNonLinearFactor(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Life, ! (input) numerical expression

Period, ! (input) numerical expression

Factor ! (input) numerical expression

[Basis,] ! (optional) numerical expression

[Mode] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Life

The number of periods until the asset will be fully depreciated, also

called the useful life of the asset. Life must be a positive integer.

Period

The period for which you want to compute the depreciation. Period

an integer in the range {1,Life+ 1}. Period 1 is the (partial) period

from PurchaseDate until NextPeriodDate.

Chapter 6. Financial Functions 127

Factor

The rate by which the depreciation declines is
Factor

Life
. Factor must be a

numerical expression in the range [1,∞). In case Factor = 2 we

define this method as double declining depreciation.

Basis

The day-count basis method to be used. The default is 1.

Mode

Specifies how partial periods will be handled. Mode must be binary.

Mode = 0: we just take a relatively equal part of the depreciation for a

full year. This is mathematically incorrect, but is rather common in

the financial world. Mode = 1: the depreciation for the partial periods

is calculated so that the asset exactly equals its Salvage after its

useful life. The default is 0.

Return value:

The function DepreciationNonLinearFactor returns the depreciation of an

asset for the specified period.

Equation:

The method-dependent depreciation d̃i is expressed by the equations

d̃1 =







fPNrc for Mode = 0
(

1− (1− r)fPN
)

c for Mode = 1

d̃i = (c − d1)r(1− r)i−2 (i ≠ 1)

where the depreciation rate r equals

r = f

L

with f the Factor argument.

Remarks:

� The useful life of the asset is determined by the Factor and Life

arguments, and the requirement that the value of the asset can never

drop below its salvage value.

� The function DepreciationLinearNonFactor is similar to the Excel

function DDB.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 128

DepreciationNonLinearRate

The function DepreciationNonLinearRate returns the depreciation of an asset

for the specified period, using factor-declining depreciation. The

DepreciationRate determines the factor. The accounting periods have a length

of one year, but they don’t necessary need to start January 1.

DepreciationNonLinearRate(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Period, ! (input) numerical expression

DepreciationRate, ! (input) numerical expression

[Basis,] ! (optional) numerical expression

[Mode] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Period

The period for which you want to compute the depreciation. Period

an integer in the range {1,Life+ 1}. Period 1 is the (partial) period

from PurchaseDate until NextPeriodDate.

DepreciationRate

The value of the asset declines every period by an amount equal to

the depreciation rate times the Cost. DepreciationRate must be a

numerical expression in the range [0, 1
2
).

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 129

Mode

Specifies how partial periods will be handled. Mode must be binary.

Mode = 0: we just take a relatively equal part of the depreciation for a

full year. This is mathematically incorrect, but is rather common in

the financial world. Mode = 1: the depreciation for the partial periods

is calculated so that the asset exactly equals its Salvage after its

useful life. The default is 0.

Return value:

The function DepreciationNonLinearRate returns the depreciation of an

asset for the specified period.

Equation:

The method-dependent depreciation d̃i is expressed by the equations

d̃1 =







fPNrfc for Mode = 0
(

1− (1− rf)fPN
)

c for Mode = 1

d̃i =



















rfvi (1 < i < L̃− 1)
1
2vi (i = L̃− 1)

vi − s (i = L̃)

where r is the DepreciationRate, L̃ = ⌈1/r⌉ the useful life of the asset, and

the depreciation coefficient f is determined by

f =



















1.5 for
1
4
≤ r < 1

2

2.0 for
1
6
≤ r < 1

4

2.5 for r < 1
6

Remarks:

The function DepreciationLinearNonRate is similar to the Excel function

AMORDEGRC.

See also:

Day count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 130

DepreciationSum

The function DepreciationSum returns the depreciation of an asset for the

specified interval, using factor-declining depreciation. The accounting periods

have a length of one year, but they don’t necessary need to start January 1. A

parameter Switch is used to indicated that, when straight-line depreciation

results in greater depreciation than factor-declining depreciation, the

calculation of the depreciation has to be based on that method.

DepreciationSum(

PurchaseDate, ! (input) scalar string expression

NextPeriodDate, ! (input) scalar string expression

Cost, ! (input) numerical expression

Salvage, ! (input) numerical expression

Life, ! (input) numerical expression

StartPeriod, ! (input) numerical expression

EndPeriod, ! (input) numerical expression

Factor, ! (input) numerical expression

[Basis,] ! (optional) numerical expression

[Mode,] ! (optional) numerical expression

[Switch] ! (optional) numerical expression

)

Arguments:

PurchaseDate

The date of purchase of the asset. PurchaseDate must be given in a

date format. This is the first day that there will be depreciated.

NextPeriodDate

The next date after the balance is drawn up. NextPeriodDate must

also be in date format. NextPeriodDate is the first day of a new period

and must be further in time than PurchaseDate, but not more than

one year after PurchaseDate. When NextPeriodDate is an empty string,

it will get the default value of January 1st of the next year after

purchase.

Cost

The purchase or initial cost of the asset. Cost must be a positive

number.

Salvage

The value of the asset at the end of its useful life. Salvage must be a

scalar numerical expression in the range [0,Cost).

Life

The number of periods until the asset will be fully depreciated, also

called the useful life of the asset. Life must be a positive integer.

StartPeriod

The starting period of the interval, for which you want to compute

the sum of depreciation, this may also indicate a partial period.

Chapter 6. Financial Functions 131

StartPeriod must be an integer in the range {1,Life}. StartPeriod must

have the same unit as Life.

EndPeriod

The last period of the interval, for which you want to compute the

sum of depreciation. EndPeriod must be an integer in the range

{StartPeriod,Life}. EndPeriod must have the same unit as Life.

Factor

The rate by which the depreciation declines is
Factor

Life
. Factor must be a

numerical expression in the range [1,∞). In case Factor = 2 we

define this method as double declining depreciation.

Basis

The day-count basis method to be used. The default is 1.

Mode

Specifies how partial periods will be handled. Mode must be binary.

Mode = 0: we just take a relatively equal part of the depreciation for a

full year. This is mathematically incorrect, but is rather common in

the financial world. Mode = 1: the depreciation for the partial periods

is calculated so that the asset exactly equals its Salvage after its

useful life. The default is 0.

Switch

Indicates whether to switch to straight-line depreciation when the

depreciation amounts will be higher applying that method, or not to

switch. Switch must be binary. If Switch = 0: do not switch, if

Switch = 1: switch. The default is 1.

Return value:

The function DepreciationSum returns the depreciation of an asset for the

specified period.

Remarks:

The function DepreciationSum is similar to the Excel function VDB.

See also:

The functions DepreciationNonLinearFactor, DepreciationLinearLife. Day

count basis methods. General equations for computing depreciations.

Chapter 6. Financial Functions 132

6.4 Investments

Investments and

loans

When dealing with investments or loans, several cash flows are scheduled

within a certain time frame, such as the

� present value (the value at the beginning of the scheduled time frame),

� future value (the value at the end of the scheduled time frame), and

� periodic payments during the scheduled time frame.

Aimms provides several functions to calculate each of these cash flows (or the

interest rate used) in the presence of all others.

Constant

payments

Investments and loans with constant, periodic payments and a constant

interest rate are special. When the payments are annual, such an investment

is called an annuity. The constant payments of these investments consist of a

principal and an interest payment. The principal payment will generally

increase in time whereas the interest payment will decrease in time. Two

different types of investments with constant payments and interest rates can

be distinguished:

� The first type, also referred as type 0, has payments that are made at

the end of each period.

� The second type, type 1, has payments that are made at the beginning

of each period. This type has no interest payment at the beginning of

the first period, but does have an extra period, after the last periodic

payment, with an interest payment over the last period and an inverse

principal payment.

EquationsCash flows can be either positive or negative, where a positive payment

indicates that you are receiving this payment. Taking the interest into

account, the total value of an investment must be equal to zero after all cash

flows have occurred. For example, a positive present value and positive

payments will lead to a negative future value: your debt has grown. The

following equation expresses the relation between all the cash flows that take

place

vp(1+ r)N + p
N
∑

i=1

(1+ r)i−1+T + vf = 0

where vp is the present value, vf is the future value, p is the constant

periodic payment, r is the constant interest rate and T is the investment type

as discussed above.

Chapter 6. Financial Functions 133

Aimms supports the following investment functions with constant, periodic

payments:

� InvestmentConstantPresentValue

� InvestmentConstantFutureValue

� InvestmentConstantPeriodicPayment

� InvestmentConstantInterestPayment

� InvestmentConstantPrincipalPayment

� InvestmentConstantCumulativeInterestPayment

� InvestmentConstantCumulativePrincipalPayment

� InvestmentConstantNumberPeriods

� InvestmentConstantRateAll

� InvestmentConstantRate

Variable

payments

When the cash flows are variable (i.e. not constant), take place at irregular

intervals, or when the interest rate varies over time, it still possible to

compute present values, future values, and the internal rate of return, i.e. the

rate received for an investment consisting of payments and income.

Aimms supports the following investment functions for variable cash flows:

� InvestmentVariablePresentValue

� InvestmentVariablePresentValueInPeriodic

� InvestmentSingleFutureValue

� InvestmentVariableInternalRateReturnAll

� InvestmentVariableInternalRateReturn

� InvestmentVariableInternalRateReturnInPeriodicAll

� InvestmentVariableInternalRateReturnInPeriodic

� InvestmentVariableInternalRateReturnModified

Chapter 6. Financial Functions 134

InvestmentConstantPresentValue

The function InvestmentConstantPresentValue returns the present value of an

investment based on periodic, constant payments and a constant interest rate.

InvestmentConstantPresentValue(

FutureValue, ! (input) numerical expression

Payment, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

Payment

The periodic payment for the investment. Payment must be a real

number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Return value:

The function InvestmentConstantPresentValue returns the total amount

that a series of future payments is worth at this moment.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters FutureValue, Payment and InterestRate can be used as

a variable.

� The function InvestmentConstantPresentValue is similar to the Excel

function PV.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 135

InvestmentConstantFutureValue

The function InvestmentConstantFutureValue returns the future value of an

investment based on periodic, constant payments and a constant interest rate.

InvestmentConstantFutureValue(

PresentValue, ! (input) numerical expression

Payment, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

Payment

The periodic payment for the investment. Payment must be a real

number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Return value:

The function InvestmentConstantFutureValue returns the cash balance you

want to attain after the last payment is made.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue, Payment and InterestRate can be used

as a variable.

� The function InvestmentConstantFutureValue is similar to the Excel

function FV.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 136

InvestmentConstantPeriodicPayment

The function InvestmentConstantPeriodicPayment returns the periodic payment

for an investment based on periodic, constant payments and a constant

interest rate.

InvestmentConstantPeriodicPayment(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Return value:

The function InvestmentConstantPeriodicPayment returns the periodic

payment for the investment.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue, FutureValue and InterestRate can be

used as a variable.

� The function InvestmentConstantPeriodicPayment is similar to the Excel

function PMT.

Chapter 6. Financial Functions 137

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 138

InvestmentConstantInterestPayment

The function InvestmentConstantInterestPayment returns the interest payment

of the specified period for an investment based on periodic, constant

payments and a constant interest rate. Every periodic payment can be divided

in two parts: an interest payment and a principal repayment.

InvestmentConstantInterestPayment(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

Period ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

Period

The period for which you want to compute the interest payment.

Period must be an integer in the range {1,NumberPeriods + Type}.
When Type = 1, the extra period is to account the interest over the

former period.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Return value:

The function InvestmentConstantInterestPayment returns the interest

payment for the specified period.

Chapter 6. Financial Functions 139

Equation:

The interest payment ii in period i is computed through the equation

ii = −vpr(1+ r)i−1−T − p
((

(1+ r)i−1−T − 1
)

(1+ r)T + rT
)

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue, FutureValue and InterestRate can be

used as a variable.

� The function InvestmentConstantInterestPayment is similar to the Excel

function IPMT.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 140

InvestmentConstantPrincipalPayment

The function InvestmentConstantPrincipalPayment returns the principal

payment of the specified period for an investment based on periodic,

constant payments and a constant interest rate. Every periodic payment can

be divided in two parts: an interest payment and a principal payment.

InvestmentConstantPrincipalPayment(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

Period ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

Period

The period for which you want to compute the interest payment.

Period must be an integer in the range {1,NumberPeriods + Type}.
When Type = 1, the extra period is to account the interest over the

former period.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Return value:

The function InvestmentConstantPrincipalPayment returns the principal

payment for the specified period.

Chapter 6. Financial Functions 141

Equation:

The principal payment pi in period i follows from the relation

pi = p − ii

where ii is the interest payment in period i.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue, FutureValue and InterestRate can be

used as a variable.

� The function InvestmentConstantPrincipalPayment is similar to the Excel

function PPMT.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 142

InvestmentConstantCumulativeInterestPayment

The function InvestmentConstantCumulativeInterestPayment returns the

cumulative interest payment for the specified interval for an investment

based on periodic, constant payments and a constant interest rate. Every

periodic payment can be divided in two parts: an interest payment and a

principal payment.

InvestmentConstantCumulativeInterestPayment(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

StartPeriod, ! (input) numerical expression

EndPeriod, ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

StartPeriod

The starting period of the interval for which you want to compute the

cumulative interest payment. StartPeriod must be an integer in the

range {1,NumberPeriods}.

EndPeriod

The ending period of the interval for which you want to compute the

cumulative interest payment. EndPeriod must be an integer in the

range {StartPeriod,NumberPeriods}.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Chapter 6. Financial Functions 143

Return value:

The function InvestmentConstantCumulativeInterestPayment returns the

sum of the interest payments for the periods in the specified interval.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue, FutureValue and InterestRate can be

used as a variable.

� The function InvestmentConstantCumulativeInterestPayment is similar to

the Excel function CUMIPMT.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 144

InvestmentConstantCumulativePrincipalPayment

The function InvestmentConstantCumulativePrincipalPayment returns the

cumulative principal payment for the specified interval for an investment

based on periodic, constant payments and a constant interest rate. Every

periodic payment can be divided in two parts: an interest payment and a

principal payment.

InvestmentConstantCumulativePrincipalPayment(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

StartPeriod, ! (input) numerical expression

EndPeriod, ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

StartPeriod

The starting period of the interval for which you want to compute the

cumulative interest payment. StartPeriod must be an integer in the

range {1,NumberPeriods}.

EndPeriod

The ending period of the interval for which you want to compute the

cumulative interest payment. EndPeriod must be an integer in the

range {StartPeriod,NumberPeriods}.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Chapter 6. Financial Functions 145

Return value:

The function InvestmentConstantCumulativePrincipalPayment returns the

sum of the principal payments for the periods in the specified interval.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue, FutureValue and InterestRate can be

used as a variable.

� The function InvestmentConstantCumulativePrincipalPayment is similar to

the Excel function CUMPRINC.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 146

InvestmentConstantNumberPeriods

The function InvestmentConstantNumberPeriods returns the number of periods

for an investment based on periodic, constant payments and a constant

interest rate.

InvestmentConstantNumberPeriods(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

Payment, ! (input) numerical expression

InterestRate, ! (input) numerical expression

Type ! (input) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

Payment

The value of the periodic payment for the investment. Payment must

be a real number. Payment and InterestRate cannot both be 0.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Return value:

The function InvestmentConstantNumberPeriods returns the number of

periods for an investment based on periodic, constant payments and a

constant interest rate.

Remarks:

The function InvestmentConstantNumberPeriods is similar to the Excel

function NPER.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 147

InvestmentConstantRateAll

The procedure InvestmentConstantRateAll returns the interest rate(s) for an

investment based on periodic, constant payments and a constant interest rate.

InvestmentConstantRateAll(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

Payment, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

Type, ! (input) numerical expression

Mode, ! (input) numerical expression

NumberSolutions, ! (output) numerical expression

Solutions ! (output) one-dimensional parameter

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

Payment

The periodic payment for the investment. Payment must be a real

number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

Mode

Indicates whether all the solutions need to be found or just one.

Mode = 0: the search for solutions stops after one solution is found.

Mode = 1: the search for solutions continues till all solutions are

found.

NumberSolutions

The number of solutions found. If Mode = 0 NumberSolutions will

always be 1.

Solutions

There is not always a unique solution for InterestRate. Dependent on

Mode one solution or all the solutions will be given. Solutions smaller

Chapter 6. Financial Functions 148

than −1 are not supposed to be relevant, so the search for solutions

is limited to the area greater than −1.

Remarks:

� When you want to use this procedure in an objective function or

constraint you have to use InvestmentConstantRate.

� The function InvestmentConstantRateAll is similar to the Excel function

RATE.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 149

InvestmentConstantRate

The function InvestmentConstantRate returns the interest rate for an

investment based on periodic, constant payments and a constant interest

rate. This function uses the procedure InvestmentConstantRateAll to

determine all possible interest rates and returns the interest rate that is

within the specified bounds.

InvestmentConstantRate(

PresentValue, ! (input) numerical expression

FutureValue, ! (input) numerical expression

Payment, ! (input) numerical expression

NumberPeriods, ! (input) numerical expression

Type, ! (input) numerical expression

[LowerBound,] ! (optional) numerical expression

[UpperBound,] ! (optional) numerical expression

[Error] ! (optional) numerical expression

)

Arguments:

PresentValue

The total amount that a series of future payments is worth at this

moment. PresentValue must be a real number.

FutureValue

The cash balance you want to attain after the last payment is made.

FutureValue must be a real number.

Payment

The periodic payment for the investment. Payment must be a real

number.

NumberPeriods

The total number of payment periods for the investment.

NumberPeriods must be a positive integer.

Type

Indicates when payments are due. Type = 0: Payments are due at the

end of each period. Type = 1: Payments are due at the beginning of

each period.

LowerBound

Indicates a minimum for the interest rate to be accepted by this

function. The default is −1.

UpperBound

Indicates a maximum for the interest rate to be accepted by this

function. The default is 5.

Error

Indicates whether Aimms should give an error if multiple solutions

are found that satisfy the bounds. Error = 0: if multiple solutions are

Chapter 6. Financial Functions 150

found, return the solution with the smallest absolute value. Error = 1:

if multiple solutions are found, return an error message. The default

is 0.

Return value:

The function InvestmentConstantRate returns the interest rate for an

investment based on periodic, constant payments and a constant interest

rate.

Remarks:

� The function InvestmentConstantRate can be used in an objective

function or constraint. The input parameters PresentValue, FutureValue

and Payment can be used as variables.

� The function InvestmentConstantRate is similar to the Excel function

RATE.

See also:

General equations for investments with constant, periodic payments.

Chapter 6. Financial Functions 151

InvestmentVariablePresentValue

The function InvestmentVariablePresentValue returns the net present value

for an investment based on a series of periodic cash flows at the end of the

periods and a constant interest rate.

InvestmentVariablePresentValue(

Value, ! (input) one-dimensional numerical parameter

InterestRate ! (input) numerical expression

)

Arguments:

Value

The periodic payments (positive or negative), which must be equally

spaced in time and occur at the end of each period. The order of the

payments in Value must be the same as the order in which the cash

flows occur. Value is an one dimensional parameter of real numbers.

Value should contain at least one nonzero number. Value given by

positive numbers represent incoming amounts and Value given by

negative numbers represent outgoing amounts.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Return value:

The function InvestmentVariablePresentValue returns the net present value

of an investment, which is the total value of all the future cash flows at

the beginning of the first period.

Equation:

The net present value vp is computed through the equation

vp =
n
∑

i=1

pi

(1+ r)i

where pi are the (variable) periodic payments, and r is the (constant)

interest rate.

Remarks:

� When all payments are constant, the net present value computed here is

equal to the negative value of the present value computed by the

function InvestmentConstantPresentValue with the future value set to 0.0.

� This function can be used in an objective function or constraint and the

input parameters Value and InterestRate can be used as a variable.

Chapter 6. Financial Functions 152

� The function InvestmentVariablePresentValue is similar to the Excel

function NPV.

See also:

The function InvestmentConstantPresentValue.

Chapter 6. Financial Functions 153

InvestmentVariablePresentValueInPeriodic

The function InvestmentVariablePresentValueInPeriodic returns the net

present value on the date of the first cash flow for an investment based on a

series of in-periodic cash flows and a constant interest rate.

InvestmentVariablePresentValueInPeriodic(

Value, ! (input) one-dimensional numerical expression

Date, ! (input) one-dimensional string expression

InterestRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

Value

The payments (positive or negative). Value is an one-dimensional

parameter of real numbers. Value given by positive numbers

represent incoming amounts and Value given by negative numbers

represent outgoing amounts. Value must contain at least one positive

and at least one negative number.

Date

The dates on which the payments occur. Date and Value must have

the same order. Date is an one-dimensional parameter of dates given

in a date format. The first payment date indicates the beginning of

the schedule of payments. All other dates must be later than this

date, but they may occur in any order. Date should contain as many

dates as the number of values given by Value.

InterestRate

The interest rate per period for the investment. InterestRate must be

a numerical expression in the range (−1,1).

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function InvestmentVariablePresentValueInPeriodic returns the net

present value of an investment, which is the total value of all the future

cash flows at this moment.

Equation:

The net present value vp is computed through the equation

vp =
n
∑

i=1

pi

(1+ r)fi

Chapter 6. Financial Functions 154

where pi are the periodic payments, r is the (constant) interest rate, and

fi is the difference between date i and the first date (so, f1 = 0), according

to the selected day-count basis method.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters Value and InterestRate can be used as a variable.

� The function InvestmentVariablePresentValueInPeriodic is similar to the

Excel function XNPV.

See also:

Day count basis methods.

Chapter 6. Financial Functions 155

InvestmentSingleFutureValue

The function InvestmentSingleFutureValue returns the future value, the cash

balance, of a payment made at this moment, present value, with periodic

interest rates.

InvestmentSingleFutureValue(

PresentValue, ! (input) numerical expression

PeriodicRate ! (input) one-dimensional numerical expression

)

Arguments:

PresentValue

Payment made at the start of the first period. PresentValue must be a

real number. If PresentValue is a negative number it represents an

outgoing amount and when it is a positive number it represents an

incoming amount.

PeriodicRate

Interest rates which differ per period. PeriodicRate is a

one-dimensional parameter, which should contain at least one

nonzero number. The periods must be equally spaced in time and the

interest rates must be ordered.

Return value:

The function InvestmentSingleFutureValue returns the future value of the

present value, using the periodic interest rates.

Equation:

The future value vf is computed through the equation

vf = vp
n
∏

i=1

(1+ ri)

where vp is the present value, and ri the variable, periodic interest rates.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters PresentValue and PeriodicRate can be used as a

variable.

� The function InvestmentSingleFutureValue is similar to the Excel

function FVSCHEDULE.

Chapter 6. Financial Functions 156

InvestmentVariableInternalRateReturnAll

The procedure InvestmentVariableInternalRateReturnAll returns the internal

rate of return for an investment based on a series of periodic cash flows. The

internal rate of return is the rate received for an investment consisting of

payments (negative values) and income (positive values).

InvestmentVariableInternalRateReturnAll(

Value, ! (input) one-dimensional numerical expression

Mode, ! (input) numerical expression

NumberSolutions, ! (output) numerical expression

IRR ! (output) one-dimensional numerical expression

)

Arguments:

Value

The periodic payments (positive or negative), which must be equally

spaced in time. The order of the payments in Value must be the same

as the order in which the cash flows occur. Value is an one

dimensional parameter of real numbers. Value given by positive

numbers represent incoming amounts and Value given by negative

numbers represent outgoing amounts. em Value must contain at least

one positive and at least one negative number.

Mode

Indicates whether all the solutions need to be found or just one.

Mode = 0: the search for solutions stops after one solution is found.

Mode = 1: the search for solutions continues till all solutions are

found.

NumberSolutions

The number of solutions found. When Mode = 0 the NumberSolutions

will be 1.

IRR

The internal rate of return for the investment. There is not always a

unique solution for IRR. Dependent on Mode one solution or all the

solutions will be given. Solutions smaller than -1 are not supposed to

be relevant, so the search for solutions is limited to the area greater

than -1.

Equation:

The internal rate of return r is a solution of the equation

n
∑

i=1

pi

(1+ r)i = 0

where pi are the periodic payments.

Chapter 6. Financial Functions 157

Remarks:

� The internal rate of return is the interest rate at which the investment

has a zero net present value.

� When you want to use this procedure in an objective function or

constraint you have to use InvestmentVariableInternalRateReturn.

� The function InvestmentVariableInternalRateReturnAll is similar to the

Excel function IRR.

See also:

The functions InvestmentVariableInternalRateReturn,

InvestmentVariableInternalRateReturnInPeriodic.

Chapter 6. Financial Functions 158

InvestmentVariableInternalRateReturn

The function InvestmentVariableInternalRateReturn returns the internal rate

of return for an investment based on a series of periodic cash flows. The

internal rate of return is the rate received for an investment. This function

uses the procedure InvestmentVariableInternalRateReturnAll to determine all

possible internal rates and returns the internal rate that is within the

specified bounds.

InvestmentVariableInternalRateReturn(

Value, ! (input) one-dimensional numerical expression

[LowerBound,] ! (optional) numerical expression

[UpperBound,] ! (optional) numerical expression

[Error] ! (optional) numerical expression

)

Arguments:

Value

The periodic payments (positive or negative), which must be equally

spaced in time. The order of the payments in Value must be the same

as the order in which the cash flows occur. Value is an one

dimensional parameter of real numbers. Value given by positive

numbers represent incoming amounts and Value given by negative

numbers represent outgoing amounts. em Value must contain at least

one positive and at least one negative number.

LowerBound

Indicates a minimum for the internal rate to be accepted by this

function. The default is −1.

UpperBound

Indicates a maximum for the internal rate to be accepted by this

function. The default is 5.

Error

Indicates whether Aimms should give an error if multiple solutions

are found that satisfy the bounds. Error = 0: if multiple solutions are

found, return the solution with the smallest absolute value. Error = 1:

if multiple solutions are found, return an error message. The default

is 0.

Return value:

The function InvestmentVariableInternalRateReturn returns the internal

rate of return for an investment based on a series of periodic cash flows.

The internal rate of return is the rate received for an investment.

Chapter 6. Financial Functions 159

Remarks:

� The function InvestmentVariableInternalRateReturn can be used in an

objective function or constraint. The input parameter Value can be used

as a variable.

� The function InvestmentVariableInternalRateReturn is similar to the

Excel function IRR.

See also:

The functions InvestmentVariableInternalRateReturnAll,

InvestmentVariableInternalRateReturnInPeriodic.

Chapter 6. Financial Functions 160

InvestmentVariableInternalRateReturnInPeriodicAll

The procedure InvestmentVariableInternalRateReturnInPeriodicAll returns

the internal rate of return for an investment based on a series of in-periodic

cash flows. The internal rate of return is the interest rate received for an

investment.

InvestmentVariableInternalRateReturnInPeriodicAll(

Value, ! (input) one-dimensional numerical expression

Date, ! (input) one-dimensional string expression

Mode, ! (input) numerical expression

IRR, ! (output) one-dimensional numerical expression

NumberSolutions, ! (output) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

Value

The payments (positive or negative). Value is an one-dimensional

parameter of real numbers. Value given by positive numbers

represent incoming amounts and Value given by negative numbers

represent outgoing amounts. Value must contain at least one positive

and at least one negative number.

Date

The dates on which the payments occur. Date and Value must have

the same order. Date is an one-dimensional parameter of dates given

in a date format. The first payment date indicates the beginning of

the schedule of payments. All other dates must be later than this

date, but they may occur in any order. Date should contain as many

dates as the number of values given by Value.

Mode

Indicates whether all the solutions need to be found or just one.

Mode = 0: the search for solutions stops after one solution is found.

Mode = 1: the search for solutions continues till all solutions are

found.

IRR

The internal rate of return for the investment. There is not always a

unique solution for IRR. Dependent on Mode one solution or all the

solutions will be given. Solutions smaller than -1 are not supposed to

be relevant, so the search for solutions is limited to the area greater

than -1.

NumberSolutions

The number of solutions found. When Mode = 0 the NumberSolutions

will be 1.

Chapter 6. Financial Functions 161

Basis

The day-count basis method to be used. The default is 1.

Equation:

The internal rate of return r is a solution of the equation

n
∑

i=1

pi

(1+ r)fi = 0

where pi are the periodic payments, and fi is the difference between date

i and the first date (so, f1 = 0), according to the selected day-count basis

method.

Remarks:

� When you want to use the procedure in an objective function or

constraint you have to use

InvestmentVariableInternalRateReturnInPeriodic.

� The procedure InvestmentVariableInternalRateReturnInPeriodicAll is

similar to the Excel function XIRR.

See also:

The functions InvestmentVariableInternalRateReturn,

InvestmentVariableInternalRateReturnInPeriodic. Day count basis

methods.

Chapter 6. Financial Functions 162

InvestmentVariableInternalRateReturnInPeriodic

The function InvestmentVariableInternalRateReturnInPeriodic returns the

internal rate of return for an investment based on a series of in-periodic cash

flows. The internal rate of return is the interest rate received for an

investment. This function uses the procedure

InvestmentVariableInternalRateReturnInPeriodicAll to determine all possible

internal rates and returns the internal rate that is within the specified bounds.

InvestmentVariableInternalRateReturnInPeriodic(

Value, ! (input) one-dimensional numerical expression

Date, ! (input) one-dimensional string expression

[Basis,] ! (optional) numerical expression

[LowerBound,] ! (optional) numerical expression

[UpperBound,] ! (optional) numerical expression

[Error] ! (optional) numerical expression

)

Arguments:

Value

The periodic payments (positive or negative), which must be equally

spaced in time. The order of the payments in Value must be the same

as the order in which the cash flows occur. Value is an one

dimensional parameter of real numbers. Value given by positive

numbers represent incoming amounts and Value given by negative

numbers represent outgoing amounts. em Value must contain at least

one positive and at least one negative number.

Date

The dates on which the payments occur. Date and Value must have

the same order. Date is an one-dimensional parameter of dates given

in a date format. The first payment date indicates the beginning of

the schedule of payments. All other dates must be later than this

date, but they may occur in any order. Date should contain as many

dates as the number of values given by Value.

Basis

The day-count basis method to be used. The default is 1.

LowerBound

Indicates a minimum for the internal rate to be accepted by this

function. The default is −1.

UpperBound

Indicates a maximum for the internal rate to be accepted by this

function. The default is 5.

Error

Indicates whether Aimms should give an error if multiple solutions

are found that satisfy the bounds. Error = 0: if multiple solutions are

Chapter 6. Financial Functions 163

found, return the solution with the smallest absolute value. Error = 1:

if multiple solutions are found, return an error message. The default

is 0.

Return value:

The function InvestmentVariableInternalRateReturnInPeriodic returns the

internal rate of return for an investment based on a series of in-periodic

cash flows. The internal rate of return is the interest rate received for an

investment.

Remarks:

� The function InvestmentVariableInternalRateReturnInPeriodic can be

used in an objective function or constraint. The input parameter Value

can be used as a variable.

� The function InvestmentVariableInternalRateReturnInPeriodic is similar

to the Excel function XIRR.

See also:

The functions InvestmentVariableInternalRateReturn,

InvestmentVariableInternalRateReturnInPeriodicAll. Day count basis

methods.

Chapter 6. Financial Functions 164

InvestmentVariableInternalRateReturnModified

The function InvestmentVariableInternalRateReturnModified returns the

modified internal rate of return for an investment based on a series of

periodic cash flows. It considers both the cost made for the investment and

the interest received on the reinvestment of cash flows.

InvestmentVariableInternalRateReturnModified(

Value, ! (input) one-dimensional numerical expression

FinanceRate, ! (input) numerical expression

ReinvestRate ! (input) numerical expression

)

Arguments:

Value

The periodic payments (positive or negative), which must be equally

spaced in time. The order of the payments in Value must be the same

as the order in which the cash flows occur. Value is an one

dimensional parameter of real numbers. Value given by positive

numbers represent incoming amounts and Value given by negative

numbers represent outgoing amounts. Value must contain at least

one positive and at least one negative number.

FinanceRate

Interest rate you pay on money used in negative cash flows.

FinanceRate must be a numerical expression in the range [−1,∞).

ReinvestRate

Interest rate you receive on the positive cash flows as you reinvest

them. ReinvestRate must be a numerical expression in the range

[−1,∞).

Return value:

The function InvestmentVariableInternalRateReturnModified returns the

modified internal rate of return for the investment.

Equation:

The internal rate of return r is the solution of the equation

(1+ r)n−1 = −NPV(v+, rr)(1+ rr)n
NPV(v−, rf)(1+ rf)

where n is the number of periods considered, vi = v+i − v−i (with

v+i , v
−
i ≥ 0), rf the finance rate, rr the reinvestment rate, and NPV the

function InvestmentVariablePresentValue.

Chapter 6. Financial Functions 165

Remarks:

� This function can be used in an objective function or constraint and the

input parameters Value, FinanceRate and ReinvestRate can be used as a

variable.

� There should be at least one negative and one negative Value.

� The function InvestmentVariableInternalRateReturnModified is similar to

the Excel function MIRR.

See also:

The function InvestmentVariableInternalRateReturn.

Chapter 6. Financial Functions 166

6.5 Securities

SecuritiesThere are several types of securities, each with its own features and

scheduled cash flows. Cash flows can be scheduled at the end of every

coupon period or just at the end of the security’s life. If we see a security as

an investment, its yield can be viewed as the internal rate of return. The cash

flows of a security can consists of periodic payments (equal to a certain

percentage of the par value), the coupons, and the future value of the

security. In general, the general cash flow equation

vp(1+ r)N + p
N
∑

i=1

(1+ r)i−1 + vf = 0

where vp is the present value, vf is the future value, N the number of

periods, p is a constant periodic payment and r is the constant interest rate,

holds. Aimms provides functions the most common types of securities like

treasury bills and bonds. However, the present value, future value, periodic

payments, number of periods and interest rate are different for each specify

security type.

Security typesWe distinguish three main types of securities:

� securities with zero coupon periods (discounted securities),

� securities with one coupon period (at maturity), and

� securities with multiple coupon periods

Discounted

securities

In the case of discounted (or zero coupon) securities such as treasury bills,

there are no periodical payments. The only positive cash flow is a fixed

redemption at the end of the securitys life. Therefore, only the value of this

redemption and the investment made for the security determine its yield. In

this case, the present value is equal to the price −P , the price at which the

security is bought at the settlement date, there 0 periods (so no periodic

payments), and the future value at the maturity date is equal to the

redemption R. Thus the general cash flow equation reduces to

−P(1+ ryfSM)+ R = 0

where ry is the annual yield of the security, and fSM is the difference (in

fractions of years) between the settlement and maturity date, computed with

respect to the specified day count basis method.

Chapter 6. Financial Functions 167

Discount rateCommonly with discounted securities, the yield is not expressed in terms of

the price, but in terms of the fixed redemption. The discount rate is the

increase in value per year as a percentage of the redemption. The relationship

between the yield ry and the discount rate rd is given by

1+ ryfSM =
1

1− rdfSM

which leads to the following equivalent relation between price and

redemption

−P + R(1− rdfSM) = 0

Treasury billsA treasury bill is a discounted security with less than one year from

settlement until maturity, the number of days in one year is fixed at 360 and

redemption is fixed at 100.

Functions for

discounted

securities

Aimms supports the following functions for securities with zero coupon

periods:

� SecurityDiscountedPrice

� SecurityDiscountedRedemption

� SecurityDiscountedYield

� SecurityDiscountedRate

� TreasuryBillPrice

� TreasuryBillYield

� TreasuryBillBondEquivalent

One-coupon

securities

Securities that only pay interest at maturity can be seen as securities with

only one coupon period, where the accrued interest increases linearly in time

until it is paid (when the security expires), and the redemption equals the par

value of the security. In the general cash flow equation,

� the present value

vp = −P − vparrcfIS ,

where P is the price of the account at settlement and fIS is the

difference between the issue and settlement date (in fraction of years)

with respect to the specified day count basis method, to account for the

accrued interest from the issue date until settlement,

� the periodic payment

p = vparryfIM ,

where ry is the annual yield and fIM is the difference between the issue

and maturity date (in fraction of years) with respect to the specified day

count basis method, and

� the interest rate

r = ryfSM ,

Chapter 6. Financial Functions 168

where fSM is the difference between the settlement and maturity date

(in fraction of years) with respect to the specified day count basis

method.

This results in the following equation for securities with one coupon period:

(−P − vparrcfIS)(1+ ryfSM)+ vparryfIM + vpar = 0

Functions for

one-coupon

securities

Aimms supports the following functions for securities with one coupon

period:

� SecurityMaturityPrice

� SecurityMaturityCouponRate

� SecurityMaturityYield

� SecurityMaturityAccruedInterest

Multi-coupon

securities

For securities with multiple coupon periods, interest will be accrued linearly

during and paid at the end of each coupon period (i.e. at the coupon date). In

the general cash flow equation

� the number of periods

N = ⌈ffSM⌉,

where f is the coupon frequency (number of coupon periods per year),

and fSM the difference between settlement and maturity date (in

fraction of years) with respect to the specified day count basis method,

� the present value

vp = −P − vpar
rc

f

fPS

fPN
,

where P is the price of the security at settlement, vpar the par value of

the security, rc the annual coupon rate, fPS the difference (in fraction of

years) between the previous coupon and settlement date, and fPN the

difference between the previous and next coupon date, both with

respect to the specified day count basis method,

� the periodic payment

p = vpar
rc

f

� the interest rate

r = ry

f
,

where ry is the annual yield.

This results in the following equation for securities with multiple coupon

periods:

(

−P − vpar
rc

f

fPS

fPN

)N−1+ fSN
fPN

+
N
∑

i=1

vpar
rc

f

(

1+ ry
f

)N−i
+ R = 0

Chapter 6. Financial Functions 169

Functions for

multi-coupon

securities

Aimms supports the following functions for securities with multiple coupon

periods:

� SecurityCouponNumber

� SecurityCouponPreviousDate

� SecurityCouponNextDate

� SecurityCouponDays

� SecurityCouponDaysPreSettlement

� SecurityCouponDaysPostSettlement

� SecurityPeriodicPrice

� SecurityPeriodicRedemption

� SecurityPeriodicCouponRate

� SecurityPeriodicYieldAll

� SecurityPeriodicYield

� SecurityPeriodicAccruedInterest

� SecurityPeriodicDuration

� SecurityPeriodicDurationModified

Chapter 6. Financial Functions 170

SecurityDiscountedPrice

The function SecurityDiscountedPrice returns the price of a discounted

security at settlement date.

SecurityDiscountedPrice(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Redemption, ! (input) numerical expression

DiscountRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Redemption

The amount repaid at maturity date. Redemption must be a positive

real number.

DiscountRate

The rate the security’s value increases per year as a percentage of the

redemption value. DiscountRate must be a positive real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedPrice returns the price of the security at

settlement date.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters Redemption and DiscountRate can be used as a

variable.

� The function SecurityDiscountedPrice is similar to the Excel function

PRICEDISC.

See also:

Day count basis methods. General equations for discounted securities.

Chapter 6. Financial Functions 171

SecurityDiscountedRedemption

The function SecurityDiscountedRedemption returns the repayment at maturity

date of a discounted security.

SecurityDiscountedRedemption(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Price, ! (input) numerical expression

DiscountRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Price

The price of the security at settlement date. Price must be a positive

real number.

DiscountRate

The rate the security’s value increases per year as a percentage of the

redemption value. DiscountRate must be a positive real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedRedemption returns the amount paid at

maturity date.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters Price and DiscountRate can be used as a variable.

� The function SecurityDiscountedRedemption is similar to the Excel

function RECEIVED.

See also:

Day count basis methods. General equations for discounted securities.

Chapter 6. Financial Functions 172

SecurityDiscountedYield

The function SecurityDiscountedYield returns the yield of a discounted

security at maturity date.

SecurityDiscountedYield(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Price, ! (input) numerical expression

Redemption, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Price

The price of the security at settlement date. Price must be a positive

real number.

Redemption

The amount repaid at maturity date. Redemption must be a positive

real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedYield returns the annual rate the

security’s value increases as a percentage of the price.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters Price and Redemption can be used as a variable.

� The function SecurityDiscountedYield is similar to the Excel function

YIELDDISC.

See also:

Day count basis methods. General equations for discounted securities.

Chapter 6. Financial Functions 173

SecurityDiscountedRate

The function SecurityDiscountedRate returns the discount rate of a

discounted security.

SecurityDiscountedRate(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Price, ! (input) numerical expression

Redemption, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Price

The price of the security at settlement date. Price must be a positive

real number.

Redemption

The amount repaid at maturity date. Redemption must be a positive

real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityDiscountedRate returns the annual rate the security’s

value increases as a percentage of the redemption value.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters Price and Redemption can be used as a variable.

� The function SecurityDiscountedRate is similar to the Excel function

DISC.

See also:

Day count basis methods. General equations for discounted securities.

Chapter 6. Financial Functions 174

TreasuryBillPrice

The function TreasuryBillPrice returns the price of a Treasury bill at

settlement date. A Treasury bill is a discounted security with less than one

year from settlement until maturity, the number of days in one year is fixed

at 360 and redemption is fixed at 100.

TreasuryBillPrice(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

DiscountRate ! (input) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

DiscountRate

The discount rate of the security as a percentage of the redemption.

DiscountRate must be a positive real number.

Return value:

The function TreasuryBillPrice returns the price of a Treasury bill at

settlement date.

Remarks:

� This function can be used in an objective function or constraint and the

input parameter DiscountRate can be used as a variable.

� The function TreasuryBillPrice is similar to the Excel function

TBILLPRICE.

See also:

General equations for discounted securities.

Chapter 6. Financial Functions 175

TreasuryBillYield

The function TreasuryBillYield returns the yield of a Treasury bill at

settlement date. A Treasury bill is a discounted security with less than one

year from settlement until maturity, the number of days in one year is fixed

at 360 and redemption is fixed at 100.

TreasuryBillYield(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Price ! (input) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Price

The price the security is worth at this moment. Price must be a

positive real number.

Return value:

The function TreasuryBillYield returns the annual rate the Treasury bill’s

value increases as a percentage of the price.

Remarks:

� This function can be used in an objective function or constraint and the

input parameter Price can be used as a variable.

� The function TreasuryBillYield is similar to the Excel function

TBILLYIELD.

See also:

General equations for discounted securities.

Chapter 6. Financial Functions 176

TreasuryBillBondEquivalent

The function TreasuryBillBondEquivalent returns the bond equivalent yield of

a treasury bill. A Treasury bill is a discounted security with less than one year

from settlement until maturity, the number of days in one year is fixed at 360

and redemption is fixed at 100.

TreasuryBillBondEquivalent(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

DiscountRate ! (input) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be given

in a date format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

DiscountRate

The discount rate of the security as a percentage of the redemption.

DiscountRate must be a positive real number.

Return value:

The function TreasuryBillBondEquivalent returns the bond equivalent yield

of a Treasury bill.

Remarks:

� This function can be used in an objective function or constraint and the

input parameter DiscountRate can be used as a variable.

� The function TreasuryBillBondEquivalent is similar to the Excel function

TBILLEQ.

See also:

General equations for discounted securities.

Chapter 6. Financial Functions 177

SecurityMaturityPrice

The function SecurityMaturityPrice returns the price at settlement date of a

security that pays interest at maturity.

SecurityMaturityPrice(

IssueDate, ! (input) scalar string expression

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

CouponRate, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

IssueDate

The date of issue of the security. IssueDate must be given in date

format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in

date format and must be a date after IssueDate.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityPrice returns the price of the security at

settlement date.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters ParValue, CouponRate, and Yield can be used as a

variable.

Chapter 6. Financial Functions 178

� The function SecurityMaturityPrice is similar to the Excel function

PRICEMAT.

See also:

Day count basis methods. General equations for securities with one

coupon.

Chapter 6. Financial Functions 179

SecurityMaturityCouponRate

The function SecurityMaturityCouponRate returns the coupon rate of a security

that pays interest at maturity.

SecurityMaturityCouponRate(

IssueDate, ! (input) scalar string expression

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Price, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

IssueDate

The date of issue of the security. IssueDate must be given in date

format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in

date format and must be a date after IssueDate.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Price

The price of the security at settlement date. Price must be a positive

real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityCouponRate returns the annual interest rate

of the security as a percentage of the par value.

Remarks:

This function can be used in an objective function or constraint and the

input parameters ParValue, Price, and Yield can be used as a variable.

Chapter 6. Financial Functions 180

See also:

Day count basis methods. General equations for securities with one

coupon.

Chapter 6. Financial Functions 181

SecurityMaturityYield

The function SecurityMaturityYield returns the yield of a security that pays

interest at maturity.

SecurityMaturityYield(

IssueDate, ! (input) scalar string expression

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Price, ! (input) numerical expression

CouponRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

IssueDate

The date of issue of the security. IssueDate must be given in date

format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in

date format and must be a date after IssueDate.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Price

The price of the security at settlement date. Price must be a positive

real number.

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityYield returns the annual rate the security’s

value increases as a percentage of the price.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters ParValue, Price, and CouponRate can be used as a

variable.

Chapter 6. Financial Functions 182

� The function SecurityMaturityYield is similar to the Excel function

YIELDMAT.

See also:

Day count basis methods. General equations for securities with one

coupon.

Chapter 6. Financial Functions 183

SecurityMaturityAccruedInterest

The function SecurityMaturityAccruedInterest returns the accrued interest for

a security that pays interest at maturity.

SecurityMaturityAccruedInterest(

IssueDate, ! (input) scalar string expression

SettlementDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

CouponRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

IssueDate

The date of issue of the security. IssueDate must be given in date

format.

SettlementDate

The date of settlement of the security. SettlementDate must also be in

date format and must be a date after IssueDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityMaturityAccruedInterest returns the interest accrued

from issue date until settlement date.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters CouponRate and ParValue can be used as a variable.

� The function SecurityMaturityAccruedInterest is similar to the Excel

function ACCRINTM.

See also:

Day count basis methods. General equations for securities with one

coupon.

Chapter 6. Financial Functions 184

SecurityCouponNumber

The function SecurityCouponNumber returns the number of coupons from

settlement date and maturity date of a security that pays interest at the end

of each coupon period.

SecurityCouponNumber(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Frequency, ! (input) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

Return value:

The function SecurityCouponNumber returns the number of coupon

payments from the settlement date until the maturity date.

Remarks:

The function SecurityCouponNumber is similar to the Excel function COUPNUM.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 185

SecurityCouponPreviousDate

The function SecurityCouponPreviousDate returns the last coupon-date

previous to settlement date of a security that pays interest at the end of each

coupon period.

SecurityCouponPreviousDate(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Frequency ! (input) numerical expression

PreviousDate ! (output) string parameter

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

PreviousDate

The date on which the coupon period, in which the settlement date

falls, starts and on which the previous coupon period ends.

Remarks:

The function SecurityCouponPreviousDate is similar to the Excel function

COUPPCD.

See also:

General equations for securities with multiple coupons.

Chapter 6. Financial Functions 186

SecurityCouponNextDate

The function SecurityCouponNextDate returns the first coupon-date next to

settlement date of a security that pays interest at the end of each coupon

period.

SecurityCouponNextDate(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Frequency ! (input) numerical expression

NextDate ! (output) string parameter

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

NextDate

The date on which the coupon period ends and on which the next

coupon period starts.

Remarks:

The function SecurityCouponNextDate is similar to the Excel function

COUPNCD.

See also:

General equations for securities with multiple coupons.

Chapter 6. Financial Functions 187

SecurityCouponDays

The function SecurityCouponDays returns the number of days of the coupon

period in which settlement date falls. In other words the number of days

from the last coupon-date previous to settlement date until the first

coupon-date next to settlement date of a security that pays interest at the end

of each coupon period.

SecurityCouponDays(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Frequency, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityCouponDays returns the number of days of the

coupon period in which the settlement date falls.

Remarks:

The function SecurityCouponDays is similar to the Excel function COUPDAYS.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 188

SecurityCouponDaysPreSettlement

The function SecurityCouponDaysPreSettlement returns the number of days

from the last coupon-date previous to settlement date until settlement date

of a security that pays interest at the end of each coupon period.

SecurityCouponDaysPreSettlement(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Frequency, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityCouponDaysPreSettlement returns the number of days

from the previous coupon-date until the settlement date, using the

specified day-count basis.

Remarks:

The function SecurityCouponDaysPreSettlement is similar to the Excel

function COUPDAYBS.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 189

SecurityCouponDaysPostSettlement

The function SecurityCouponDaysPostSettlement returns the number of days

from the first coupon-date next to settlement date until settlement date of a

security that pays interest at the end of each coupon period.

SecurityCouponDaysPostSettlement(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

Frequency, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityCouponDaysPostSettlement returns the number of

days from the first coupon-date next to settlement date until settlement

date.

Remarks:

The function SecurityCouponDaysPostSettlement is similar to the Excel

function COUPDAYSNC.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 190

SecurityPeriodicPrice

The function SecurityPeriodicPrice returns the price at settlement date of a

security that pays interest at the end of each coupon period.

SecurityPeriodicPrice(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Redemption, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Redemption

The amount repaid for the security at the maturity date. Redemption

must be a positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicPrice returns the price of the security at

settlement date.

Chapter 6. Financial Functions 191

Remarks:

� This function can be used in an objective function or constraint and the

input parameters ParValue, Redemption, CouponRate, and Yield can be

used as a variable.

� The function SecurityPeriodicPrice is similar to the Excel function

PRICE.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 192

SecurityPeriodicRedemption

The function SecurityPeriodicRedemption returns the repayment at maturity

date of a security that pays interest at the end of each coupon period.

SecurityPeriodicRedemption(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Price, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Price

The price of the security at settlement date. Price must be a positive

real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicRedemption returns the amount repaid for

the security at the maturity date.

Chapter 6. Financial Functions 193

Remarks:

This function can be used in an objective function or constraint and the

input parameters ParValue, Price, CouponRate, and Yield can be used as a

variable.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 194

SecurityPeriodicCouponRate

The function SecurityPeriodicCouponRate returns the coupon rate of a security

that pays interest at the end of each coupon period.

SecurityPeriodicCouponRate(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Price, ! (input) numerical expression

Redemption, ! (input) numerical expression

Frequency, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Price

The price of the security at settlement date. Price must be a positive

real number.

Redemption

The amount repaid for the security at the maturity date. Redemption

must be a positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicCouponRate returns the interest rate per year

of the security as a percentage of the par value.

Chapter 6. Financial Functions 195

Remarks:

This function can be used in an objective function or constraint and the

input parameters ParValue, Price, Redemption, and Yield can be used as a

variable.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 196

SecurityPeriodicYieldAll

The procedure SecurityPeriodicYieldAll returns the yield(s) of a security that

pays interest at the end of each coupon period.

SecurityPeriodicYieldAll(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Price, ! (input) numerical expression

Redemption, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

Yield, ! (output) one-dimensional numerical expression

NumberSolutions, ! (output) numerical expression

[Basis,] ! (optional) numerical expression

[Mode] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Price

The price of the security at settlement date. Price must be a positive

real number.

Redemption

The amount repaid for the security at the maturity date. Redemption

must be a positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Chapter 6. Financial Functions 197

Yield

There is not always a unique solution for yield. Dependent on Mode

one solution or all the solutions will be given.

NumberSolutions

The number of solutions found. If Mode = 0 NumberSolutions will

always be 1.

Basis

The day-count basis method to be used. The default is 1.

Mode

Indicates whether all the solutions need to be found or just one.

Mode = 0: the search for solutions stops after one solution is found.

Mode = 1: the search for solutions continues till all solutions are

found.

Remarks:

� When you want to use this procedure in an objective function or

constraint you have to use SecurityPeriodicYield.

� The function SecurityPeriodicYieldAll is similar to the Excel function

YIELD.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 198

SecurityPeriodicYield

The function SecurityPeriodicYield returns the yield of a security that pays

interest at the end of each coupon period. This function uses the procedure

SecurityPeriodicYieldAll to determine all possible yields and returns the

yield that is within the specified bounds.

SecurityPeriodicYield(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Price, ! (input) numerical expression

Redemption, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

[Basis,] ! (optional) numerical expression

[LowerBound,] ! (optional) numerical expression

[UpperBound,] ! (optional) numerical expression

[Error] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Price

The price of the security at settlement date. Price must be a positive

real number.

Redemption

The amount repaid for the security at the maturity date. Redemption

must be a positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 199

LowerBound

Indicates a minimum for the yield to be accepted by this function.

The default is −1.

UpperBound

Indicates a maximum for the yield to be accepted by this function.

The default is 5.

Error

Indicates whether Aimms should give an error if multiple solutions

are found that satisfy the bounds. Error = 0: if multiple solutions are

found, return the solution with the smallest absolute value. Error = 1:

if multiple solutions are found, return an error message. The default

is 0.

Return value:

The function SecurityPeriodicYield returns the yield of a security that

pays interest at the end of each coupon period.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters ParValue, Price, Redemption, and CouponRate can be

used as a variable.

� The function SecurityPeriodicYield is similar to the Excel function

YIELD.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 200

SecurityPeriodicAccruedInterest

The function SecurityPeriodicAccruedInterest returns the accrued interest

from the begin of the coupon period until the settlement date for a security

that pays interest at the end of each coupon period.

SecurityPeriodicAccruedInterest(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicAccruedInterest returns the interest accrued

from the begin of the coupon period until settlement date.

Remarks:

This function can be used in an objective function or constraint and the

input parameters ParValue and CouponRate can be used as a variable.

Chapter 6. Financial Functions 201

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 202

SecurityPeriodicDuration

The function SecurityPeriodicDuration returns the Macauley duration of a

security that pays interest at the end of each coupon period. Duration is

defined as the weighted average of time it takes to receive a positive cash

flow. The present values of the cash flows are used as weights. The duration

can be used as a measure of a bond price’s response to changes in yield.

SecurityPeriodicDuration(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Redemption, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Redemption

The amount repaid for the security at the maturity date. Redemption

must be a positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Chapter 6. Financial Functions 203

Return value:

The function SecurityPeriodicDuration returns the Macauley duration of a

security that pays interest at the end of each coupon period. Duration is

defined as the weighted average of the time it takes to receive a positive

cash flow.

Equation:

The Macauley duration D is computed through the equation

D =

(

N − 1+ fSN
fPN

)

R
(

1+ ry
f

)N−1+ fSN
fPN

+
N
∑

i=1

(

i− 1+ fSN
fPN

)

vpar
rc
f

(

1+ ry
f

)i−1+ fSN
fPN

R
(

1+ ry
f

)N−1+ fSN
fPN

+
N
∑

i=1

vpar
rc
f

(

1+ ry
f

)i−1+ fSN
fPN

where all other variables have the same interpretation as in the general

equations for securities with multiple coupons.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters ParValue, Redemption, CouponRate, and Yield can be

used as a variable.

� The function SecurityPeriodicDuration is similar to the Excel function

DURATION.

See also:

Day count basis methods. General equations for securities with multiple

coupons.

Chapter 6. Financial Functions 204

SecurityPeriodicDurationModified

The function SecurityPeriodicDurationModified returns the modified Macauley

duration of a security that pays interest at the end of each coupon period.

SecurityPeriodicDurationModified(

SettlementDate, ! (input) scalar string expression

MaturityDate, ! (input) scalar string expression

ParValue, ! (input) numerical expression

Redemption, ! (input) numerical expression

Frequency, ! (input) numerical expression

CouponRate, ! (input) numerical expression

Yield, ! (input) numerical expression

[Basis] ! (optional) numerical expression

)

Arguments:

SettlementDate

The date of settlement of the security. SettlementDate must be in date

format.

MaturityDate

The date of maturity of the security. MaturityDate must also be in

date format and must be a date after SettlementDate.

ParValue

The starting value of the security at issue date. ParValue must be a

positive real number.

Redemption

The amount repaid for the security at the maturity date. Redemption

must be a positive real number.

Frequency

The number of coupon payments in one year. Frequency must be 1

(annual), 2 (semi-annual) or 4 (quarterly).

CouponRate

The annual interest rate of the security as a percentage of the par

value. CouponRate must be a nonnegative real number.

Yield

The yield of the security. Yield must be a nonnegative real number.

Basis

The day-count basis method to be used. The default is 1.

Return value:

The function SecurityPeriodicDurationModified returns the modified

Macauley duration of a security that pays interest at the end of each

coupon period.

Chapter 6. Financial Functions 205

Equation:

The modified duration Dmod is computed through the equation

Dmod =
D

1+ ry
f

where D is the Macauley duration.

Remarks:

� This function can be used in an objective function or constraint and the

input parameters ParValue, Redemption, CouponRate, and Yield can be

used as a variable.

� The function SecurityPeriodicDurationModified is similar to the Excel

function MDURATION.

See also:

The function SecurityPeriodicDuration. Day count basis methods. General

equations for securities with multiple coupons.

Chapter 7

Distribution and Combinatoric Functions

Aimms supports several functions to obtain random numbers from discrete

or continuous distribution, and additionally some combinatoric functions.

The functions for discrete distributions are:

� Binomial

� Geometric

� HyperGeometric

� NegativeBinomial

� Poisson

The functions for continuous distributions are:

� Beta

� Exponential

� ExtremeValue

� Gamma

� Logistic

� LogNormal

� Normal

� Pareto

� Triangular

� Uniform

� Weibull

The following functions that operate on distributions are available:

� DistributionCumulative

� DistributionInverseCumulative

� DistributionDensity

� DistributionInverseDensity

� DistributionMean

� DistributionDeviation

� DistributionVariance

� DistributionSkewness

� DistributionKurtosis

The combinatoric functions are:

� Combination

Chapter 7. Distribution and Combinatoric Functions 207

� Factorial

� Permutation

Chapter 7. Distribution and Combinatoric Functions 208

Binomial

The function Binomial draws a random value from a binomial distribution.

Binomial(

ProbabilityOfSuccess, ! (input) numerical expression

NumberOfTries ! (input) integer expression

)

Arguments:

ProbabilityOfSuccess

A scalar numerical expression in range (0,1).

NumberOfTries

An integer numerical expression > 0.

Return value:

The function Binomial returns a random value drawn from a binomial

distribution with a probability of success ProbabilityOfSuccess and

number of tries NumberOfTries

See also:

The Binomial distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 209

Geometric

The function Geometric draws a random value from a geometric distribution.

Geometric(

ProbabilityOfSuccess ! (input) numerical expression

)

Arguments:

ProbabilityOfSuccess

A scalar numerical expression in the range (0,1).

Return value:

The function Geometric returns a random value drawn from a geometric

distribution with a probability of success ProbabilityOfSuccess.

See also:

The Geometric distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 210

HyperGeometric

The function HyperGeometric draws a random value from a hypergeometric

distribution.

HyperGeometric(

ProbabilityOfSuccess, ! (input) numerical expression

NumberOfTries, ! (input) integer expression

PopulationSize ! (input) integer expression

)

Arguments:

ProbabilityOfSuccess

A scalar numerical expression in the range (0,1).

NumberOfTries

A integer numerical expression in the range 1, . . . ,PopulationSize.

PopulationSize

A integer numerical expression > 0.

Return value:

The function HyperGeometric returns a random value drawn from a

hypergeometric distribution with a probability of success

ProbabilityOfSuccess, number of tries NumberOfTries and population size

PopulationSize.

Remarks:

The probability of success ProbabilityOfSuccess must assume one of the

values i/size, where i is in the range 1, . . . ,PopulationSize− 1.

See also:

The HyperGeometric distribution is discussed in full detail in Appendix A of

the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 211

NegativeBinomial

The function NegativeBinomial draws a random value from a negative

binomial distribution.

NegativeBinomial(

ProbabilityOfSuccess, ! (input) numerical expression

NumberOfSuccesses ! (input) integer expression

)

Arguments:

ProbabilityOfSuccess

A scalar numerical expression in the range (0,1).

NumberOfSuccesses

A integer numerical expression > 0.

Return value:

The function NegativeBinomial returns a random value drawn from a

negative binomial distribution with probability ProbabilityOfSuccess and

number of successes NumberOfSuccesses.

See also:

The NegativeBinomial distribution is discussed in full detail in Appendix A

of the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 212

Poisson

The function Poisson draws a random value from a Poisson distribution.

Poisson(

AverageNumberOfSuccesses ! (input) numerical expression

)

Arguments:

lambda

A scalar numerical expression > 0.

Return value:

The function Poisson returns a random value drawn from a Poisson

distribution with average number of occurrences

AverageNumberOfSuccesses.

See also:

The Poisson distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 213

Beta

The function Beta draws a random value from a beta distribution.

Beta(

ShapeAlpha, ! (input) numerical expression

ShapeBeta, ! (input) numerical expression

Minimum, ! (optional) numerical expression

Maximum ! (optional) numerical expression

)

Arguments:

ShapeAlpha

A scalar numerical expression > 0.

ShapeBeta

A scalar numerical expression > 0.

Minimum

A scalar numerical expression.

Maximum

A scalar numerical expression >min.

Return value:

The function Beta returns a random value drawn from a beta distribution

with shapes ShapeAlpha, ShapeBeta, lower bound Minimum and upper

bound Maximum.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. The original

function Beta(ShapeAlpha, ShapeBeta, s) returns a random value drawn

from a beta distribution with shapes ShapeAlpha, ShapeBeta and scale s,

where s = Maximum and Minimum = 0.

See also:

The Beta distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 214

Exponential

The function Exponential draws a random value from an exponential

distribution.

Exponential(

lowerbound ! (optional) numerical expression

scale ! (optional) numerical expression

)

Arguments:

lowerbound

A scalar numerical expression.

scale

A scalar numerical expression > 0.

Return value:

The function Exponential returns a random value drawn from a

exponential distribution with lower bound lowerbound and scale scale.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. The original

function Exponential(lambda) returns a random value drawn from a

exponential distribution with rate lambda = 1/scale and lower bound 0.

See also:

The Exponential distribution is discussed in full detail in Appendix A of

the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 215

ExtremeValue

The function ExtremeValue draws a random value from an extreme value

distribution.

ExtremeValue(

location, ! (optional) numerical expression

scale ! (optional) numerical expression

)

Arguments:

location

A scalar numerical expression.

scale

A scalar numerical expression > 0.

Return value:

The function ExtremeValue returns a random value drawn from an extreme

value distribution with location location and scale scale.

See also:

The ExtremeValue distribution is discussed in full detail in Appendix A of

the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 216

Gamma

The function Gamma draws a random value from a gamma distribution.

Gamma(

Shape, ! (input) numerical expression

Lowerbound, ! (optional) numerical expression

Scale ! (optional) numerical expression

)

Arguments:

Shape

A scalar numerical expression > 0.

Lowerbound

A scalar numerical expression > 0.

Scale

A scalar numerical expression > 0.

Return value:

The function Gamma returns a random value drawn from a gamma

distribution with shape Shape, lower bound Lowerbound and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. The original

function Gamma(alpha, Shape) returns a random value drawn from a gamma

distribution with rate alpha = 1/Scale, shape Shape and lower bound 0.

See also:

The Gamma distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 217

Logistic

The function Logistic draws a random value from a logistic distribution.

Logistic(

Location, ! (optional) numerical expression

Scale ! (optional) numerical expression

)

Arguments:

Location

A scalar numerical expression.

Scale

A scalar numerical expression > 0.

Return value:

The function Logistic returns a random value drawn from a logistic

distribution with mean Location and scale Scale.

See also:

The Logistic distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 218

LogNormal

The function LogNormal draws a random value from a lognormal distribution.

LogNormal(

Shape, ! (input) numerical expression

Lowerbound, ! (optional) numerical expression

Scale ! (optional) numerical expression

)

Arguments:

Shape

A scalar numerical expression > 0.

Lowerbound

A scalar numerical expression.

Scale

A scalar numerical expression > 0.

Return value:

The function LogNormal returns a random value drawn from a lognormal

distribution with shape Shape, lower bound Lowerbound and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. The original

function LogNormal(m, sd) returns a random value drawn from a lognormal

distribution with mean m > 0 and standard deviation sd > 0. The same

result should now be obtained by setting Shape = sd/m, Lowerbound = 0

and Scale =m.

See also:

The LogNormal distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 219

Normal

The function Normal draws a random value from a normal distribution.

Normal(

Mean, ! (optional) numerical expression

Deviation ! (optional) numerical expression

)

Arguments:

Mean

A scalar numerical expression.

Deviation

A scalar numerical expression > 0.

Return value:

The function Normal returns a random value drawn from a normal

distribution with mean Mean and standard deviation Deviation.

See also:

The Normal distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 220

Pareto

The function Pareto draws a random value from a Pareto distribution.

Pareto(

Shape, ! (input) numerical expression

Location, ! (optional) numerical expression

Scale ! (optional) numerical expression

)

Arguments:

Shape

A scalar numerical expression > 0.

Location

A scalar numerical expression.

Scale

A scalar numerical expression > 0.

Return value:

The function Pareto returns a random value drawn from a Pareto

distribution with shape Shape, location Location and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. The original

function Pareto(s, beta) returns a random value drawn from a Pareto

distribution with shape beta, location 0 and scale s.

See also:

The Pareto distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 221

Triangular

The function Triangular draws a random value from a triangular distribution.

Triangular(

Shape, ! (input) numerical expression

Minimum, ! (optional) numerical expression

Maximum ! (optional) numerical expression

)

Arguments:

Shape

A scalar numerical expression.

Minimum

A scalar numerical expression.

Maximum

A scalar numerical expression.

Return value:

The function Triangular returns a random value drawn from a triangular

distribution with shape Shape, lower bound Minimum and upper bound

Maximum. The argument Shape must satisfy the relation 0 < Shape < 1.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. The original

function Triangular(a, b, c) returns a random value drawn from a

triangular distribution with a lower bound a, likeliest value b and upper

bound c. The arguments must satisfy the relation a < b < c. The relation

between the arguments Shape and b is given by Shape = (b − a)/(c − a).

See also:

The Triangular distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 222

Uniform

The function Uniform draws a random value from a uniform distribution.

Uniform(

Minimum, ! (optional) numerical expression

Maximum ! (optional) numerical expression

)

Arguments:

Minimum

A scalar numerical expression.

Maximum

A scalar numerical expression.

Return value:

The function Uniform returns a random value drawn from a uniform

distribution with lower bound Minimum and upper bound Maximum.

Remarks:

The arguments must satisfy the relation Minimum < Maximum.

See also:

The Uniform distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 223

Weibull

The function Weibull draws a random value from a Weibull distribution.

Weibull(

Shape, ! (input) numerical expression

Lowerbound, ! (optional) numerical expression

Scale ! (optional) numerical expression

)

Arguments:

Shape

A scalar numerical expression > 0.

Lowerbound

A scalar numerical expression.

Scale

A scalar numerical expression > 0.

Return value:

The function Weibull returns a random value drawn from a Weibull

distribution with shape Shape lower bound Lowerbound, and scale Scale.

Remarks:

The prototype of this function has changed with the introduction of

Aimms 3.4. In order to run models that still use the original prototype, the

option Distribution compatibility should be set to Aimms 3 0. In the

original function Weibull(Lowerbound, Shape, Scale), the arguments were

ordered differently.

See also:

The Weibull distribution is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 224

DistributionCumulative

The function DistributionCumulative computes the cumulative probability

value of a given distribution.

DistributionCumulative(

distribution, ! (input) distribution

x ! (input) numerical expression

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

x

A scalar numerical expression.

Return value:

The function CumulativeDistribution(distribution,x), for x ∈ (−∞,∞)
returns the probability P(X ≤ x) where the stochastic variable X is

distributed according to the given distribution.

Remarks:

For continuous distributions Aimms can compute the derivatives of the

cumulative and inverse cumulative distribution functions. As a

consequence, you may use these functions in the constraints of a

nonlinear model when the second argument is a variable.

See also:

The function DistributionInverseCumulative. The function

DistributionCumulative is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 225

DistributionInverseCumulative

The function DistributionInverseCumulative computes the inverse cumulative

probability value of a given distribution.

DistributionInverseCumulative(

distribution, ! (input) distribution

alpha ! (input) numerical expression

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

alpha

A scalar numerical expression within the interval [0,1].

Return value:

The function DistributionInverseCumulative(distribution,α), for α ∈ [0,1]
computes the largest x ∈ (−∞,∞) such that the probability P(X ≤ x) ≤ α
where the stochastic variable X is distributed according to the given

distribution.

Remarks:

For continuous distributions Aimms can compute the derivatives of the

cumulative and inverse cumulative distribution functions. As a

consequence, you may use these functions in the constraints of a

nonlinear model when the second argument is a variable.

See also:

The function DistributionCumulative. The function

DistributionInverseCumulative is discussed in full detail in Appendix A of

the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 226

DistributionDensity

The function DistributionDensity computes the density of a given

distribution.

DistributionDensity(

distribution, ! (input) distribution

x ! (input) numerical expression

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

x

A scalar numerical expression.

Return value:

The function DistributionDensity(distribution,x), for x ∈ (−∞,∞) returns

the expected density around x of sample points from distribution. It is the

derivative of DistributionCumulative(distr,x).

See also:

The functions DistributionCumulative, DistributionInverseDensity. The

function DistributionDensity is discussed in full detail in Appendix A of

the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 227

DistributionInverseDensity

The function DistributionInverseDensity computes the density of the inverse

cumulative function of a given distribution.

DistributionInverseDensity(

distribution, ! (input) distribution

alpha ! (input) numerical expression

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

alpha

A scalar numerical expression within the interval [0,1].

Return value:

The function DistributionInverseDensity(distribution,α), for α ∈ [0,1]
returns the inverse density from distribution. It is the derivative of

DistributionInverseCumulative(distr,alpha).

See also:

The function DistributionDensity. The function

DistributionInverseDensity is discussed in full detail in Appendix A of the

Language Reference.

Chapter 7. Distribution and Combinatoric Functions 228

DistributionMean

The function DistributionMean computes the mean of a given distribution.

DistributionMean(

distribution ! (input) distribution

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionMean(distribution) returns the mean of the given

distribution.

See also:

You can find more information about the mean of a distribution in

Appendix A of the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 229

DistributionDeviation

The function DistributionDeviation computes the expected deviation of the

given distribution .

DistributionDeviation(

distribution ! (input) distribution

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionDeviation(distribution) returns the expected

deviation (distance from the mean) of the distribution.

See also:

You can find more information about the deviation of a distribution in

Appendix A of the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 230

DistributionVariance

The function DistributionVariance computes the variance of a given

distribution.

DistributionVariance(

distribution ! (input) distribution

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionVariance(distribution) returns the variance of the

given distribution.

See also:

You can find more information about the variance of a distribution in

Appendix A of the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 231

DistributionSkewness

The function DistributionSkewness computes the skewness of a given

distribution.

DistributionSkewness(

distribution ! (input) distribution

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionSkewness(distribution) returns the skewness of

the given distribution.

See also:

You can find more information about the skewness of a distribution in

Appendix A of the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 232

DistributionKurtosis

The function DistributionKurtosis computes the kurtosis of a given

distribution.

DistributionKurtosis(

distribution ! (input) distribution

)

Arguments:

distribution

An expression representing any distribution (such as Normal(0,1)).

Return value:

The function DistributionKurtosis(distribution) returns the kurtosis of the

given distribution.

See also:

You can find more information about the kurtosis of a distribution in

Appendix A of the Language Reference.

Chapter 7. Distribution and Combinatoric Functions 233

Combination

The function Combination computes the number of combinations of length m

in n items.

Combination(

n, ! (input) integer expression

m ! (input) integer expression

)

Arguments:

n

An integer numerical expression ≥ 0.

m

An integer numerical expression in the range 0, . . . , n.

Return value:

The function Combination returns
(

n
m

)

, the number of combinations of

length m in a given number of items n.

See also:

Combinatoric functions are discussed in full detail in Section 6.1.7.

Chapter 7. Distribution and Combinatoric Functions 234

Factorial

The function Factorial returns the factorial of an integer number.

Factorial(

n ! (input) integer expression

)

Arguments:

n

An integer numerical expression ≥ 0.

Return value:

The function Factorial returns the factorial value n!.

See also:

Combinatoric functions are discussed in full detail in Section 6.1.7.

Chapter 7. Distribution and Combinatoric Functions 235

Permutation

The function Permutation computes the number of permutations of length m

in n items.

Permutation(

n, ! (input) integer expression

m ! (input) integer expression

)

Arguments:

n

An integer numerical expression ≥ 0.

m

An integer numerical expression in the range 0, . . . , n.

Return value:

The function Permutation returns m! ·
(

n
m

)

, the number of permutations of

length m in a given number of items n.

See also:

Combinatoric functions are discussed in full detail in Section 6.1.7.

Chapter 8

Histogram Functions

Aimms supports the following functions for creating and managing

histograms:

� HistogramAddObservation

� HistogramAddObservations

� HistogramCreate

� HistogramDelete

� HistogramGetAverage

� HistogramGetBounds

� HistogramGetDeviation

� HistogramGetFrequencies

� HistogramGetKurtosis

� HistogramGetObservationCount

� HistogramGetSkewness

� HistogramSetDomain

Chapter 8. Histogram Functions 237

HistogramAddObservation

The procedure HistogramAddObservation adds a new observation to a

histogram that was previously created through the procedure

HistogramCreate.

HistogramAddObservation(

histogram_id, ! (input) a scalar parameter

value ! (input) a scalar value

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate procedure.

value

The value of a new observation that should be added to the

histogram.

Return value:

The procedure returns 1 if the new observation is added successfully, or 0

otherwise.

See also:

The procedure HistogramAddObservations, HistogramCreate. Histogram

support in Aimms is discussed in full detail in Section A.6 of the Language

Reference.

Chapter 8. Histogram Functions 238

HistogramAddObservations

The procedure HistogramAddObservations adds a set of observations to a

histogram that was previously created through the procedure

HistogramCreate.

HistogramAddObservations(

histogram_id, ! (input) a scalar parameter

values ! (input) a one-dimensional parameter

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate procedure.

values

A one-dimensional identifier that contains the values of new

observations that should be added to the histogram. The cardinality

should be at least 1.

Return value:

The procedure returns 1 if the new observation is added successfully, or 0

otherwise.

See also:

The procedure HistogramAddObservation, HistogramCreate. Histogram

support in Aimms is discussed in full detail in Section A.6 of the Language

Reference.

Chapter 8. Histogram Functions 239

HistogramCreate

The function HistogramCreate sets up a new histogram. The created histogram

does not yet contain any observations. These observations must be added

later using the function HistogramAddObservation or HistogramAddObservations.

HistogramCreate(

histogram_id, ! (output) a scalar parameter

[integer_histogram,] ! (optional) 0 or 1

[sample_buffer_size] ! (optional) a positive integer value

)

Arguments:

histogram id

On return, this argument will contain a unique identification number,

that is used to refer to the created histogram in other functions.

integer histogram (optional)

A logical indicator that specifies whether the observations will be

integer-valued. Default is 0 (not integer).

sample buffer size (optional)

The sample buffer size used in the histogram. If omitted, a default

buffer size of 512 is used.

Return value:

The function returns 1 if the histogram is created successfully, or 0

otherwise.

See also:

The functions HistogramDelete, HistogramAddObservation,

HistogramAddObservations. Histogram support in Aimms is discussed in full

detail in Section A.6 of the User’s Guide.

Chapter 8. Histogram Functions 240

HistogramDelete

The procedure HistogramDelete deletes a histogram that was created using the

HistogramCreate procedure. After the historgram has been deleted, the

histogram id is no longer valid.

HistogramDelete(

histogram_id ! (input) a scalar parameter

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate procedure. When the procedure returns,

this histogram id no longer refers to a valid histogram.

Return value:

The procedure returns 1 if the histogram is deleted successfully, or 0

otherwise.

See also:

The procedure HistogramCreate. Histogram support in Aimms is discussed

in full detail in Section A.6 of the User’s Guide.

Chapter 8. Histogram Functions 241

HistogramGetAverage

The function HistogramGetAverage returns the arithmetic mean of all

observations in a histogram.

HistogramGetAverage(

histogram_id ! (input) a scalar number

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate function.

Return value:

The function returns the arithmetic mean of all observations added to the

histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,

HistogramGetDeviation, HistogramGetSkewness, HistogramGetKurtosis.

Histogram support in Aimms is discussed in full detail in Section A.6 of

the User’s Guide.

Chapter 8. Histogram Functions 242

HistogramGetBounds

Through the function HistogramGetBounds you can obtain the lower and upper

bounds of frequency interval in a histogram.

HistogramGetBounds(

histogram_id, ! (input) a scalar number

left_bound, ! (output) a one-dimensional parameter

right_bound ! (output) a one-dimensional parameter

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate function.

left bound

A one-dimensional identifier that will be filled with the left bound of

each interval in the histogram. The cardinality of the domain set

should be at least the number of intervals.

right bound

A one-dimensional identifier that will be filled with the right bound of

each interval in the histogram. The cardinality of the domain set

should be at least the number of intervals.

Return value:

The function returns 1 if the bounds are retrieved successfully, or 0

otherwise.

See also:

The functions HistogramCreate, HistogramSetDomain. Histogram support in

Aimms is discussed in full detail in Section A.6 of the Language Reference.

Chapter 8. Histogram Functions 243

HistogramGetDeviation

The function HistogramGetDeviation returns the standard deviation of all

observations in a histogram.

HistogramGetDeviation(

histogram_id ! (input) a scalar number

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate function.

Return value:

The function returns the standard deviation of all observations in the

histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,

HistogramGetAverage, HistogramGetSkewness, HistogramGetKurtosis.

Histogram support in Aimms is discussed in full detail in Section A.6 of

the Language Reference.

Chapter 8. Histogram Functions 244

HistogramGetFrequencies

Through the procedure HistogramGetFrequencies you can obtain the observed

frequencies for each interval in a histogram.

HistogramGetFrequencies(

histogram_id, ! (input) a scalar number

frequencies ! (output) a one-dimensional parameter

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate procedure.

frequencies

A one-dimensional identifier that will be filled with the frequencies of

each interval in the histogram. The cardinality of the domain set

should be at least the number of intervals.

Return value:

The procedure returns 1 if the frequencies are retrieved successfully, or 0

otherwise.

See also:

The procedures HistogramCreate, HistogramAddObservation,

HistogramAddObservations. Histogram support in Aimms is discussed in full

detail in Section A.6 of the Language Reference.

Chapter 8. Histogram Functions 245

HistogramGetKurtosis

The function HistogramGetKurtosis returns the kurtosis coefficient of all

observations in a histogram.

HistogramGetKurtosis(

histogram_id ! (input) a scalar number

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate function.

Return value:

The function returns the kurtosis coefficient of all observations in the

histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,

HistogramGetAverage, HistogramGetDeviation, HistogramGetSkewness.

Histogram support in Aimms is discussed in full detail in Section A.6 of

the Language Reference.

Chapter 8. Histogram Functions 246

HistogramGetObservationCount

The function HistogramGetObservationCount returns the total number of

observations in a histogram.

HistogramGetObservationCount(

histogram_id ! (input) a scalar number

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate function.

Return value:

The function returns the total number of observations in a histogram.

See also:

The functions HistogramCreate, HistogramGetAverage,

HistogramGetDeviation, HistogramGetSkewness, HistogramGetKurtosis.

Histogram support in Aimms is discussed in full detail in Section A.6 of

the Language Reference.

Chapter 8. Histogram Functions 247

HistogramGetSkewness

The function HistogramGetSkewness returns the skewness of all observations in

a histogram.

HistogramGetSkewness(

histogram_id ! (input) a scalar number

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate function.

Return value:

The function returns the skewness of all observations in the histogram.

See also:

The functions HistogramCreate, HistogramGetObservationCount,

HistogramGetAverage, HistogramGetDeviation, HistogramGetKurtosis.

Histogram support in Aimms is discussed in full detail in Section A.6 of

the Language Reference.

Chapter 8. Histogram Functions 248

HistogramSetDomain

With the procedure HistogramSetDomain you can override the default layout of

frequency intervals of a histogram.

HistogramSetDomain(

histogram_id, ! (input) a scalar number

intervals, ! (input) a positive integer number

[left,] ! (optional) a scalar expression

[width,] ! (optional) a positive scalar number

[left_tail,] ! (optional) 0 or 1

[right_tail] ! (optional) 0 or 1

)

Arguments:

histogram id

A scalar value representing a histogram that was previously created

using the HistogramCreate procedure.

intervals

The number of fixed-width intervals (not including the left or

right tail interval).

left (optional)

The lower bound of the left-most interval (not including the left-tail

interval). If omitted, then the histogram will use the observations to

determine this bound.

width (optional)

The (fixed) width of each interval. If omitted, then the histogram will

use the observations to determine the width.

left tail (optional)

An indicator whether or not a left-tail interval should be created. If

this argument is omitted, then the default value of 1 is used (creating

a left-tail interval).

right tail (optional)

An indicator whether or not a right-tail interval should be created. If

this argument is omitted, then the default value of 1 is used (creating

a right-tail interval).

Return value:

The procedure returns 1 if the domain is changed successfully, or 0

otherwise.

See also:

Chapter 8. Histogram Functions 249

The procedures HistogramCreate, HistogramGetBounds. Histogram support

in Aimms is discussed in full detail in Section A.6 of the Language

Reference.

Chapter 9

Forecasting Functions

Aimms supports the following functions for making forecasts:

� forecasting::MovingAverage

� forecasting::WeightedMovingAverage

� forecasting::ExponentialSmoothing

� forecasting::ExponentialSmoothingTrend

� forecasting::ExponentialSmoothingTrendSeasonality

� forecasting::ExponentialSmoothingTune

� forecasting::ExponentialSmoothingTrendTune

� forecasting::ExponentialSmoothingTrendSeasonalityTune

� forecasting::SimpleLinearRegression

9.1 Introduction

Aimms is a development tool for decision support application. Important to

decision support are good forecasts. The AimmsForecasting library provides

tools to compute forecasts from historical data. The usage of this library is

discussed in this chapter.

installationBefore the functions in this section can be used in your model, you will need

to add the library

prefixThe prefix of the AIMMSForecasting library is forecasting.

RestrictionThis library does not support the special values NA, ZERO, -INF, INF, and UNDF.

Chapter 9. Forecasting Functions 251

9.2 Time series forecasting

9.2.1 Notational conventions time series forecasting

For time series forecasting, such as Moving Average and Exponential

Smoothing, we follow the conventions below.

Observations

and Estimates

The AIMMSForecasting library uses as input observations made in the history.

It provides estimates over both the history and the horizon. A single set and

index is used to index both the history and the estimates, this set is called the

time set. In addition, you will need to specify the number of elements that

belong to the history. The corresponding mathematical notation is:

T number of observations

H length of horizon

{1 . . . T +H} time set

t index in time set

yt , t ∈ {1 . . . T} observation

et , t ∈ time set estimate

Table 9.1: Time series forecasting notation

The forecasts are provided in et , t ∈ {T + 1 . . . T +H}.

residualsThe residual, rt where t ∈ {1 . . . T}, is the difference between the

corresponding observation yt and estimate et . To obtain the residuals, you

will need to provide a parameter declared over the time set.

error measuresFrom the residuals, error measures such as Mean Absolute Deviation (MAD),

Mean Absolute Percentage Error (MAPE), and Mean Squared Deviation (MSD)

can be computed.

predeclared

index ems

Whenever one of the time series forecasting functions communicates the

error measures, it uses identifiers declared over the index forecasting::ems,

declared as follows:

Set ErrorMeasureSet {

Index: ems;

Definition: {

data {

MAD, ! Mean Absolute Deviation

MAPE, ! Mean Absolute Percentage Error (provided as fraction)

MSE ! Mean Squared Error

}

Chapter 9. Forecasting Functions 252

}

}

To obtain the error measures, you will need to provide a parameter indexed

over forecasting::ems to the time series forecasting functions. Note that the

MAPE is a fraction, in order to use it as a percentage, you can use the

predeclared quantity SI unitless. For instance, given the declarations:

Quantity SI_Unitless {

BaseUnit: -;

Conversions: % -> - : # -> # / 100;

Comment: "Expresses a dimensionless value.";

}

Parameter myMAPE {

Unit: %;

}

Parameter myErrorMeasures {

IndexDomain: forecasting::ems;

}

The following statements:

myMAPE := myErrorMeasures(’MAPE’) ;

display myErrorMeasures, myMAPE ;

The output may look as follows:

myErrorMeasures := data { MAPE : 0.417092, MAD : 1.785714, MSE : 3.982143 } ;

myMAPE := 41.709184 [%] ;

Chapter 9. Forecasting Functions 253

forecasting::MovingAverage

one The moving average procedure is a time series forecasting procedure.

Essentially, this procedure forecasts by taking the average over the last N

observations.

Mathematical Formulation:

Using the notation for observations and estimates given in Table 9.1, the

estimates are defined as:

et =
t−1
∑

τ=t−1−N
ỹτ/N where ỹτ =











y1 if τ < 1

yτ if τ ∈ {1..T}
eτ if τ > T

(9.1)

Function Prototype:

To provide the error measures and residuals only when you need them, there

are three flavors of the MovingAverage procedure provided:

forecasting::MovingAverage(! Provides the estimates, but not the

! error measures nor the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

noAveragingPeriods) ! Scalar input, averaging length

forecasting::MovingAverageEM(! Provides estimates and error measures,

! but not the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

noAveragingPeriods, ! Scalar input, averaging length

ErrorMeasures) ! Output, indexed over forecasting::ems

forecasting::MovingAverageEMR(! Provides estimates, error measures,

! and residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

noAveragingPeriods, ! Scalar input, averaging length

ErrorMeasures, ! Output, indexed over forecasting::ems

Residuals) ! Output, parameter indexed over time set

Here, the time set is a set that encompasses both the history and the horizon.

Chapter 9. Forecasting Functions 254

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

estimates

A one dimensional parameter containing the estimates for all

elements in the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

noAveragingPeriods

Specifies the number of values used to compute a single average. This

parameter corresponds to N in the mathematical notation above.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting::MovingAverage(

dataValues : sampDat,

estimates : sampEst1,

noObservations : 31,

noAveragingPeriods : 5);

Will result in the following output:

sampEst1 := data

{ 01-01 : 46.90141235, 01-02 : 46.90141235, 01-03 : 43.90055356,

01-04 : 39.91352947, 01-05 : 35.21374997, 01-06 : 32.58034743,

01-07 : 32.80406692, 01-08 : 36.23403532, 01-09 : 38.29416296,

01-10 : 41.90033337, 01-11 : 40.11936207, 01-12 : 37.82654624,

01-13 : 39.63855369, 01-14 : 45.29956164, 01-15 : 48.72714940,

01-16 : 50.90593288, 01-17 : 51.53221241, 01-18 : 52.07507740,

01-19 : 51.93466798, 01-20 : 53.96574913, 01-21 : 58.57734065,

01-22 : 58.68254227, 01-23 : 57.55058365, 01-24 : 57.53652213,

01-25 : 59.80228910, 01-26 : 62.23264531, 01-27 : 64.41936052,

01-28 : 62.97427964, 01-29 : 64.37015056, 01-30 : 63.12741111,

01-31 : 63.07679348, 02-01 : 68.24492039, 02-02 : 72.30667944,

02-03 : 72.41222140, 02-04 : 72.12629586, 02-05 : 72.41553283,

02-06 : 71.50112998, 02-07 : 72.15237190, 02-08 : 72.12151039,

02-09 : 72.06336819, 02-10 : 72.05078266, 02-11 : 71.97783263,

02-12 : 72.07317316, 02-13 : 72.05733341, 02-14 : 72.04449801 } ;

This can be graphically displayed as:

Chapter 9. Forecasting Functions 255

Parameter sampDat {

IndexDomain: d;

}

Parameter sampEst1 {

IndexDomain: d;

}

Calendar dayCalendar {

Index: d;

Parameter: e_d;

Unit: day;

BeginDate: "2014-01-01";

EndDate: "2014-02-14";

TimeslotFormat: "%m-%d";

}

sampDat := data

{ 01-01 : 46.90141235, 01-02 : 31.89711841, 01-03 : 26.96629187,

01-04 : 23.40251489, 01-05 : 33.73439963, 01-06 : 48.02000981,

01-07 : 49.04696039, 01-08 : 37.26693007, 01-09 : 41.43336694,

01-10 : 24.82954314, 01-11 : 36.55593066, 01-12 : 58.10699762,

01-13 : 65.57196981, 01-14 : 58.57130575, 01-15 : 35.72346055,

01-16 : 39.68732832, 01-17 : 60.82132259, 01-18 : 64.86992271,

01-19 : 68.72671146, 01-20 : 58.78141816, 01-21 : 40.21333644,

01-22 : 55.16152950, 01-23 : 64.79961509, 01-24 : 80.05554631,

01-25 : 70.93319924, 01-26 : 51.14691246, 01-27 : 47.93612512,

01-28 : 71.77896968, 01-29 : 73.84184908, 01-30 : 70.68011104,

01-31 : 76.98754704 } ;

Table 9.2: Sample declarations and input data for the time series calculation

Here the history is from 01-01 till 01-31 and the horizon is from 02-01 till

02-14.

Chapter 9. Forecasting Functions 256

forecasting::WeightedMovingAverage

The weighted moving average procedure is a time series forecasting

procedure. Essentially, this procedure forecasts by taking the weighted

average over the last N observations.

Mathematical Formulation:

Using the notation for observations and estimates given in Table 9.1, the

estimates are defined as:

et =
N
∑

j=1,τ=t−(N+1)+j
wjỹτ where ỹτ =











y1 if τ < 1

yτ if τ ∈ {1..T}
eτ if τ > T

(9.2)

Function Prototype:

To provide the error measures and residuals only when you need them, there

are three flavors of the WeightedMovingAverage procedure provided:

forecasting::WeightedMovingAverage(

! Provides the estimates,

! but not the error measures nor the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

weights, ! Input, parameter

noAveragingPeriods) ! Scalar input, averaging length

forecasting::WeightedMovingAverageEM(

! Provides estimates and error measures, but not the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

weights, ! Input, parameter

noAveragingPeriods, ! Scalar input, averaging length

ErrorMeasures) ! Output, indexed over forecasting::ems

forecasting::WeightedMovingAverageEMR(

! Provides estimates, error measures, and residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

weights, ! Input, parameter

noAveragingPeriods, ! Scalar input, averaging length

ErrorMeasures, ! Output, indexed over forecasting::ems

Residuals) ! Output, parameter indexed over time set

Here, the time set is a set that encompasses both the history and the horizon.

Chapter 9. Forecasting Functions 257

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

estimates

A one dimensional parameter containing the estimates for all

elements in the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

weights

Specifies the weights. The weights should be indexed over a subset of

Integers: {1..N}, in the range [0,1] and sum to 1.

noAveragingPeriods

Specifies the number of values used to compute a single average. This

parameter corresponds to N in the mathematical notation above.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

weightSet := ElementRange(1,4);

locWeights := data { 1 : 0.1, 2 : 0.2, 3: 0.3, 4: 0.4 } ;

forecasting::WeightedMovingAverage(

dataValues : sampDat,

estimates : sampEst1,

noObservations : 31,

weights : locWeights,

noAveragingPeriods : 4);

Will result in the following output:

sampEst1 := data

{ 01-01 : 46.901412, 01-02 : 46.901412, 01-03 : 45.400983,

01-04 : 41.907042, 01-05 : 36.063210, 01-06 : 28.902678,

01-07 : 29.356152, 01-08 : 33.990024, 01-09 : 41.435848,

01-10 : 45.518815, 01-11 : 41.568491, 01-12 : 35.958284,

01-13 : 37.144096, 01-14 : 39.077193, 01-15 : 51.025996,

01-16 : 58.200997, 01-17 : 54.913605, 01-18 : 48.165158,

01-19 : 44.846840, 01-20 : 53.967984, 01-21 : 63.412990,

01-22 : 62.343600, 01-23 : 58.683930, 01-24 : 53.088836,

01-25 : 53.599271, 01-26 : 64.608926, 01-27 : 69.237841,

01-28 : 68.325173, 01-29 : 60.482475, 01-30 : 56.579581,

01-31 : 62.544522, 02-01 : 72.698920, 02-02 : 73.408174,

02-03 : 73.248910, 02-04 : 74.611221, 02-05 : 73.212924,

Chapter 9. Forecasting Functions 258

02-06 : 73.581479, 02-07 : 73.683663, 02-08 : 73.893028,

02-09 : 73.485649, 02-10 : 73.664861, 02-11 : 73.704989,

02-12 : 73.706377, 02-13 : 73.605353, 02-14 : 73.679252 } ;

This can be graphically displayed as:

Here the history is from 01-01 till 01-31 and the horizon is from 02-01 till

02-14.

Chapter 9. Forecasting Functions 259

forecasting::ExponentialSmoothing

The exponential smoothing procedure is a time series forecasting procedure.

This procedure forecasts by weighted average of an observation and a

previous forecast.

Mathematical Formulation:

Using the notation in Table 9.1, the estimates are defined as:

et = αyt−1 + (1−α)et−1 (9.3)

To initialize this sequence, we take

e0 = y1

y0 = y1
(9.4)

To calculate the forecasts for t ≥ T + 2, we take yt for all

t ∈ {T + 1 . . . T +H} to be equal to et . This results in yt = yt−1 for all

t ∈ {T + 2 . . . T +H}; which is graphically depicted as a horizontal line.

The weighting factor α is a parameter in the range (0,1); high values of α

give more weight to recent observations.

Function Prototype:

To provide the error measures and residuals only when you need them, there

are three flavors of the ExponentialSmoothing procedure provided:

forecasting::ExponentialSmoothing(

! Provides the estimates, but not the error measures nor the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha) ! Scalar input, weight of observation

forecasting::ExponentialSmoothingEM(

! Provides estimates and error measures, but not the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

ErrorMeasures) ! Output, indexed over forecasting::ems

forecasting::ExponentialSmoothingEMR(

! Provides estimates, error measures, and residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

ErrorMeasures, ! Output, indexed over forecasting::ems

Residuals) ! Output, parameter indexed over time set

Chapter 9. Forecasting Functions 260

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

estimates

A one dimensional parameter containing the estimates for all

elements in the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

alpha

Specifies the weighting factor for the observation. This parameter

corresponds to α in the mathematical notation above.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Remarks:

In order to use this function, the AIMMSForecasting system library needs

to be added to the application.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting::ExponentialSmoothing(

dataValues : sampDat,

estimates : sampEst1,

noObservations : 31,

alpha : 0.3);

Will result in the following output:

sampEst1 := data

{ 01-01 : 46.90141235, 01-02 : 46.90141235, 01-03 : 42.40012417,

01-04 : 37.76997448, 01-05 : 33.45973660, 01-06 : 33.54213551,

01-07 : 37.88549780, 01-08 : 41.23393658, 01-09 : 40.04383462,

01-10 : 40.46069432, 01-11 : 35.77134897, 01-12 : 36.00672348,

01-13 : 42.63680572, 01-14 : 49.51735495, 01-15 : 52.23354019,

01-16 : 47.28051629, 01-17 : 45.00255990, 01-18 : 49.74818871,

01-19 : 54.28470891, 01-20 : 58.61730967, 01-21 : 58.66654222,

01-22 : 53.13058049, 01-23 : 53.73986519, 01-24 : 57.05779016,

01-25 : 63.95711700, 01-26 : 66.04994167, 01-27 : 61.57903291,

01-28 : 57.48616057, 01-29 : 61.77400331, 01-30 : 65.39435704,

01-31 : 66.98008324, 02-01 : 69.98232238, 02-02 : 69.98232238,

02-03 : 69.98232238, 02-04 : 69.98232238, 02-05 : 69.98232238,

02-06 : 69.98232238, 02-07 : 69.98232238, 02-08 : 69.98232238,

02-09 : 69.98232238, 02-10 : 69.98232238, 02-11 : 69.98232238,

02-12 : 69.98232238, 02-13 : 69.98232238, 02-14 : 69.98232238 } ;

Chapter 9. Forecasting Functions 261

This can be graphically displayed as:

Chapter 9. Forecasting Functions 262

forecasting::ExponentialSmoothingTrend

The exponential smoothing with trend procedure is a time series forecasting

procedure. This procedure is an extension from the exponential smoothing

whereby the forecast also captures a trend. The reader interested in the

mathematical background is referred to

� https://www.otexts.org/book/fpp

� http://en.wikipedia.org/wiki/Exponential_smoothing

Function Prototype:

To provide the error measures and residuals only when you need them, there

are three flavors of the ExponentialSmoothingTrend procedure provided:

forecasting::ExponentialSmoothingTrend(

! Provides the estimates, but not the error measures nor the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta) ! Scalar input, weight of change in observation

forecasting::ExponentialSmoothingTrendEM(

! Provides estimates and error measures, but not the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta, ! Scalar input, weight of change in observation

ErrorMeasures) ! Output, indexed over forecasting::ems

forecasting::ExponentialSmoothingTrendEMR(

! Provides estimates, error measures, and residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta, ! Scalar input, weight of change in observation

ErrorMeasures, ! Output, indexed over forecasting::ems

Residuals) ! Output, parameter indexed over time set

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

estimates

A one dimensional parameter containing the estimates for all

elements in the time set.

https://www.otexts.org/book/fpp
http://en.wikipedia.org/wiki/Exponential_smoothing

Chapter 9. Forecasting Functions 263

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

alpha

Specifies the weighting factor for the observation. This parameter

corresponds to α in the mathematical notation above.

beta

Specifies the weighting factor for the change in observation.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting::ExponentialSmoothingTrend(

dataValues : sampDat,

estimates : sampEst1,

noObservations : 31,

alpha : 0.3,

beta : 0.3);

Will result in the following output:

sampEst1 := data

{ 01-01 : 46.90141235, 01-02 : 31.89711841, 01-03 : 19.91486469,

01-04 : 11.09278244, 01-05 : 9.12476621, 01-06 : 14.24770491,

01-07 : 21.18135461, 01-08 : 25.00880483, 01-09 : 30.04118231,

01-10 : 29.60799603, 01-11 : 32.39262113, 01-12 : 41.18187664,

01-13 : 51.09710805, 01-14 : 57.24030837, 01-15 : 54.80598480,

01-16 : 52.57369145, 01-17 : 56.19151171, 01-18 : 60.35524890,

01-19 : 64.83322220, 01-20 : 65.33462956, 01-21 : 59.52540116,

01-22 : 58.20531338, 01-23 : 59.89873706, 01-24 : 66.10199203,

01-25 : 68.96338627, 01-26 : 65.20775937, 01-27 : 60.35010811,

01-28 : 62.98534714, 01-29 : 66.24030430, 01-30 : 68.25439193,

01-31 : 71.77479879, 02-01 : 73.73138118, 02-02 : 75.68796357,

02-03 : 77.64454596, 02-04 : 79.60112835, 02-05 : 81.55771074,

02-06 : 83.51429313, 02-07 : 85.47087552, 02-08 : 87.42745791,

02-09 : 89.38404030, 02-10 : 91.34062269, 02-11 : 93.29720508,

02-12 : 95.25378747, 02-13 : 97.21036985, 02-14 : 99.16695224 } ;

This can be graphically displayed as:

Chapter 9. Forecasting Functions 264

Chapter 9. Forecasting Functions 265

forecasting::ExponentialSmoothingTrendSeasonality

The exponential smoothing with trend and seasonality procedure is a time

series forecasting procedure. This procedure is an extension from the

exponential smoothing whereby the forecast also captures both a trend and a

seasonality. The reader interested in the mathematical background is referred

to

� https://www.otexts.org/book/fpp

� http://en.wikipedia.org/wiki/Exponential_smoothing

Function Prototype:

To provide the error measures and residuals only when you need them, there

are three flavors of the ExponentialSmoothingTrendSeasonality procedure

provided:

forecasting::ExponentialSmoothingTrendSeasonality(

! Provides the estimates, but not the error measures nor the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta, ! Scalar input, weight of change in observation

gamma, ! Scalar input, weight of seasonality

periodLength) ! Scalar input, length of season

forecasting::ExponentialSmoothingTrendSeasonalityEM(

! Provides estimates and error measures, but not the residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta, ! Scalar input, weight of change in observation

gamma, ! Scalar input, weight of seasonality

periodLength, ! Scalar input, length of season

ErrorMeasures) ! Output, indexed over forecasting::ems

forecasting::ExponentialSmoothingTrendSeasonalityEMR(

! Provides estimates, error measures, and residuals

dataValues, ! Input, parameter indexed over time set

estimates, ! Output, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar input, weight of observation

beta, ! Scalar input, weight of change in observation

gamma, ! Scalar input, weight of seasonality

periodLength, ! Scalar input, length of season

ErrorMeasures, ! Output, indexed over forecasting::ems

Residuals) ! Output, parameter indexed over time set

https://www.otexts.org/book/fpp
http://en.wikipedia.org/wiki/Exponential_smoothing

Chapter 9. Forecasting Functions 266

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

estimates

A one dimensional parameter containing the estimates for all

elements in the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

noAveragingPeriods

Specifies the number of values used to compute a single average. This

parameter corresponds to N in the mathematical notation above.

alpha

Specifies the weighting factor for the observation. This parameter

corresponds to α in the mathematical notation above.

beta

Specifies the weighting factor for the change in observation.

gamma

Specifies the weighting factor for the seasonality.

periodLength

Specifies the period length.

ErrorMeasures

The error measures as presented in Section 9.2.

Residuals

The residuals as presented in Section 9.2.

Example:

With declarations and data as specified in Table 9.2 the call:

forecasting::ExponentialSmoothingTrendSeasonality(

dataValues : sampDat,

estimates : sampEst1,

noObservations : 31,

alpha : 0.5,

beta : 0.3,

gamma : 0.3,

periodLength : 7);

Will result in the following output:

sampEst1 := data

{ 01-01 : 48.17421514, 01-02 : 33.42448176, 01-03 : 28.16272649,

01-04 : 24.07455476, 01-05 : 33.94263017, 01-06 : 47.93386652,

01-07 : 48.83947317, 01-08 : 46.31365850, 01-09 : 23.89344424,

Chapter 9. Forecasting Functions 267

01-10 : 30.27764654, 01-11 : 24.95849413, 01-12 : 45.51882876,

01-13 : 74.25387499, 01-14 : 76.43874408, 01-15 : 62.30360776,

01-16 : 34.03705964, 01-17 : 18.95751109, 01-18 : 47.97903657,

01-19 : 78.64240904, 01-20 : 90.15243324, 01-21 : 71.83828787,

01-22 : 37.68452884, 01-23 : 43.80677029, 01-24 : 54.55643634,

01-25 : 70.28818669, 01-26 : 82.29733841, 01-27 : 67.89367583,

01-28 : 49.77439370, 01-29 : 67.81915419, 01-30 : 76.48587445,

01-31 : 74.36541195, 02-01 : 63.51664916, 02-02 : 76.26956592,

02-03 : 77.83862565, 02-04 : 65.67879532, 02-05 : 59.94750898,

02-06 : 65.94274949, 02-07 : 77.84397349, 02-08 : 79.13679316,

02-09 : 83.83707749, 02-10 : 85.40613721, 02-11 : 73.24630688,

02-12 : 67.51502054, 02-13 : 73.51026105, 02-14 : 85.41148505 } ;

This can be graphically displayed as:

Chapter 9. Forecasting Functions 268

forecasting::ExponentialSmoothingTune

The forecasting::ExponentialSmoothingTune procedure is a time series

forecasting helper procedure of forecasting::ExponentialSmoothing by

computing the α for which the mean squared error is minimized.

Function Prototype:

forecasting::ExponentialSmoothingTune(

! Provides the alpha for which the mean squared error is minimized.

dataValues, ! Input, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar output, weight of observation

! that minimizes mean squared error

alphaLow, ! Optional input, default 0.01

alphaUpp) ! Optional input, default 0.99

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

alpha

Upon return it provides the weighting factor α for which the mean

squared error is minimized when using

forecasting::ExponentialSmoothing on the same dataValues.

alphaLow

Lowerbound on α, default 0.01.

alphaUpp

Upperbound on α, default 0.99.

Remarks:

� In order to use this function, the AIMMSForecasting system library

needs to be added to the application.

� Please note that this function performs an optimization step; a

nonlinear programming solver should be available and, in an AIMMS

PRO environment, it should be run server side.

Chapter 9. Forecasting Functions 269

forecasting::ExponentialSmoothingTrendTune

The forecasting::ExponentialSmoothingTrendTune procedure is a time series

forecasting helper procedure of forecasting::ExponentialSmoothingTrend by

computing the α and β for which the mean squared error is minimized.

Function Prototype:

forecasting::ExponentialSmoothingTrendTune(

! Provides the alpha for which the mean squared error is minimized.

dataValues, ! Input, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar output,

beta, ! Scalar output,

alphaLow, ! Optional input, default 0.01

alphaUpp, ! Optional input, default 0.99

betaLow, ! Optional input, default 0.01

betaUpp) ! Optional input, default 0.99

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

alpha, beta

α and β are scalar output parameters of this procedure. The values

for α and β are such that the mean squared error of the estimates

returned by forecasting::ExponentialSmoothingTrend are minimized.

alphaLow

Lowerbound on α, default 0.01.

alphaUpp

Upperbound on α, default 0.99.

betaLow

Lowerbound on β, default 0.01.

betaUpp

Upperbound on β, default 0.99.

Remarks:

� In order to use this function, the AIMMSForecasting system library

needs to be added to the application.

Chapter 9. Forecasting Functions 270

� Please note that this function performs an optimization step; a

nonlinear programming solver should be available and, in an AIMMS

PRO environment, it should be run server side.

Chapter 9. Forecasting Functions 271

forecasting::ExponentialSmoothingTrendSeasonalityTune

The forecasting::ExponentialSmoothingTrendSeasonalityTune procedure is a

time series forecasting helper procedure of

forecasting::ExponentialSmoothingTrendSeasonality by computing the α, β,

and γ for which the mean squared error is minimized.

Function Prototype:

forecasting::ExponentialSmoothingTrendSeasonalityTune(

! Provides the alpha for which the mean squared error is minimized.

dataValues, ! Input, parameter indexed over time set

noObservations, ! Scalar input, length history

alpha, ! Scalar output,

beta, ! Scalar output,

gamma, ! Scalar output,

periodLength, ! Scalar input, length of season

alphaLow, ! Optional input, default 0.01

alphaUpp, ! Optional input, default 0.99

betaLow, ! Optional input, default 0.01

betaUpp, ! Optional input, default 0.99

gammaLow, ! Optional input, default 0.01

gammaUpp) ! Optional input, default 0.99

Arguments:

dataValues

A one dimensional parameter containing the observations for the first

T elements of the time set.

noObservations

Specifies the number of elements that belong to the history of the

time set. This parameter corresponds to T in the notation presented

in Table 9.1.

alpha, beta, gamma

α, β, and γ are scalar output parameters of this procedure. The

values for α, β, and γ are such that the mean squared error of the

estimates returned by

forecasting::ExponentialSmoothingTrendSeasonality are minimized.

periodLength

Specifies the period length.

alphaLow

Lowerbound on α, default 0.01.

alphaUpp

Upperbound on α, default 0.99.

betaLow

Lowerbound on β, default 0.01.

Chapter 9. Forecasting Functions 272

betaUpp

Upperbound on β, default 0.99.

gammaLow

Lowerbound on γ, default 0.01.

gammaUpp

Upperbound on γ, default 0.99.

Remarks:

� In order to use this function, the AIMMSForecasting system library

needs to be added to the application.

� Please note that this function performs an optimization step; a

nonlinear programming solver should be available and, in an AIMMS

PRO environment, it should be run server side.

Chapter 9. Forecasting Functions 273

9.3 Simple Linear Regression

9.3.1 Notational conventions for simple linear regression

For simple linear regression we follow the conventions below.

Observations

and Estimates

The AimmsForecasting library uses as input data observations for the

independent variable and the dependent variable. It provides estimates

for the coefficients of the simple linear regression line.

N number of observations

xi, i ∈ {1 . . . N} observations of the independent variable

yi, i ∈ {1 . . .N} observations of the dependent variable

x̄ = (1/N)
∑N
i=1 xi average of the independent observations

ȳ = (1/N)
∑N
i=1yi average of the dependent observations

ŷi, i ∈ {1 . . .N} predictions of the dependent variable

β0, β1 coefficients of the linear relationship (random)

β̂0, β̂1 coefficients of the linear regression line (estimates)

ei, i ∈ {1 . . .N} error (residual) for observation data points

Table 9.3: Simple Linear Regression notation

Linear

Relationship

The linear relationship between xi and yi is modeled by the equation:

yi = β0 + β1xi + ǫi (9.5)

where ǫi is an error term which averages out to 0 for every i.

Linear

Regression

The random β0 and β1 are estimated by β̂0 and β̂1, such that the

prediction for yi is given by the equation:

ŷi = β̂0 + β̂1xi (9.6)

So, the predictions based on simple linear regression corresponding to the

observation data points (xi, yi) are provided in ŷi, i ∈ {1 . . .N}.

ResidualsThe error (residual) ei for the data point i is the difference between the

observed yi and the predicted ŷi, so ei = yi − β̂0 − β̂1xi. In order to

obtain the residuals, the user will need to provide a one-dimensional

parameter declared over the set of observations.

Chapter 9. Forecasting Functions 274

Variation

Components

Given the values of the observations, the estimates, and the residuals,

several components of variation can be computed, such as sum of

squares total = SST, sum of squares error = SSE, and sum of squares

regression = SSR, which are defined as follows:

SST =
N
∑

i=1

(yi − ȳ)2 (9.7)

SSE =
N
∑

i=1

(yi − ŷi)2 =
N
∑

i=1

e2
i (9.8)

SSR =
N
∑

i=1

(ŷi − ȳ)2 (9.9)

These components of variation satisfy the relation SST = SSE + SSR.

Furthermore, it is also possible to compute the coefficient of

determination = R2, the sample linear correlation = rxy , and the

standard error of the estimate = se, which are defined as follows:

R2 = SSR

SST
(9.10)

rxy =
{

+
√
R2 if β̂1 ≥ 0

−
√
R2 if β̂1 ≤ 0

(9.11)

se =
√

SSE

N − 2
(9.12)

Predeclared

index vcs

The linear regression functions return the values of the line coefficients in

a parameter declared over the index forecasting::co declared as follows:

Set LRcoeffSet{

Index: co;

Definition: {

data {

0, ! Intercept Coefficient of Regression Line

1 ! Slope Coefficient of Regression Line

}

}

}

Whenever one of the linear regression functions communicates back

components of variations, it uses identifiers declared over the index

forecasting::vcs declared as follows:

Set VariationCompSet {

Index: vcs;

Definition: {

data {

SST, ! Sum of Squares Total

Chapter 9. Forecasting Functions 275

SSE, ! Sum of Squares Error

SSR, ! Sum of Squares Regression

Rsquare, ! Coefficient of Determination

MultipleR, ! Sample Linear Correlation Rxy

Se ! Standard Error

}

}

}

In order to obtain the variation components, the user will need to provide

a parameter indexed over forecasting::vcs to the linear regression

functions.

Chapter 9. Forecasting Functions 276

forecasting::SimpleLinearRegression

The simple linear regression procedure computes the regression line

coefficients based on the values of the observations for the independent and

the dependent variables. If desired, the values for variation components and

the residuals can be returned as well.

Mathematical Formulation:

Using the notation for observations and estimates given in Table 9.3, the

estimates of the coefficients of the linear regression line are determined as

follows:

β̂1 =
∑N
i=1(xi − x̄)(yi − ȳ)
∑N
i=1(xi − x̂)2

(9.13)

β̂0 = ȳ − β̂1x̄ (9.14)

These values provide the minimum in β̂0, β̂1 of the function

F(β̂0, β̂1) =
N
∑

i=1

e2
i =

N
∑

i=1

(yi − β̂0 − β̂1xi)
2) (9.15)

Therefore, the values β̂0 and β̂1 given above are called the least squares

estimates of β0 and β1. With these coefficients, the regression line 9.6 is

called the least squares regression line. Every least squares regression

line has the following two properties:

� It passes through the point (x̄, ȳ)

�

∑N
i=1 ei = 0

Function Prototype:

In order to provide the variation components and residuals only when needed,

there are three flavors of the SimpleLinearRegression procedure provided:

forecasting::SimpleLinearRegression(! Provides the estimates of the line

! coefficients, but not the variation

! components nor the residuals

xIndepVarValue, ! Input, parameter for independent

yDepVarValue, ! Input, parameter for dependent

LRcoeff) ! Output,parameter for line coefficients

forecasting::SimpleLinearRegressionVC(! Provides the estimates of the line

! coefficients and the variation

! components

xIndepVarValue, ! Input, parameter for independent

yDepVarValue, ! Input, parameter for dependent

LRcoeff, ! Output,parameter for line coefficients

VariationComp) ! Output,parameter variation components

Chapter 9. Forecasting Functions 277

forecasting::SimpleLinearRegressionVCR(! Provides the estimates of the line

! coefficients, the variation

! components and the residuals

xIndepVarValue, ! Input, parameter for independent

yDepVarValue, ! Input, parameter for dependent

LRcoeff, ! Output,parameter for line coefficients

VariationComp, ! Output,parameter variation components

yEstimates, ! Output,parameter for estimates

eResiduals) ! Output,parameter for residuals

Arguments:

xIndepVarValue

A one dimensional parameter containing the observations for the

independent variable

yDepVarValue

A one dimensional parameter containing the observations for the

dependent variable

LRcoeff

A one dimensional parameter for storing the coefficients of the

regression line

VariationComp

A one dimensional parameter for storing the values of the variation

components

yEstimates

A one dimensional parameter for storing the values of the estimates

eResiduals

A one dimensional parameter for storing the values of the residuals

Example:

Suppose that we are looking at cost data for producing one type of

machine. The number of units produced is an independent variable and

the total production costs is a dependent variable. For this situation,

consider the following observations data:

Set sObservationsSet {

SubsetOf: Integers;

Index: i_ob;

Definition: data{1..10};}

Parameter MachinesProd {

IndexDomain: i_ob;

Definition: {

data{

1 : 10,

2 : 20,

3 : 30,

4 : 40,

5 : 45,

Chapter 9. Forecasting Functions 278

6 : 50,

7 : 60,

8 : 55,

9 : 70,

10 : 40

}}}

Parameter CostOfMachinesProd {

IndexDomain: i_ob;

Definition: {

data{

1 : 257.40,

2 : 601.60,

3 : 782.00,

4 : 765.40,

5 : 895.50,

6 : 1133.00,

7 : 1152.80,

8 : 1132.70,

9 : 1459.20,

10 : 970.10}}}

With the declarations and the data as specified, the following function call:

forecasting::SimpleLinearRegressionVCR(

xIndepVarValue : MachinesProd,

yDepVarValue : CostOfMachinesProd,

LRcoeff : Coeff,

VariationComp : VariationMeasure,

yEstimates : CostEstimate,

eResiduals : CostError);

will result in the following output data:

Coeff := data

{

0 : 164.87790700, ! Intercept Coefficient of Regression Line

1 : 17.85933555 ! Slope Coefficient of Regression Line

}

VariationMeasure := data

{

SST : 1021762.50100, ! Sum of Squares Total

SSE : 61705.34367, ! Sum of Squares Error

SSR, : 960057.15730, ! Sum of Squares Regression

Rsquare, : 0.9396089173, ! Coefficient of Determination

MultipleR, : 0.9693342650, ! Sample Linear Correlation

Se : 87.8246432300, ! Standard Error

}

CostEstimate := data

{

1 : 343.4712625,

2 : 522.0646179,

3 : 700.6579734,

4 : 879.2513289,

5 : 968.5480066,

6 : 1057.8446840,

Chapter 9. Forecasting Functions 279

7 : 1236.4380400,

8 : 1147.1413620,

9 : 1415.0313950,

10 : 879.2513289

}

CostError := data

{

1 : -86.07126246,

2 : 79.53538206,

3 : 81.34202658,

4 : -113.85132890,

5 : -73.04800664,

6 : 75.15531561,

7 : -83.63803987,

8 : -14.44136213,

9 : 44.16860465,

10 : 90.84867110

}

The cost data observations, the cost estimates and the resulting simple

linear regression line can be graphically displayed as shown in the

following figure (where the cost figures on the y-axis are scaled by a factor

1000):

Part II

Algorithmic Capabilities

Chapter 10

Constraint Programming Functions

Aimms supports the following functions for constraint programming:

� cp::AllDifferent

� cp::BinPacking

� cp::Cardinality

� cp::Channel

� cp::Count

� cp::Lexicographic

� cp::ParallelSchedule

� cp::Sequence

� cp::SequentialSchedule

Chapter 10. Constraint Programming Functions 282

cp::AllDifferent

This function enforces (a slice of) an indexed variable or expression to be

assigned all different values, or to determine whether (a slice of) an indexed

identifier or expression contains all different values.

Mathematical Formulation:

The function cp::AllDifferent(i,xi) is equivalent to

∀i, j, i ≠ j : xi ≠ xj

Function Prototype:

cp::AllDifferent(

valueBinding, ! (input) an index binding

values ! (input/output) an expression

)

Arguments:

valueBinding

The index binding for which the values argument should have all

different values.

values

The expression that should have a different value for each element in

valueBinding. This expression may involve variables, but can only

contain integral or element values (i.e. no strings, fractional, or unit

values).

Return value:

This function returns 1 if the values in values are all distinct, or 0

otherwise. If valueBinding results in zero or one element, then this

function will also return 1, and may issue a warning on non-binding

constraints.

Remarks:

The following two constraints are equivalent, but a constraint

programming solver handles the single row instantiated by Enforcevalues1

much more efficiently than the many instantiated rows resulting from

Enforcevalues2.

Constraint Enforcevalues1 {

Definition : cp::AllDifferent(i, x(i));

}

Constraint Enforcevalues2 {

IndexDomain : (i,j) | i < j;

Definition : x(i) <> x(j);

}

Chapter 10. Constraint Programming Functions 283

Examples:

ElementParameter TheElementParameter {

IndexDomain : i

Definition : {

data{ 1 : A,

2 : B,

3 : C }

}

}

With the above data, cp::AllDifferent(i, TheElementParameter(i)) returns

1, because all elements are different. However, with the data below, it

returns 0 (the element ’A’ appears twice).

ElementParameter TheElementParameter {

IndexDomain : i;

Definition : {

data{ 1 : A,

2 : B,

3 : C }

}

}

The following code snippet is extracted from the Sudoku example (in

which all rows, columns and blocks should have different values). It

illustrates the selection of values; particularly illustrating the use of an

index domain condition on the first argument as used in the definition of

DifferentValuesPerBlock.

Constraint DifferentValuesPerRow {

IndexDomain : i;

Definition : cp::AllDifferent(j, x(i,j));

}

Constraint DifferentValuesPerColumn {

IndexDomain : j;

Definition : cp::AllDifferent(i, x(i,j));

}

Constraint DifferentValuesPerBlock {

IndexDomain : k;

Definition : cp::AllDifferent((i,j) | Blck(i,j) = k, x(i,j));

}

See also:

� Chapter 22 on Constraint Programming in the Language Reference.

� Further information on index binding can be found in the Chapter on

Index Binding 9 in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Calldifferent.html which

references this function as alldifferent.

www.emn.fr/z-info/sdemasse/gccat/Calldifferent.html

Chapter 10. Constraint Programming Functions 284

cp::BinPacking

This function is used to model the assignment of objects in bins: a set of

objects, each with its own known ’weight’, is to be placed into a set of bins,

each with its own known capacity.

Mathematical Formulation:

The function cp::BinPacking(b,cb,o,ao,wo[,u]) returns 1, if, for each

bin b, the sum of objects o placed, according to assignment variable ao,

into bin b (ao = b) of weight wo, is less than or equal to the capacity cb. In

addition, if the argument u is specified, the number of non-empty (i.e.

used) bins is set equal to u.

cp::BinPacking(b,cb,o,ao,wo[,u]) is equivalent to

∀b :
∑

o|ao=b
wo ⊗ cb where

{

⊗ is = if cb involves variables

⊗ is ≤ if cb does not involve variables

If argument u is present, the following constraint also applies.

u =
∑

b|cb
1

Function Prototype:

cp::BinPacking(

binBinding, ! (input) an index binding

binCapacity, ! (input/output) an expression

objectBinding, ! (input) an index binding

objectAssignment, ! (input/output) an expression

objectWeight, ! (input) an expression

numberOfBinsUsed ! (optional, input/output) an expression

)

Arguments:

binBinding

The index binding that specifies the available bins.

binCapacity

The capacity of the available bins defined over the index binding

binBinding. This expression may involve variables:

� When the binCapacity expression does not involve variables, it is

interpreted as an upperbound on the bin capacity.

� When the binCapacity expression involves variables, the

constraint forces the capacities of the bins to equal this

expression.

objectBinding

The index binding that specifies the objects that need to be packed.

Chapter 10. Constraint Programming Functions 285

objectAssignment

For each object in objectBinding, objectAssignment contains a bin in

binBinding to indicate that the object is assigned to that particular

bin. The expression for objectAssignment may involve variables.

objectWeight

The weight of each object, defined over the binding domain

objectBinding. This expression cannot involve variables.

numberOfBinsUsed

The number of bins that are used to pack the objects. This argument

is an optional expression with a numerical value that may involve

variables.

Return value:

The function returns 1 when the placement of objects into bins is such

that the capacity of the bins is not exceeded. When the object binding

argument objectBinding is empty, this function will return 1. In all other

cases, the function returns 0.

Examples:

Let us move 7 benches of size 3, 1, 2, 2, 2, 2, and 3 respectively from one

place to the next over several trips with a single truck. The truck we are

using has a capacity of 5 (in terms of size, not benches). With the simplest

of heuristics, we fill the truck sequentially with these benches until we

have no benches left to fill the truck. This heuristic leads to the following

schedule:

trip bench sizes

1 3 1

2 2 2

3 2 2

4 3

With the aid of cp::BinPacking we can do better. The model is as follows:

Set Benches {

Index : bench;

Definition : ElementRange(1, 7, prefix:"bench-");

}

Parameter BenchSize {

IndexDomain : (bench);

InitialData : {

data { bench-1 : 3, bench-2 : 1, bench-3 : 2, bench-4 : 2,

bench-5 : 2, bench-6 : 2, bench-7 : 3 }

}

}

Parameter TruckSize {

InitialData : 5;

}

Chapter 10. Constraint Programming Functions 286

Set Trips {

Index : trip;

Definition : ElementRange(1,5,prefix:"trip-");

}

ElementVariable BenchTrip {

IndexDomain : bench;

Range : Trips;

}

Variable NumberOfTripsNeeded {

Range : free;

}

Constraint RespectTruckSize {

Definition : {

cp::BinPacking(trip, TruckSize, bench, BenchTrip(bench),

BenchSize(bench), NumberOfTripsNeeded)

}

}

MathematicalProgram TripPlanning {

Objective : NumberOfTripsNeeded;

Direction : minimize;

Constraints : AllConstraints;

Variables : AllVariables;

Type : Automatic;

}

Solving this model will provide the following (non-unique) result:

NumberOfTripsNeeded := 3 ;

BenchTrip := data { bench-1 : trip-3, bench-2 : trip-1, bench-3 : trip-2,

bench-4 : trip-3, bench-5 : trip-1, bench-6 : trip-1,

bench-7 : trip-2 } ;

Which leads to the following schedule:

trip bench sizes

1 1 2 2

2 2 3

3 3 2

In the above example, the binCapacity argument is a parameter, because

TruckSize has a fixed value. In such a case, TruckSize is an upperbound. In

the example below, the truck needs to be rented and we can decide on

what size it should be. Therefore, TruckSize (the binCapacity argument) is

a variable. The bounds of that variable are used to limit the TruckSize.

Note that TruckSize is indexed over trip, because the BinPacking

constraint enforces that the fill of the truck is equal to this TruckSize. In

case TruckSize is a scalar, all the trips should be equally loaded, which in

practice is not necessary. The example below only displays the new or

changed identifiers compared with the example above (the constraint

remains the same, but is displayed for clarity).

Chapter 10. Constraint Programming Functions 287

Parameter MaximumTruckSize {

InitialData : 8;

}

Variable TruckSize {

IndexDomain : trip;

Range : {

{0..MaximumTruckSize}

}

}

Constraint GetTruckSize {

Definition : {

cp::BinPacking(trip, TruckSize(trip), bench, BenchTrip(bench),

BenchSize(bench), NumberOfTripsNeeded)

}

}

Solving this model leads to the following (non-unique) result, where the

TruckSize for the two trips is 7 and 8, so we need to rent a truck of size 8.

NumberOfTripsNeeded := 2 ;

BenchTrip := data { bench-1 : trip-2, bench-2 : trip-1, bench-3 : trip-2,

bench-4 : trip-1, bench-5 : trip-1, bench-6 : trip-1,

bench-7 : trip-2 } ;

Which leads to the following schedule:

trip bench sizes

1 1 2 2 2

2 3 2 3

See also:

� The examples of the function cp::AllDifferent that illustrate how the

index binding and indexed arguments can be used. Further information

on index binding can be found in the Chapter on Index Binding 9 in the

Language Reference.

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Cbin_packing.html which

references this function as bin packing.

www.emn.fr/z-info/sdemasse/gccat/Cbin_packing.html

Chapter 10. Constraint Programming Functions 288

cp::Cardinality

The function cp::Cardinality can be used to restrict the number of

occurrences of a particular value in (a slice of) an indexed identifier or

expression. This function is typically used in constraints that enforce selected

values a limited number of times.

The function cp::Cardinality counts the number of occurrences of a

collection of values and either ensures that the number of occurrences is

within bounds, or sets this equal to the value of a variable.

Mathematical Formulation:

The function cp::Cardinality(i,xi,j,cj,yj[,uj]) returns 1 if the number

of occurrences where xi equals cj is equal to yj or in the range

{yj ..uj}for all j. cp::Cardinality(i,xi,j,cj,yj) is equivalent to

∀j :
∑

i

(xi = cj) = yj

and cp::Cardinality(i,xi,j,cj,lj,uj) is equivalent to

∀j : lj ≤
∑

i

(xi = cj) ≤ uj

Function Prototype:

cp::Cardinality(

inspectedBinding, ! (input) an index binding

inspectedValues, ! (input) an expression

lookupValueBinding, ! (input) an index binding

lookupValues, ! (input) an expression

numberOfOccurrences, ! (input/output) an expression

occurrenceLimit) ! (optional/input) an expression

Arguments:

inspectedBinding

An index binding that specifies and possibly limits the scope of

indices. This argument follows the syntax of the index binding

argument of iterative operators.

inspectedValues

An expression that may involve variables, but can only contain

integer or element values (i.e. no strings, fractional or unit values).

The result is a vector with an element for each possible value of the

indices according to inspectedBinding.

lookupValueBinding

An index binding that specifies and possibly limits the scope of

indices. This argument follows the syntax of the index binding

argument of iterative operators.

Chapter 10. Constraint Programming Functions 289

lookupValues

An expression that does not involve variables. The result is a vector

with an element for each possible value of the indices according to

lookupValueBinding.

numberOfOccurrences

An expression that may involve variables. The result is a vector with

an element for each possible value of the indices according to

lookupValueBinding.

occurrenceLimit

An optional expression that does not involve variables. The result is a

vector with an element for each possible value of the indices

according to lookupValueBinding. In addition, if this argument is

specified, the argument numberOfOccurrences is not allowed to contain

variables either.

Return value:

This function returns 1 if the above condition is met. Also if the index

binding argument lookupValueBinding is empty, this function will return 1.

Examples:

In car sequencing the next constraint ensures that the demand

nbCarsPerClass(c) for each class c of type car(i) is met. The value of

element variable car is a class of car.

Constraint meetDemand {

Definition : {

cp::Cardinality(

inspectedBinding : i,

inspectedValues : car(i),

lookupValueBinding : c,

lookupValues : c,

numberOfOccurrences : nbCarsPerClass(c),

occurrenceLimit : nbCars)

}

}

See also:

� The functions cp::Count and cp::Sequence.

� The Chapter on Constraint Programming 22 in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Cglobal_cardinality.html

which references this function as global cardinality.

www.emn.fr/z-info/sdemasse/gccat/Cglobal_cardinality.html

Chapter 10. Constraint Programming Functions 290

cp::Channel

The function cp::Channel links two arrays of variables such that they are

uniquely matched to each other. For instance, see Figure 10.1. This function

is often used to model different perspectives of the same problem.

A

B

C

D

E

F

X
 Y

F = X(‘A’)

D = X(‘B’)

E = X(‘C’)

Y(‘D’)=B

Y(‘E’)=C

Y(‘F’)=A

Figure 10.1: A situation accepted by cp::Channel

Mathematical Formulation:

The function cp::Channel(i,xi,j,yj) returns 1 if for all i, j: xi = j implies

yj = i and vice versa. cp::Channel(i,xi,j,yj) is equivalent to

∀i, j : xi = j⇔ yj = i

Function Prototype:

cp::Channel(

mapBinding, ! (input) an index binding

map, ! (input/output) an expression

inverseMapBinding, ! (input) an index binding

inverseMap ! (input/output) an expression

)

Arguments:

mapBinding

The index binding corresponding to the domain of the first

expression map.

map

For each element in mapBinding, map will contain an element in

inverseMapBinding. This expression may involve variables.

inverseMapBinding

The index binding corresponding to the domain of the second

expression inverseMap.

Chapter 10. Constraint Programming Functions 291

inverseMap

For each element in inverseMapBinding, inverseMap will contain an

element in mapBinding. This expression may involve variables.

Return value:

If a unique mapping between the two index bindings is created, this

function returns 1. When the index bindings mapBinding and

inverseMapBinding are both empty, this function returns 1 as well. In all

other cases, the function returns 0, e.g. when the number of possible

values of index binding mapBinding is different from that of the index

binding inverseMapBinding.

Remarks:

� The cp::Channel constraint is also referred to in the Constraint

Programming literature as Inverse.

� The cp::Channel constraint can be used to implement the

one factor(i,x(i)) or symm AllDifferent(i,x(i)) constraints

encountered in the Constraint Programming literature as

cp::Channel(i,X(i),i,X(i)).

Examples:

In a sports team scheduling problem, the following constraint

Constraint LinkingDuplicateView {

Definition : cp::Channel(s, Games(s), g, Slots(g));

}

links the variable Games(s) to the variable Slots(g). A game is the

identification number of a match between a home and an away team. A

slot is the identification number of a week and a match within a week

number. For each game, there is a unique slot and for each slot there is a

unique game.

See also:

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Cinverse.html which

references this function as inverse.

www.emn.fr/z-info/sdemasse/gccat/Cinverse.html

Chapter 10. Constraint Programming Functions 292

cp::Count

The function cp::Count can be used to restrict the number of occurrences of a

particular value in (a slice of) an indexed identifier or expression. This

function is typically used in constraints that enforce a selected value a limited

number of times.

Mathematical Formulation:

The function cp::Count(i,xi,c,⊗,y) returns 1 if the number of

occurrences of xi equal to the value c, is related to y according to the

relational operator ⊗. The function cp::Count(i,xi,c,⊗,y) is equivalent

to
∑

i(xi = c)⊗y
⊗ ∈ {≤,=,≥, <,>,≠}

Function Prototype:

cp::Count(

inspectedBinding, ! (input) an index binding

inspectedValues, ! (input/output) an expression

lookupValue, ! (input) an expression

relationalOperator, ! (input) an element

occurrenceLimit ! (input/output) an expression

)

Arguments:

inspectedBinding

The index binding that specifies, together with the inspectedValues

argument, the set of values in which the lookupValue should be

counted.

inspectedValues

The expression indexed over inspectedBinding for which the number

of occurrences of the value lookupValue is counted. This expression

may involve variables, but can only contain integer or element values

(i.e. no strings, fractional or unit values).

lookupValue

The particular value for which the number of occurrences in

inspectedValues should be counted. This expression cannot involve

variables. The data type should match the data type of

inspectedValues.

relationalOperator

The relational operator that indicates how the number of occurrences

is limited to the occurrenceLimit argument. This can be an expression

and should result in an element in the set

AllConstraintProgrammingRowTypes. This expression cannot involve

variables.

Chapter 10. Constraint Programming Functions 293

occurrenceLimit

The number of occurrences of lookupValue is limited to the

occurrenceLimit. This can be an expression that may involve variables.

Return value:

This function returns 1 if the number of occurences of lookupValue does

not exceed the occurenceLimit argument according to the

relationalOperator. In all other cases, the function returns 0.

Examples:

ElementParameter TheElementParameter {

IndexDomain : i;

Definition : data{ 1 : A, 2 : B, 3 : A };

}

With the above data, the following holds:

cp::Count(i, TheElementParameter(i), ’B’, ’<=’, 1) = 1

cp::Count(i, TheElementParameter(i), ’B’, ’<’, 1) = 0

cp::Count(i, TheElementParameter(i), ’A’, ’=’, 2) = 1

The following constraint sets the number of stores supplied by a

warehouse w equal to the variable warehouseUsage:

Set Warehouses {

Index : w;

}

Set Suppliers {

Index : s;

}

ElementParamter SupplyingWarehouse {

IndexDomain : s;

Range : Warehouses;

}

Variable WarehouseUsage {

IndexDomain : w;

Range : integer;

}

Constraint CountUsedWarehouses {

IndexDomain : w;

Definition : {

cp::count(s, supplyingWarehouse(s), w,

’=’, warehouseUsage(w))

}

}

See also:

� The functions cp::Cardinality and cp::Sequence.

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Ccount.html which references

this function as count, or, depending on a particular choice of ⊗, as

atleast, atmost or exactly.

www.emn.fr/z-info/sdemasse/gccat/Ccount.html

Chapter 10. Constraint Programming Functions 294

cp::Lexicographic

The function cp::Lexicographic ensures that the data of one expression

comes lexicographically (i.e. according to the set order) before another

expression. This function is often used to reduce symmetry in two variables.

Mathematical Formulation:

cp::Lexicographic(k,xk,yk[,e]) is equivalent to

∃i ∈ {1..n} : (∀j : j < i : xj = yj)∧
{

xi < yi if e = 0

xi ≤ yi if e ≠ 0

where n equals card(range(k)).

Function Prototype:

cp::Lexicographic(

valueBinding, ! (input) an index binding

firstValues, ! (input/output) an expression

secondValues, ! (input/output) an expression

allowEqual ! (optional input) an expression

)

Arguments:

valueBinding

The index binding over which the next two arguments are defined.

firstValues

The expression that should lexicographically come before

secondValues. It is defined over index binding valueBinding and may

involve variables.

secondValues

The expression that should lexicographically come after firstValues.

It is defined over index binding valueBinding and may involve

variables.

allowEqual

When this optional argument is specified and non-zero, the

expressions firstValues and secondValues are allowed to be equal.

The allowEqual expression may not involve variables. The default of

this argument is 0.

Return value:

This function returns 1 if the above condition is met. When the index

binding valueBinding is empty, this function returns

� 0 if allowEqual is 0

� 1 if allowEqual is not 1.

Chapter 10. Constraint Programming Functions 295

Remarks:

Please note that the comparison between the two expressions is done,

based on the complete specified index binding and not pair-wise for every

element in that index domain.

Examples:

The constraint x before y ensures that the identifier x comes

lexicographically before the identifier y.

Constraint x_before_y {

Definition : cp::Lexicographic(i, x(i), y(i));

}

Suppose

x = data { ’a1’ : 1, ’a2’ : 2, ’a3’ : 2 }

y = data { ’a1’ : 1, ’a2’ : 3, ’a3’ : 1 }

Then the constraint x before y is met. Please note that in the case of a3, x

= 2 and y = 1. Allthough 2 does not come lexicographically before 1, the

constraint is met. The ordering is based on the whole index domain, and

not pair wise. Because for a2 2 comes lexicographically before 3, the x-

and y-values for a3 are irrelevant here.

Higher dimensional variables can also be compared using

cp::Lexicographic as is illustrated next. Consider the following

declarations:

Set S {

Index : i, j;

InitialData : data { a, b, c };

}

Variable X {

IndexDomain : (i,j);

Range : binary;

}

Variable Y {

IndexDomain : (i,j);

Range : binary;

}

Constraint xylex {

Definition : {

cp::Lexicographic(

(i,j)|ord(i)<=ord(j),

x(i,j), y(i,j))

}

}

Instantiated constraints are presented in the constraint listing. For the

constraint xylex this looks as follows:

---- xylex

Chapter 10. Constraint Programming Functions 296

xylex .. [1 | 1 | after]

cp::Lexicographic({X(a,a), X(a,b), X(a,c), X(b,b), X(b,c), X(c,c)},

{Y(a,a), Y(a,b), Y(a,c), Y(b,b), Y(b,c), Y(c,c)},

allowEqual: 0)

name lower level upper

X(a,a) 0 0 1

X(a,b) 0 0 1

X(a,c) 0 0 1

X(b,b) 0 0 1

X(b,c) 0 0 1

X(c,c) 0 0 1

Y(a,a) 0 1 1

Y(a,b) 0 0 1

Y(a,c) 0 0 1

Y(b,b) 0 0 1

Y(b,c) 0 0 1

Y(c,c) 0 0 1

Here Aimms visits all elements of the two dimensional variables x and y,

by varying the indices i and j in the index binding (i,j) and adhering to

the index domain condition ord(i)<=ord(j). In the index binding (i,j) the

index j comes after the index i and thus the index j is varied more.

See also:

� The help text associated with the option constraint listing. This option

can be found via the Aimms menu settings – project options category

Solvers general – Standard reports – constraints.

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Clex_less.html which

references this function as lex less and lex lesseq.

www.emn.fr/z-info/sdemasse/gccat/Clex_less.html

Chapter 10. Constraint Programming Functions 297

cp::ParallelSchedule

The function cp::ParallelSchedule(c,j,sj ,dj,ej,wj) models a resource that

can handle multiple jobs j at the same time. The capacity of the resource is c

units. The job j starts at period sj and is active up to but not including period

ej , during dj periods. Job j requires (a weight of) wj units of the resource.

Mathematical Formulation:

cp::ParallelSchedule(c,j,sj ,dj,ej,wj) is equivalent to

∀t :
∑

j|sj≤t<ej wj ≤ c
∀j : sj + dj = ej .

Function Prototype:

cp::ParallelSchedule(

resourceCapacity, ! (input) an expression

jobBinding, ! (input) an index binding

jobBegin, ! (input/output) an expression

jobDuration, ! (input/output) an expression

jobEnd, ! (input/output) an expression

jobWeight ! (input/output) an expression

)

Arguments:

resourceCapacity

This argument is the capacity that the single resource has available to

handle multiple jobs at the same time. It is a integer valued

expression and the unit of measurement of this expression should be

commensurate to the unit of measurement of jobWeight. This

expression may not involve variables.

jobBinding

The index binding that specifies the jobs that need to be scheduled.

jobBegin

An expression that involves variables. When this function is used in a

constraint definition it should involve variables. The result is a vector

with an element for each possible value of the indices in jobBinding.

This argument is integer or element valued, i.e. no string, fractional

or unit values.

jobDuration

An expression that may involve variables. The result of this

expression is an integer non-negative value. The result is a vector

with an element for each possible value of the indices in jobBinding.

This argument is integer valued, i.e. no element, string, fractional or

unit values, but elements from the set Integers are allowed.

Chapter 10. Constraint Programming Functions 298

jobEnd

An expression that involves variables. When this function is used in a

constraint definition it should involve variables. This expression has

the same data type as jobBegin. The result is a vector with an element

for each possible value of the indices in jobBinding. This argument is

integer or element valued, i.e. no string, fractional or unit values.

jobWeight

An expression that may involve variables. The result of this

expression is an integer non-negative value. The unit of measurement

of this expression is commensurate with the unit of measurement of

lowerLimit and upperLimit. The result is a vector with an element for

each possible value of the indices in jobBinding. This argument is

integer valued, i.e. no element, string, fractional or unit values, but

elements from the set Integers are allowed.

This argument is integer or element valued, i.e. no string, fractional or unit

values.

Return value:

This function returns 1 if the jobs can be scheduled within the resource

limits. If the index domain argument jobBinding is empty, this function

also returns 1. Otherwise it returns 0.

Remarks:

� The arguments of this function involve discrete Aimms variables and

Aimms parameters, not Aimms activities.

� This and similar constraints are also known in the Constraint

Programming literature as Cumulative constraints.

See also:

� The examples at the function cp::AllDifferent illustrate how the index

binding and vector arguments are used.

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Ccumulative.html which

references this function as cumulative.

www.emn.fr/z-info/sdemasse/gccat/Ccumulative.html

Chapter 10. Constraint Programming Functions 299

cp::Sequence

The function cp::Sequence is used to limit the number of occurrences of a

group of values in each contiguous sequence of a row of variables. It is used

to model that some values may occur only a limited number of times in a

contiguous subset of the variables.

Mathematical Formulation:

The function cp::Sequence(i,xi,S,q,l,u[,c]) returns 1 if, for each

contiguous sequence of length q, the number of times that xi is in S is

within the range {l..u}.
cp::Sequence(i,xi,S,q,l,u,c) is equivalent to

∀i = 1..n− q + 1 : l ≤
∑q−1
j=0 (xi+j ∈ S) ≤ u c = 0

∀i = 1..n : l ≤
∑q−1
j=0 (x(i+j−1)%n+1 ∈ S) ≤ u c ≠ 0

Function Prototype:

cp::Sequence(

inspectedBinding, ! (input) an index binding

inspectedValues, ! (input/output) an expression

lookupValues, ! (input) a set valued expression

sequenceLength, ! (input) an expression

lowerBound, ! (input) an expression

upperBound, ! (input) an expression

cyclic ! (optional, input) an expression

)

Arguments:

inspectedBinding

The index binding for which the inspectedValues expression should

be inspected on occurences of values in the lookupValues set.

inspectedValues

The expression indexed over inspectedBinding for which the number

of occurrences of the values in lookupValues is limited per

subsequence. This expression may involve variables, but can only

contain integer or element values (i.e. no strings, fractional or unit

values).

lookupValues

The set containing the particular values that should occur only a

limited number of times in each subsequence. This set valued

expression should be a subset of the range of inspectedValues and

does not involve variables.

Chapter 10. Constraint Programming Functions 300

sequenceLength

The sequence length. An expression that does not involve variables.

This argument should be in the range

{1..card(range(inspectedValues))}.

lowerBound

The lower bound on the number of occurences. This expression does

not involve variables. This argument should be in the range

{0..upperBound}.

upperBound

The upper bound on the number of occurences. This expression does

not involve variables. This argument should be in the range

{lowerBound..sequenceLength}.

cyclic

An optional expression that indicates whether cyclic subsequences

should also be inspected. E.g. when you have a set 1,2,3,4,5 then 4,5,1

is a cyclic subsequence of length 3. The cyclic expression cannot

involve variables and the default of this argument is 0.

Return value:

This function returns 1 if the above condition is met.

Examples:

In car sequencing the constraint below ensures that no more cars of class

c with option o are built in a sequence of length blockSize(o) than

maxCarsPerBlock(o). Here, the indexed set classesHavingOption(o) is, for

each option o, the classes of car that have that option.

Constraint respectCapacity {

IndexDomain : (o);

Definition : {

cp::Sequence(

inspectedBinding : i,

inspectedValues : car(i),

lookupValues : classesHavingOption(o),

sequenceLength : blockSize(o),

lowerBound : 0,

upperBound : maxCarsPerBlock(o))

}

}

In crew scheduling the constraint below ensures that after a flight an

attendant att has at least two days off (works at most one day in each

sequence of three days). The value 1 is converted to the set {1} by Aimms.

Chapter 10. Constraint Programming Functions 301

Constraint AssureDaysOff {

IndexDomain : (att);

Definition : {

cp::Sequence(

inspectedBinding : f,

inspectedValues : CrewOnFlight(att, f),

lookupValues : 1,

sequenceLength : 3,

lowerBound : 0,

upperBound : 1,

cyclic : 1)

}

}

See also:

� The functions cp::Count and cp::Cardinality.

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Camong_seq.html which

references this function as among seq.

www.emn.fr/z-info/sdemasse/gccat/Camong_seq.html

Chapter 10. Constraint Programming Functions 302

cp::SequentialSchedule

The function cp::SequentialSchedule(j,sj ,dj,ej) models a resource that can

handle only one job at a time. A job j is scheduled from start time sj until,

but not including, end time ej and over a number of periods dj . This function

returns 1 if the jobs are scheduled such that no two jobs overlap.

Mathematical Formulation:

cp::SequentialSchedule(j,sj ,dj,ej) is equivalent to

∀i, j, i ≠ j : (si + di ≤ sj)∨ (sj + dj ≤ si)
∀j : sj + dj = ej

Function Prototype:

cp::SequentialSchedule(

jobBinding, ! (input) an index binding

jobBegin, ! (input) an expression

jobDuration, ! (input) an expression

jobEnd ! (input) an expression

)

Arguments:

jobBinding

An index binding that specifies and possibly limits the scope of

indices. This argument follows the syntax of the index binding

argument of iterative operators.

jobBegin

An expression that involves variables. The result is a vector with an

element for each possible value of the indices in jobBinding.

jobDuration

An expression that may involve variables. The result of this

expression is an integer non-negative value. The result is a vector

with an element for each possible value of the indices in jobBinding.

jobEnd

An expression that involves variables. This expression has the same

data type as jobBegin. The result is a vector with an element for each

possible value of the indices in jobBinding.

Return value:

This function returns 1 if the jobs can be scheduled such that no two jobs

overlap. If the index binding argument job is empty, this function will

return 1. Otherwise it returns 0.

Chapter 10. Constraint Programming Functions 303

Remarks:

� The arguments to this function involve discrete Aimms variables and

Aimms parameters, not Aimms activities.

� This and similar constraints are also known in the Constraint

Programming literature as unary or disjunctive constraints.

Examples:

The following example models the intuitive idea that with an increase in

the size of a task also the time window in which that task is to be

executed increases.

Parameter nrTasks {

Definition : 10;

}

Parameter smallestWidth {

Definition : 4;

}

Set tasks {

Index : t;

Definition : elementrange(1, nrTasks, 1, ’task’);

}

Parameter release {

IndexDomain : (t);

Definition : Ord(t);

}

Parameter deadline {

IndexDomain : (t);

Definition : 2*nrTasks-Ord(t)+smallestWidth;

}

Parameter processingTime {

IndexDomain : (t);

Definition : ceil(0.125*(deadline(t) - release(t)));

}

Variable startTime {

IndexDomain : (t);

Range : {

{release(t) .. deadline(t)}

}

}

Variable endTime {

IndexDomain : (t);

Range : {

{release(t) .. deadline(t)}

}

}

Constraint UnaryResource {

Definition : {

cp::SequentialSchedule(t, startTime(t),

processingTime(t), endTime(t))

}

}

This leads to the following results (extracted from the listing file):

name lower level upper

startTime(’task01’) 1 1 23

Chapter 10. Constraint Programming Functions 304

startTime(’task02’) 2 18 22

startTime(’task03’) 3 15 21

startTime(’task04’) 4 4 20

startTime(’task05’) 5 13 19

startTime(’task06’) 6 6 18

startTime(’task07’) 7 11 17

startTime(’task08’) 8 8 16

startTime(’task09’) 9 9 15

startTime(’task10’) 10 10 14

endTime(’task01’) 1 4 23

endTime(’task02’) 2 21 22

endTime(’task03’) 3 18 21

endTime(’task04’) 4 6 20

endTime(’task05’) 5 15 19

endTime(’task06’) 6 8 18

endTime(’task07’) 7 13 17

endTime(’task08’) 8 9 16

endTime(’task09’) 9 10 15

endTime(’task10’) 10 11 14

The following Gantt chart illustrates that the solution satisfies the

restricition imposed by cp::SequentialSchedule.

Figure 10.2: Gantt chart for solution of cp::SequentialSchedule

See also:

� The examples at the function cp::AllDifferent illustrate how the index

binding and vector arguments are used.

� Chapter 22 on Constraint Programming in the Language Reference.

� The global constraint catalog

www.emn.fr/z-info/sdemasse/gccat/Cdisjunctive.html which

references this function as disjunctive.

www.emn.fr/z-info/sdemasse/gccat/Cdisjunctive.html

Chapter 11

Scheduling Functions

Aimms supports the following functions for scheduling:

� cp::ActivityBegin

� cp::ActivityEnd

� cp::ActivityLength

� cp::ActivitySize

� cp::Alternative

� cp::BeginAtBegin

� cp::BeginAtEnd

� cp::BeginBeforeBegin

� cp::BeginBeforeEnd

� cp::BeginOfNext

� cp::BeginOfPrevious

� cp::EndAtBegin

� cp::EndAtEnd

� cp::EndBeforeBegin

� cp::EndBeforeEnd

� cp::EndOfNext

� cp::EndOfPrevious

� cp::GroupOfNext

� cp::GroupOfPrevious

� cp::LengthOfNext

� cp::LengthOfPrevious

� cp::SizeOfNext

� cp::SizeOfPrevious

� cp::Span

� cp::Synchronize

Chapter 11. Scheduling Functions 306

cp::ActivityBegin

The function cp::ActivityBegin(a,d) returns the begin of activity a when it is

present or default value d when it is absent.

Mathematical Formulation:

The function cp::ActivityBegin(a,d) is equivalent to

{

a.begin if a.present

d otherwise

This function is typically used in scheduling problems to link activities to

other components of the problem.

cp::ActivityBegin(

optionalActivity, ! (input) an expression

absentValue ! (input) an expression

)

Arguments:

optionalActivity

An expression resulting in an activity. This activity may have the

property optional.

absentValue

An expression that results in the value used when activity

optionalActivity is absent. The result of this expression is an

element in the schedule domain of the activity. This expression

cannot involve variables.

Return value:

This function returns an element in the schedule domain of the activity

and this element is the begin of an activity when that activity is present or

a specified default value when it is not.

Examples:

In the example below, we require that the beginning of the shift

represented by element variable evShift matches the begin of the optional

activity myAct.

Constraint linkShiftActivity {

Definition : cp::ActivityBegin(myAct, first(myCal)) = beginHour(evShift));

}

See also:

The functions cp::Count and cp::ActivityEnd.

Chapter 11. Scheduling Functions 307

cp::ActivityEnd

The function cp::ActivityEnd(a,d) returns the end of activity a if it is

present or default value d when it is absent.

Mathematical Formulation:

The function cp::ActivityEnd(a,d) is equivalent to

{

a.end if a.present

d otherwise

This function is typically used in scheduling problems to link activities to

other components of the problem.

cp::ActivityEnd(

optionalActivity, ! (input) an expression

absentValue ! (input) an expression

)

Arguments:

optionalActivity

An expression resulting in an activity. This activity may have the

property optional.

absentValue

An expression that results in the value used when activity

optionalActivity is absent. The result of this expression is an

element in the schedule domain of the activity. This expression

cannot involve variables.

Return value:

This function returns an element in the schedule domain of the activity

and this element is the end of an activity when that activity is present or a

specified default value when it is not.

Examples:

In the example below, we require that the end of the shift represented by

element variable evShift matches the end of the optional activity myAct.

Constraint linkShiftActivity {

Definition : cp::ActivityEnd(myAct, last(myCal)) = endHour(evShift);

}

See also:

The functions cp::Count and cp::ActivityBegin.

Chapter 11. Scheduling Functions 308

cp::ActivityLength

The function cp::ActivityLength(a,d) returns the length of activity a when

present and default value d when absent.

Mathematical Formulation:

The function cp::ActivityLength(a,d) is equivalent to
{

a.length if a.present

d otherwise

This function is typically used in scheduling problems to link activities to

other components of the problem.

cp::ActivityLength(

optionalActivity, ! (input) an expression

absentValue ! (input) an expression

)

Arguments:

optionalActivity

An expression resulting in an activity. This activity may have the

property optional.

absentValue

An expression that results in the value used when activity

optionalActivity is absent. This expression cannot involve variables.

Return value:

This function returns the length of an activity when that activity is present

or a specified default value when it is not.

Examples:

In the example below, we require that the length of an activity is 36,

whether or not it is present. When the length of an activity is fixed, if it is

present, then this type of constraint might improve the performance of

the CP solver.

Constraint linkShiftActivity {

Definition : cp::ActivityLength(myAct, 36) = 36;

}

Note that the above constraint is automatically generated when the length

attribute of activity myAct is specified as 36.

See also:

The functions cp::Count and cp::ActivityBegin.

Chapter 11. Scheduling Functions 309

cp::ActivitySize

The function cp::ActivitySize(a,d) returns the size of activity a when it is

present or default value d when it is absent.

Mathematical Formulation:

The function cp::ActivitySize(a,d) is equivalent to

{

a.size if a.present

d otherwise

This function is typically used in scheduling problems to link activities to

other components of the problem.

cp::ActivitySize(

optionalActivity, ! (input) an expression

absentValue ! (input) an expression

)

Arguments:

optionalActivity

An expression resulting in an activity. This activity may have the

property optional.

absentValue

An expression that results in the value used when activity

optionalActivity is absent. This expression cannot involve variables.

Return value:

This function returns the size of an activity when that activity is present

or a specified default value when it is not.

Examples:

In the example below, we require that the size of the shift represented by

element variable evShift matches the size of the optional activity myAct.

Constraint linkShiftActivity {

Definition : cp::ActivitySize(myAct, 3) =, shiftSize(evShift);

}

See also:

The functions cp::Count and cp::ActivityBegin.

Chapter 11. Scheduling Functions 310

cp::Alternative

The function cp::Alternative(g,i,ai,n), returns

� if activity g is not present, the value 1 if none of the activities ai are

present and 0 otherwise.

� if activity g is present, the value 1 if precisely n activities ai are present

and these present activities match the activity g.

The function cp::Alternative(g,i,ai,n) is equivalent to

g.Present = 0 ⇔ ∀i : ai.Present = 0

and

g.Present = 1 ⇔











∑

iai.Present = n

∀i : ai.Present⇒
{

g.Begin = ai.Begin
g.End = ai.End

This function is typically used in scheduling problems to denote selected

(matching) activities.

cp::Alternative(

globalActivity, ! (input) an expression

activityBinding, ! (input) an activity binding

subActivity, ! (input) an expression

noSelected ! (optional) an expression

)

Arguments:

globalActivity

An expression resulting in an activity.

activityBinding

An index domain that specifies and possibly limits the scope of

indices. This argument follows the syntax of the index domain

argument of iterative operators.

subActivity

An expression resulting in an activity. The result is a vector with an

element for each possible value of the indices in index domain

activityBinding.

noSelected

The number of alternatives, the default being 1. This expression may

involve variables.

Return value:

This function returns 1 if the above condition is satisfied, or otherwise 0.

When the index domain activityBinding is empty this function will return

an error.

Chapter 11. Scheduling Functions 311

Examples:

In the example below we require precisely one of the activities altAct(i)

to match the activity chosenAct(i).

Constraint PreciselyOneAlternativeMatches {

Definition : cp::Alternative(chosenAct, i, altAct(i));

}

We could change the above example to allow multiple matches as follows:

Variable noMatches {

Range : {

{ 1 .. n }

}

}

Constraint AtLeastOneAlternativeMatches {

Definition : cp::Alternative(chosenAct, i, altAct(i), noMatches);

}

Here, the number of matches is counted in the integer variable noMatches.

See also:

The functions cp::Span and cp::Synchronize.

Chapter 11. Scheduling Functions 312

cp::BeginAtBegin

The function cp::BeginAtBegin(a,b,d) returns 1 if one of the activities a and

b is absent, or if the begin of activity a plus a nonnegative time period d is

equal to the begin of activity b. The function cp::BeginAtBegin(a,b,d) is

equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.Begin+ d = b.Begin

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::BeginAtBegin(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginBeforeBegin and cp::BeginBeforeEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 313

cp::BeginAtEnd

The function cp::BeginAtEnd(a,b,d) returns 1 if one of the activities a and b

is absent, or if the begin of activity a plus a nonnegative time period d is

equal to the begin of activity b. The function cp::BeginAtEnd(a,b,d) is

equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.Begin+ d = b.End

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::BeginAtEnd(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginBeforeBegin and cp::BeginBeforeEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 314

cp::BeginBeforeBegin

The function cp::BeginBeforeBegin(a,b,d) returns 1 if one of the activities a

and b is absent, or if the begin of activity a plus a nonnegative time period d

is equal to the begin of activity b. The function cp::BeginBeforeBegin(a,b,d)

is equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.Begin+ d ≤ b.Begin

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::BeginBeforeBegin(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginAtBegin and cp::BeginBeforeEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 315

cp::BeginBeforeEnd

The function cp::BeginBeforeEnd(a,b,d) returns 1 if one of the activities a

and b is absent, or if the begin of activity a plus a nonnegative time period d

is equal to the begin of activity b. The function cp::BeginBeforeEnd(a,b,d) is

equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.Begin+ d ≤ b.End

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::BeginBeforeEnd(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginBeforeBegin and cp::BeginAtEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 316

cp::BeginOfNext

The function cp::BeginOfNext refers to the begin of the next activity in a

sequence of activities.

For a resource r , an activity a, timeslots l and d, the function

cp::BeginOfNext(r,a,l,d) returns

� d if a is absent,

� l if a is present and scheduled as the last activity on r , and

� n.begin if a is present and not scheduled as the last activity on r , and

n is the next activity of a scheduled on r .

cp::BeginOfNext(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

lastValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

lastValue

An optional expression that results in an element in the problem

schedule domain. The default value of this expression is the last

element in the schedule domain of the sequential resource.

absentValue

An optional expression that results in an element in the problem

schedule domain. The default value of this expression is the first

element in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.

See also:

� The functions cp::BeginOfPrevious and cp::EndOfNext, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 317

cp::BeginOfPrevious

The function cp::BeginOfPrevious refers to the begin of the previous activity

in a sequence of activities.

For a resource r , an activity a, timeslots l and d, the function

cp::BeginOfNext(r,a,l,d) returns

� d if a is absent,

� l if a is present and scheduled as the first activity on r , and

� p.begin if a is present and not scheduled as the last activity on r , and

p is the previous activity of a scheduled on r .

cp::BeginOfPrevious(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

firstValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

firstValue

An optional expression that results in an element in the problem

schedule domain. The default value of this expression is the first

element in the schedule domain of the sequential resource.

absentValue

An optional expression that results in an element in the problem

schedule domain. The default value of this expression is the first

element in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.

See also:

� The functions cp::BeginOfNext and cp::EndOfPrevious, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 318

cp::EndAtBegin

The function cp::EndAtBegin(a,b,d) returns 1 if one of the activities a and b

is absent, or if the begin of activity a plus a nonnegative time period d is

equal to the begin of activity b. The function cp::EndAtBegin(a,b,d) is

equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.End+ d = b.Begin

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::EndAtBegin(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginBeforeBegin and cp::BeginBeforeEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 319

cp::EndAtEnd

The function cp::EndAtEnd(a,b,d) returns 1 if one of the activities a and b is

absent, or if the end of activity a plus a nonnegative time period d is equal to

the end of activity b. The function cp::EndAtEnd(a,b,d) is equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.End+ d = b.End

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::EndAtEnd(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginBeforeBegin and cp::BeginBeforeEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 320

cp::EndBeforeBegin

The function cp::EndBeforeBegin(a,b,d) returns 1 if one of the activities a

and b is absent, or if the end of activity a plus a nonnegative time period d is

less than or equal to the begin of activity b. The function

cp::EndBeforeBegin(a,b,d) is equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.End+ d ≤ b.Begin

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::EndBeforeBegin(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::BeginBeforeBegin and cp::BeginBeforeEnd, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 321

cp::EndBeforeEnd

The function cp::EndBeforeEnd(a,b,d) returns 1 if one of the activities a and

b is absent, or if the end of activity a plus a nonnegative time period d is less

than or equal to the end of activity b. The function cp::EndBeforeEnd(a,b,d)

is equivalent to

a.Present = 0 ∨
b.Present = 0 ∨
a.End+ d ≤ b.End

This function is typically used in scheduling constraints to place a sequencing

restriction on activities.

cp::EndBeforeEnd(

firstActivity, ! (input) an expression

secondActivity, ! (input) an expression

delay ! (optional) an expression

)

Arguments:

firstActivity

An expression that results in an activity.

secondActivity

An expression that results in an activity.

delay

An optional expression that results in an integer number of time

slots. This expression may involve variables. The default value of this

expression is 0.

Return value:

This function returns 1 if the above condition is satisfied, and 0 if it is not.

See also:

� The functions cp::EndAtEnd and cp::EndBeforeBegin, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 322

cp::EndOfNext

The function cp::EndOfNext refers to the end of the next activity in a sequence

of activities.

For a resource r , an activity a, timeslots l and d, the function

cp::EndOfNext(r,a,l,d) returns

� d if a is absent,

� l if a is present and scheduled as the last activity on r , and

� n.end if a is present and not scheduled as the last activity on r , and n

is the next activity of a scheduled on r .

cp::EndOfNext(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

lastValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

lastValue

An optional expression that results in an element in the problem

schedule domain. The default value of this expression is the last

element in the schedule domain of the sequential resource.

absentValue

An optional expression that results in an element in the problem

schedule domain. The default value of this expression is the first

element in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.

See also:

� The functions cp::BeginOfNext and cp::EndOfPrevious, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 323

cp::EndOfPrevious

The function cp::EndOfPrevious refers to the end of the previous activity in a

sequence of activities.

For a resource r , an activity a, timeslots f and d, the function

cp::EndOfPrevious(r,a,f,d) returns

� d if a is absent,

� f if a is present and scheduled as the first activity on r , and

� p.end if a is present and not scheduled as the first activity on r , and p

is the previous activity of a scheduled on r .

cp::EndOfPrevious(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

firstValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

firstValue

An optional expression that results in an element in the problem

schedule domain. The default of this expression is the first element

in the schedule domain of the sequential resource.

absentValue

An optional expression that results in an element in the problem

schedule domain. The default of this expression is the first element

in the problem schedule domain.

Return value:

This function returns an element in the problem schedule domain.

See also:

� The functions cp::BeginOfPrevious and cp::EndOfNext, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 324

cp::GroupOfNext

The function cp::GroupOfNext refers to the group of the next activity in a

sequence of activities. The group of an activity is specified in the group

definition attribute of the sequential resource to ensure the sequencing.

For a resource r , an activity a, groups l and d, the function

cp::GroupOfNext(r,a,l,d) returns

� d if a is absent,

� l if a is present and scheduled as the last activity on r , and

� GroupOf(r ,n) if a is present and not scheduled as the last activity on

r , and n is the next activity of a scheduled on r .

cp::GroupOfNext(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

lastValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

lastValue

An optional expression that results in a group. The default value of

this expression is the last element in the group set of the sequential

resource.

absentValue

An optional expression that results in a group. The default value of

this expression is the last element in the group set of the sequential

resource.

Return value:

This function returns a group.

See also:

� The functions cp::BeginOfNext and cp::EndOfPrevious, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 325

cp::GroupOfPrevious

The function cp::GroupOfPrevious refers to the group of the previous activity

in a sequence of activities. The group of an activity is specified in the group

definition attribute of the sequential resource to ensure the sequencing.

For a resource r , an activity a, groups f and d, the function

cp::GroupOfPrevious(r,a,f,d) returns

� d if a is absent,

� f if a is present and scheduled as the first activity on r , and

� GroupOf(r ,p) if a is present and not scheduled as the first activity

on r , and p is the previous activity of a scheduled on r .

cp::GroupOfPrevious(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

firstValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

firstValue

An optional expression that results in a group. The default value of

this expression is the first element of the group set of the sequential

resource.

absentValue

An optional expression that results in a group. The default value of

this expression is the first element of the group set of the sequential

resource.

Return value:

This function returns a group.

See also:

� The functions cp::BeginOfPrevious and cp::EndOfNext, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 326

cp::LengthOfNext

The function cp::LengthOfNext refers to the length of the next activity in a

sequence of activities. A length is an integer in the range

{0..card(problemscheduledomain)− 1}.
For a resource r , an activity a, lengths l and d, the function

cp::LengthOfNext(r,a,l,d) returns

� d if a is absent,

� l if a is present and scheduled as the last activity on r , and

� n.length if a is present and not scheduled as the last activity on r , and

n is the next activity of a scheduled on r .

cp::LengthOfNext(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

lastValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

lastValue

An optional expression that results in a length. The default value of

this expression is 0.

absentValue

An optional expression that results in a length. The default value of

this expression is 0.

Return value:

This function returns a length.

See also:

� The functions cp::BeginOfNext and cp::EndOfPrevious, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 327

cp::LengthOfPrevious

The function cp::LengthOfPrevious refers to the length of the previous activity

in a sequence of activities. A size is an integer in the range

{0..card(problemscheduledomain)− 1}.
For a resource r , an activity a, sizes f and d, the function

cp::LengthOfPrevious(r,a,f,d) returns

� d if a is absent,

� f if a is present and scheduled as the first activity on r , and

� p.length if a is present and not scheduled as the first activity on r , and

p is the previous activity of a scheduled on r .

cp::LengthOfPrevious(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

firstValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

firstValue

An optional expression that results in a length. The default value of

this expression is 0.

absentValue

An optional expression that results in a length. The default value of

this expression is 0.

Return value:

This function returns a length.

See also:

� The functions cp::BeginOfPrevious and cp::EndOfNext, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 328

cp::SizeOfNext

The function cp::SizeOfNext refers to the size of the next activity in a

sequence of activities. A size is an integer in the range

{0..card(problemscheduledomain)− 1}.
For a resource r , an activity a, sizes l and d, the function

cp::SizeOfNext(r,a,l,d) returns

� d if a is absent,

� l if a is present and scheduled as the last activity on r , and

� n.size if a is present and not scheduled as the last activity on r , and n

is the next activity of a scheduled on r .

cp::SizeOfNext(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

lastValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

lastValue

An optional expression that results in a size. The default value of this

expression is 0.

absentValue

An optional expression that results in a size. The default value of this

expression is 0.

Return value:

This function returns a size.

See also:

� The functions cp::BeginOfNext and cp::EndOfPrevious, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 329

cp::SizeOfPrevious

The function cp::SizeOfPrevious refers to the size of the previous activity in a

sequence of activities. A size is an integer in the range

{0..card(problemscheduledomain)− 1}.
For a resource r , an activity a, sizes f and d, the function

cp::SizeOfPrevious(r,a,f,d) returns

� d if a is absent,

� f if a is present and scheduled as the first activity on r , and

� p.size if a is present and not scheduled as the first activity on r , and p

is the previous activity of a scheduled on r .

cp::SizeOfPrevious(

sequentialResource, ! (input) an expression

scheduledActivity, ! (input) an expression

firstValue, ! (optional) an expression

absentValue ! (optional) an expression

)

Arguments:

sequentialResource

An expression that results in a sequential resource.

scheduledActivity

An expression that results in an activity.

firstValue

An optional expression that results in a size. The default of this

expression is 0.

absentValue

An optional expression that results in a size. The default of this

expression is 0.

Return value:

This function returns a size.

See also:

� The functions cp::BeginOfPrevious and cp::EndOfNext, and

� Chapter 22 on Constraint Programming in the Language Reference.

Chapter 11. Scheduling Functions 330

cp::Span

The function cp::Span(g,i,ai) returns 1 if activity g and activities ai are all

not present, or if the begin of present activity g is equal to the first present

activity ai and the end of activity g is equal to the end of the last present

activity ai. The function cp::Span(g,i,ai) is equivalent to

g.Present = 0 ⇔ ∀i : ai.Present = 0

and

g.Present = 1 ⇔











∃i|ai.Present
g.Begin = mini|ai.Present ai.Begin
g.End = maxi|ai.Present ai.End

This function is typically used in scheduling problems to split an activity into

sub activities.

cp::Span(

globalActivity, ! (input) an expression

activityBinding, ! (input) an index domain

subActivity ! (input) an expression

)

Arguments:

globalActivity

An expression resulting in an activity.

activityBinding

An index domain that specifies and possibly limits the scope of

indices. This argument follows the syntax of the index domain

argument of iterative operators.

subActivity

An expression resulting in an activity. The result is a vector with an

element for each possible value of the indices in index domain

activityBinding.

Return value:

This function returns 1 if the above condition is satisfied, 0 otherwise.

When the index domain i is empty this function will return an error.

See also:

The functions cp::Alternative and cp::Synchronize.

Chapter 11. Scheduling Functions 331

cp::Synchronize

The function cp::Synchronize(g,i,ai) returns 1 if activity g is not present, or

if all present activities ai match activity g. The function

cp::Synchronize(g,i,ai) is equivalent to

g.Present⇒ ∀i|ai.Present :

{

g.Begin = ai.Begin
g.End = ai.End

This function is typically used in scheduling problems to synchronize

activities.

cp::Synchronize(

globalActivity, ! (input) an expression

activityBinding, ! (input) an index domain

subActivity ! (input) an expression

)

Arguments:

globalActivity

An expression resulting in an activity.

activityBinding

An index domain that specifies and possibly limits the scope of

indices. This argument follows the syntax of the index domain

argument of iterative operators.

subActivity

An expression resulting in an activity. The result is a vector with an

element for each possible value of the indices in index domain

activityBinding.

Return value:

This function returns 1 if the above condition is satisfied, 0 otherwise.

When the index domain activityBinding is empty this function will return

an error.

See also:

The functions cp::Alternative and cp::Span.

Chapter 12

The gmp library

Through the gmp library you have direct access to mathematical program

instances generated by Aimms, allowing you to implement advanced

algorithms in an efficient manner. The gmp routines can also be used for

nonlinear models, unless specified otherwise. All procedures and

functions in the gmp library are part of the GMP namespace in Aimms. This

namespace is subdivided into the following functional namespaces:

� Procedures and functions in the GMP::Benders namespace

� Procedures and functions in the GMP::Coefficient namespace

� Procedures and functions in the GMP::Column namespace

� Procedures and functions in the GMP::Event namespace

� Procedures and functions in the GMP::Instance namespace

� Procedures and functions in the GMP::Linearization namespace

� Procedures and functions in the GMP::ProgressWindow namespace

� Procedures and functions in the GMP::QuadraticCoefficient namespace

� Procedures and functions in the GMP::Robust namespace

� Procedures and functions in the GMP::Row namespace

� Procedures and functions in the GMP::Solution namespace

� Procedures and functions in the GMP::Solver namespace

� Procedures and functions in the GMP::SolverSession namespace

� Procedures and functions in the GMP::Stochastic namespace

� Procedures and functions in the GMP::Tuning namespace

Chapter 12. The gmp library 333

12.1 GMP::Benders Procedures and Functions

Aimms supports the following procedures and functions for implementing an

automatic Benders’ decomposition algorithm:

� GMP::Benders::AddFeasibilityCut

� GMP::Benders::AddOptimalityCut

� GMP::Benders::CreateMasterProblem

� GMP::Benders::CreateSubProblem

� GMP::Benders::UpdateSubProblem

Chapter 12. The gmp library 334

GMP::Benders::AddFeasibilityCut

The procedure GMP::Benders::AddFeasibilityCut generates a feasibility cut for

a Benders’ master problem using the solution of a Benders’ subproblem (or

the corresponding feasibility problem). This procedure is typically used in a

Benders’ decomposition algorithm.

GMP::Benders::AddFeasibilityCut(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

solution, ! (input) a solution

cutNo, ! (input) a scalar reference

[tighten] ! (optional, default 0) a scalar binary expression

)

Arguments:

GMP1

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ master problem.

GMP2

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ subproblem (or the corresponding feasibility problem).

solution

An integer scalar reference to a solution of GMP2.

cutNo

An integer scalar reference to a cut number.

tighten

A scalar binary value to indicate whether the feasibility cut should be

tightened. If the value is 1, tightening is attempted.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The GMP1 should have been created using the function

GMP::Benders::CreateMasterProblem.

� The GMP2 should have been created using the function

GMP::Benders::CreateSubProblem or the function

GMP::Instance::CreateFeasibility.

� If the GMP that was created by GMP::Benders::CreateSubProblem

represents the dual of the Benders’ subproblem then this GMP should

be used as argument GMP2. If it represents the primal of the Benders’

subproblem then first the feasibility problem should be created which

then should be used as argument GMP2.

Chapter 12. The gmp library 335

� The solution of the Benders’ subproblem or feasibility problem

(represented by GMP2) is used to generate an optimality cut for the

Benders’ master problem (represented by GMP1).

� A feasibility cut aTx ≥ b can be tightened to 1Tx ≥ 1 if x is a vector of

binary variables and ai ≥ b > 0 for all i.

Examples:

In the examples below we assume that the Benders’ subproblem is

infeasible. The way GMP::Benders::AddFeasibilityCut is called depends on

whether the primal or dual of the Benders’ subproblem was generated. In

the first example we use the dual. In that case an unbounded extreme ray

is used to create a feasibility cut. See Section 21.3 of the Language

Reference.

! Initialization.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

useDual : 1, normalizationType : 0);

NumberOfFeasibilityCuts := 1;

! Switch on solver option for calculating unbounded extreme ray.

GMP::Instance::SetOptionValue(gmpS, ’unbounded ray’, 1);

! First iteration of Benders’ decomposition algorithm (simplified).

GMP::Instance::Solve(gmpM);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Unbounded’) then

GMP::Benders::AddFeasibilityCut(gmpM, gmpS, 1, NumberOfFeasibilityCuts);

NumberOfFeasibilityCuts += 1;

endif;

In the second example we use the primal of the Benders’ subproblem. If

that problem turns out to be infeasible then we solve a feasibility problem

to get a solution of minimum infeasibility (according to some

measurement). The shadow prices of the constraints and the reduced

costs of the variables in that solution are used to create a feasibility cut.

See Section 21.5.1 of the Language Reference.

! Initialization.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

Chapter 12. The gmp library 336

useDual : 0, normalizationType : 0);

NumberOfFeasibilityCuts := 1;

! First iteration of Benders’ decomposition algorithm (simplified).

GMP::Instance::Solve(gmpM);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Infeasible’) then

gmpF := GMP::Instance::CreateFeasibility(gmpS, "FeasProb", useMinMax : 1);

GMP::Instance::Solve(gmpF);

GMP::Benders::AddFeasibilityCut(gmpM, gmpF, 1, NumberOfFeasibilityCuts);

NumberOfFeasibilityCuts += 1;

endif;

See also:

The routines GMP::Benders::CreateMasterProblem,

GMP::Benders::CreateSubProblem, GMP::Benders::AddOptimalityCut,

GMP::Instance::CreateFeasibility,

GMP::SolverSession::AddBendersFeasibilityCut and

GMP::SolverSession::AddBendersOptimalityCut.

Chapter 12. The gmp library 337

GMP::Benders::AddOptimalityCut

The procedure GMP::Benders::AddOptimalityCut generates an optimality cut

for a Benders’ master problem using the (dual) solution of a Benders’

subproblem. This procedure is typically used in a Benders’ decomposition

algorithm.

GMP::Benders::AddOptimalityCut(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

solution, ! (input) a solution

cutNo ! (input) a scalar reference

)

Arguments:

GMP1

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ master problem.

GMP2

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ subproblem.

solution

An integer scalar reference to a solution of GMP2.

cutNo

An integer scalar reference to a cut number.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The GMP1 should have been created using the function

GMP::Benders::CreateMasterProblem.

� The GMP2 should have been created using the function

GMP::Benders::CreateSubProblem.

� The solution of the Benders’ subproblem (represented by GMP2) is used

to generate an optimality cut for the Benders’ master problem

(represented by GMP1). More precise, the shadow prices of the

constraints and the reduced costs of the variables in the Benders’

subproblem are used.

Examples:

In the example below we assume that the Benders’ subproblem is feasible.

Its program status is stored in the element parameter ProgramStatus with

Chapter 12. The gmp library 338

range AllSolutionStates. Note that the subproblem is updated before it is

solved.

! Initialization.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

0, 0);

NumberOfOptimalityCuts := 1;

! First iteration of Benders’ decomposition algorithm (simplified).

GMP::Instance::Solve(gmpM);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Optimal’) then

GMP::Benders::AddOptimalityCut(gmpM, gmpS, 1, NumberOfOptimalityCuts);

NumberOfOptimalityCuts += 1;

endif;

See also:

The routines GMP::Benders::CreateMasterProblem,

GMP::Benders::CreateSubProblem, GMP::Benders::AddFeasibilityCut,

GMP::SolverSession::AddBendersFeasibilityCut and

GMP::SolverSession::AddBendersOptimalityCut.

Chapter 12. The gmp library 339

GMP::Benders::CreateMasterProblem

The function GMP::Benders::CreateMasterProblem creates a Benders’ master

problem for a generated mathematical program. This master problem is

typically used in a Benders’ decomposition algorithm.

GMP::Benders::CreateMasterProblem(

GMP, ! (input) a generated mathematical program

Variables, ! (input) a set of variables

name, ! (input) a string expression

[feasibilityOnly], ! (optional, default 0) a scalar value

[addConstraints] ! (optional, default 0) a scalar value

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Variables

Variables

A subset of AllVariables.

name

A string that holds the name for the Benders’ master problem.

feasibilityOnly

A scalar binary value to indicate whether this function should

(temporary) reformulate the original problem such that the Benders’

subproblem becomes a pure feasibility problem.

addConstraints

A scalar binary value to indicate whether this function should try to

automatically add tightening constraints to the Benders’ master

problem.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� A call to GMP::Benders::CreateMasterProblem is typically followed by a

call to the function GMP::Benders::CreateSubProblem.

� The GMP must have type LP, MIP or RMIP.

� This function cannot be used if the GMP is created by the function

GMP::Instance::GenerateStochasticProgram.

� The Variables argument specifies the variables that become part of the

Benders’ master problem. All other variables will become part of the

Chapter 12. The gmp library 340

Benders’ subproblem. The objective variable should be part of the set of

master problem variables; if the objective variable is not included in the

set Variables then this procedure will automatically add it.

� If the GMP contains integer variables then they all must be included in

the set Variables.

� The feasibilityOnly argument is discussed in more detail in

Section 21.5.2 of the Language Reference.

� The addConstraints argument is discussed in more detail in

Section 21.5.5 of the Language Reference.

Examples:

If the math program has type MIP then often the set of master problem

variables equals the set AllIntegerVariables.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

See also:

The routines GMP::Benders::CreateSubProblem,

GMP::Benders::AddFeasibilityCut and GMP::Benders::AddOptimalityCut.

Chapter 12. The gmp library 341

GMP::Benders::CreateSubProblem

The function GMP::Benders::CreateSubProblem creates a Benders’ subproblem

for a generated mathematical program. This subproblem is typically used in a

Benders’ decomposition algorithm.

GMP::Benders::CreateSubProblem(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

name, ! (input) a string expression

[useDual], ! (optional, default 0) a scalar value

[normalizationType] ! (optional, default 0) a scalar value

)

Arguments:

GMP1

An element in the set AllGeneratedMathematicalPrograms.

GMP2

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ master problem.

name

A string that holds the name for the Benders’ subproblem.

useDual

A scalar binary value to indicate whether this function should create

the primal (value 0) or dual (value 1) of the subproblem.

normalizationType

A scalar value to indicate which kind of normalization this function

should use. Value 0 implies that the standard normalization is used.

Value 1 implies that the normalization condition introduced by

Fischetti, Salvagnin and Zanette (2010) is used. The normalization

condition is added as a constraint to the subproblem.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� The GMP1 must have type LP, MIP or RMIP.

� The GMP2 should have been created using the function

GMP::Benders::CreateMasterProblem. Note that the call to that function

specifies how the variables (and constraints) are divided among the

master and subproblem.

� The useDual argument is discussed in more detail in Section 21.5.1 of

the Language Reference.

Chapter 12. The gmp library 342

� The normalizationType argument is discussed in more detail in

Section 21.5.3 of the Language Reference.

Examples:

If the math program has type MIP then often the set of master problem

variables equals the set AllIntegerVariables. All other variables

automatically become part of the subproblem.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

0, 0);

See also:

The routines GMP::Benders::CreateMasterProblem,

GMP::Benders::AddFeasibilityCut, GMP::Benders::AddOptimalityCut,

GMP::Benders::UpdateSubProblem and GMP::Instance::CreateFeasibility.

Chapter 12. The gmp library 343

GMP::Benders::UpdateSubProblem

The procedure GMP::Benders::UpdateSubProblem updates a Benders’

subproblem (or the corresponding feasibility problem) using the solution of a

Benders’ master problem. This procedure is typically used in a Benders’

decomposition algorithm.

GMP::Benders::UpdateSubProblem(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

solution, ! (input) a solution

[round] ! (optional, default 0) a scalar value

)

Arguments:

GMP1

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ subproblem.

GMP2

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ master problem.

solution

An integer scalar reference to a solution of GMP2.

round

A binary scalar indicating whether the level values of the integer

variables (if any) should be rounded to the nearest integer value in

the solution used to update the subproblem.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The GMP1 should have been created using the function

GMP::Benders::CreateSubProblem or the function

GMP::Instance::CreateFeasibility.

� The GMP2 should have been created using the function

GMP::Benders::CreateMasterProblem.

� The solution of the Benders’ master problem (represented by GMP2) is

used to update the Benders’ subproblem (represented by GMP1). That

is, the right-hand-side values of the constraints in the subproblem are

reevaluated using the level values of the variables in the solution of the

Benders’ master problem.

Chapter 12. The gmp library 344

Examples:

Before solving the subproblem it should be updated using a solution of

the master problem. In the example below we use the solution at position

1 in the solution repository of the GMP belonging to the master problem.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

0, 0);

GMP::Instance::Solve(gmpM);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

See also:

The functions GMP::Benders::CreateMasterProblem,

GMP::Benders::CreateSubProblem and GMP::Instance::CreateFeasibility.

Chapter 12. The gmp library 345

12.2 GMP::Coefficient Procedures and Functions

Aimms supports the following procedures and functions for modifying the

coefficient matrix associated with a generated mathematical program

instance:

� GMP::Coefficient::Get

� GMP::Coefficient::GetQuadratic

� GMP::Coefficient::Set

� GMP::Coefficient::SetMulti

� GMP::Coefficient::SetQuadratic

Chapter 12. The gmp library 346

GMP::Coefficient::Get

The function GMP::Coefficient::Get retrieves a (linear) coefficient in a

generated mathematical program.

GMP::Coefficient::Get(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the model or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

column

A scalar reference to an existing column in the model or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The value of the specified coefficient in the generated mathematical

program.

Remarks:

In case the generated mathematical program is nonlinear, this function

will return 0 if the column is part of a nonlinear term in the row. However,

if the row is pure quadratic then this function will return the linear

coefficient value for a quadratic column.

Examples:

Consider a GMP containing a constraint e1 with definition

2*x1 + 3*x2 + x2ˆ3 = 0. Then GMP::Coefficient::Get(GMP,e1,x1) will

return 2. Because column x2 is part of the nonlinear term x2ˆ3,

GMP::Coefficient::Get(GMP,e1,x2) will return 0.

See also:

The routines GMP::Coefficient::Set and GMP::QuadraticCoefficient::Get.

Chapter 12. The gmp library 347

GMP::Coefficient::GetQuadratic

The function GMP::Coefficient::GetQuadratic retrieves the value of a

quadratic product between two columns in a generated mathematical

program.

GMP::Coefficient::GetQuadratic(

GMP, ! (input) a generated mathematical program

column1, ! (input) a scalar reference or column number

column2 ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column1,column2

A scalar reference to an existing column in the model or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The value of the specified quadratic term in the generated mathematical

program.

Remarks:

� If column1 equals column2 then Aimms multiplies the quadratic

coefficient by 2 before it is returned by this function.

� This function operates on the objective. To get a quadratic coefficient in

a row the function GMP::QuadraticCoefficient::Get should be used.

See also:

The routines GMP::Coefficient::SetQuadratic and

GMP::QuadraticCoefficient::Get.

Chapter 12. The gmp library 348

GMP::Coefficient::Set

The procedure GMP::Coefficient::Set sets the value of a (linear) coefficient in

a generated mathematical program.

GMP::Coefficient::Set(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

column, ! (input) a scalar reference or column number

value ! (input) a scalar numerical value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the model or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

column

A scalar reference to an existing column in the model or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

A scalar numerical value indicating the value for the coefficient.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Use GMP::Coefficient::SetMulti if many coefficients have to be set

because that will be more efficient.

� This procedure cannot be used if the column refers to the objective

variable.

� In case the generated mathematical program is nonlinear, this

procedure will fail if the column is part of a nonlinear term in the row.

However, if the row is pure quadratic, then this procedure can be used

to set the linear coefficient value for a quadratic column.

� GMP procedures operate on a generated mathematical program in which

all variables are moved to the left-hand-side of each constraint. This can

have an influence on the sign of the coeffients as demonstrated in the

example below.

Chapter 12. The gmp library 349

Examples:

Assume that we have the following variable and constraint declarations (in

aim format):.

Variable y;

Variable z;

Variable x1;

Constraint e1 {

Definition : x1 - 2*y - 3*z = 0;

}

Variable x2 {

Definition : 2*y + 3*z;

}

To change the coefficient of variable y in constraint e1 to 4 we use:

GMP::Coefficient::Set(myGMP, e1, y, 4);

This results in the row x1 + 4*y - 3*z = 0.

The definition of variable x2 is generated as the row x2 - 2*y - 3*z = 0 by

Aimms. Therefore, using

GMP::Coefficient::Set(myGMP, x2_definition, y, -4);

will result in the row x2 - 4*y - 3*z = 0.

See also:

The routines GMP::Coefficient::Get, GMP::Coefficient::SetMulti and

GMP::QuadraticCoefficient::Set.

Chapter 12. The gmp library 350

GMP::Coefficient::SetMulti

The procedure GMP::Coefficient::SetMulti sets the value of a range of (linear)

coefficients for a group of columns and rows, belonging to a variable and

constraint, in a generated mathematical program.

GMP::Coefficient::SetMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

row, ! (input) a constraint expression

column, ! (input) a variable expression

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

row

A constraint that, combined with the binding domain, specifies the

rows.

column

A variable that, combined with the binding domain, specifies the

columns.

value

The new coefficient for each combination of row and column, defined

over the binding domain binding.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure cannot be used if the column refers to the objective

variable.

� In case the generated mathematical program is nonlinear, this

procedure will fail if one the columns is part of a nonlinear term in one

of the rows. However, if the row is pure quadratic, then this procedure

can be used to set the linear coefficient value for a quadratic column.

� GMP procedures operate on a generated mathematical program in which

all variables are moved to the left-hand-side of each constraint. This can

have an influence on the sign of the coeffients as demonstrated in the

example of procedure GMP::Coefficient::Set.

Chapter 12. The gmp library 351

Examples:

To set the coefficients of variable x(j) in constraint c(i) to coef(i,j) we

can use:

for (i,j) do

GMP::Column::Set(myGMP, c(i), x(j), coef(i,j));

endfor;

It is more efficient to use:

GMP::Coefficient::SetMulti(myGMP, (i,j), c(i), x(j), coef(i,j));

If we only want to set the coefficients of those x(j) for which dom(j) is

unequal to zero, then we use:

GMP::Coefficient::SetMulti(myGMP, (i,j) | dom(j), c(i), x(j), coef(i,j));

See also:

The routines GMP::Coefficient::Get, GMP::Coefficient::Set and

GMP::QuadraticCoefficient::Set.

Chapter 12. The gmp library 352

GMP::Coefficient::SetQuadratic

The procedure GMP::Coefficient::SetQuadratic sets the value of a quadratic

product between two columns in a generated mathematical program.

GMP::Coefficient::SetQuadratic(

GMP, ! (input) a generated mathematical program

column1, ! (input) a scalar value or column number

column2, ! (input) a scalar value or column number

value | (input) a scalar numerical value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column1,Column2

A scalar reference to an existing column in the model or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

A scalar numerical value indicating the value for the quadratic term.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If column1 equals column2 then Aimms multiplies the quadratic

coefficient by 0.5 before it is stored (and passed to the solver).

� This procedure operates on the objective. To set a quadratic coefficient

in a row the procedure GMP::QuadraticCoefficient::Set should be used.

See also:

The routines GMP::Coefficient::GetQuadratic and

GMP::QuadraticCoefficient::Set.

Chapter 12. The gmp library 353

12.3 GMP::Column Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing matrix columns associated with a generated mathematical program

instance:

� GMP::Column::Add

� GMP::Column::Delete

� GMP::Column::Freeze

� GMP::Column::FreezeMulti

� GMP::Column::GetLowerBound

� GMP::Column::GetName

� GMP::Column::GetScale

� GMP::Column::GetStatus

� GMP::Column::GetType

� GMP::Column::GetUpperBound

� GMP::Column::SetAsMultiObjective

� GMP::Column::SetAsObjective

� GMP::Column::SetDecomposition

� GMP::Column::SetDecompositionMulti

� GMP::Column::SetLowerBound

� GMP::Column::SetLowerBoundMulti

� GMP::Column::SetType

� GMP::Column::SetUpperBound

� GMP::Column::SetUpperBoundMulti

� GMP::Column::Unfreeze

� GMP::Column::UnfreezeMulti

Chapter 12. The gmp library 354

GMP::Column::Add

The procedure GMP::Column::Add adds a column to the matrix of a generated

mathematical program.

GMP::Column::Add(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to a column.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

Coefficients for this column can be added to the matrix by using the

procedure GMP::Coefficient::Set. After calling GMP::Column::Add the type

and the lower and upper bound of the column are set according to the

definition of the corresponding symbolic variable. By using the

procedures GMP::Column::SetType, GMP::Column::SetLowerBound and

GMP::Column::SetUpperBound the column type and the lower and upper

bound can be changed.

See also:

The routines GMP::Instance::Generate, GMP::Coefficient::Set,

GMP::Column::Delete, GMP::Column::SetType, GMP::Column::SetLowerBound

and GMP::Column::SetUpperBound.

Chapter 12. The gmp library 355

GMP::Column::Delete

The procedure GMP::Column::Delete marks a column in the matrix of a

generated mathematical program as deleted.

GMP::Column::Delete(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The column will not be printed in the constraint listing, nor be visible in

the math program inspector and it will be removed from any solver

maintained copies.

� Use GMP::Column::Add to undo this action.

See also:

The routines GMP::Instance::Generate and GMP::Column::Add.

Chapter 12. The gmp library 356

GMP::Column::Freeze

The procedure GMP::Column::Freeze freezes a column in the matrix of a

generated mathematical program at the given value.

GMP::Column::Freeze(

GMP, ! (input) a generated mathematical program

column, ! (input) a scalar reference or column number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

The new value that should be used to freeze the column value.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Use GMP::Column::FreezeMulti if many columns corresponding to some

variable have to be frozen, because that will be more efficient.

� The column remains visible in the constraint listing and math program

inspector. In addition, it will be retained in solver maintained copies of

the generated math program.

� Use GMP::Column::Unfreeze to undo the freezing.

� During a call to function GMP::Column::Freeze Aimms stores the upper

and lower bound of the column before the function was called. This

information is used when function GMP::Column::Unfreeze is called

thereafter. This information is not copied by the function

GMP::Instance::Copy.

See also:

The routines GMP::Instance::Generate, GMP::Column::FreezeMulti,

GMP::Column::Unfreeze and GMP::Instance::Copy.

Chapter 12. The gmp library 357

GMP::Column::FreezeMulti

The procedure GMP::Column::FreezeMulti freezes a group of columns,

belonging to a variable, in the matrix of a generated mathematical program.

GMP::Column::FreezeMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

column, ! (input) a variable expression

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

column

A variable that, combined with the binding domain, specifies the

columns.

value

The new value for each column, defined over the binding domain

binding, that should be used to freeze the column value.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� The columns remain visible in the constraint listing and math program

inspector. In addition, it will be retained in solver maintained copies of

the generated math program.

� Use GMP::Column::UnfreezeMulti to undo the freezing.

� During a call to function GMP::Column::FreezeMulti Aimms stores the

upper and lower bound of the column before the function was called.

This information is used when function GMP::Column::UnfreezeMulti is

called thereafter. This information is not copied by the function

GMP::Instance::Copy.

Examples:

To freeze variable x(i) to demand(i) we can use:

for (i) do

GMP::Column::Freeze(myGMP, x(i), demand(i));

endfor;

Chapter 12. The gmp library 358

It is more efficient to use:

GMP::Column::FreezeMulti(myGMP, i, x(i), demand(i));

If we only want to freeze those x(i) for which dom(i) is unequal to zero,

then we use:

GMP::Column::FreezeMulti(myGMP, i | dom(i), x(i), demand(i));

See also:

The routines GMP::Instance::Generate, GMP::Column::Freeze,

GMP::Column::UnfreezeMulti and GMP::Instance::Copy.

Chapter 12. The gmp library 359

GMP::Column::GetLowerBound

The function GMP::Column::GetLowerBound returns the lower bound of a

column in the generated mathematical program.

GMP::Column::GetLowerBound(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The lower bound value for the specified column.

Remarks:

� If the column has a unit then the scaled lower bound is returned

(without unit).

� This function can be used to retrieve the lower bound after presolving

in case the GMP was created by GMP::Instance::CreatePresolved, even if

the column was deleted.

Examples:

Assume that ’x1’ is a variable in mathematical program ’MP’ with a unit as

defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Parameter min_wght {

Unit : ton;

InitialValue : 20;

}

Variable x1 {

Range : [min_wght, inf);

Unit : ton;

}

If we want to multiply the lower bound by 1.5 and assign it as the new

value by using function GMP::Column::SetLowerBound we can use

Chapter 12. The gmp library 360

lb1 := 1.5 * (GMP::Column::GetLowerBound(’MP’, x1)) [ton];

GMP::Column::SetLowerBound(’MP’, x1, lb1);

if ’lb1’ is a parameter with unit [ton], or we can use

lb2 := 1.5 * GMP::Column::GetLowerBound(’MP’, x1);

GMP::Column::SetLowerBound(’MP’, x1, lb2 * GMP::Column::GetScale(’MP’, x1));

if ’lb2’ is a parameter without a unit.

See also:

The routines GMP::Instance::Generate, GMP::Column::SetLowerBound,

GMP::Column::GetUpperBound, GMP::Column::GetScale and

GMP::Instance::CreatePresolved.

Chapter 12. The gmp library 361

GMP::Column::GetName

The function GMP::Column::GetName returns the name of a column in the

matrix of a generated mathematical program.

GMP::Column::GetName(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The function returns a string.

See also:

The routines GMP::Instance::Generate and GMP::row::GetName.

Chapter 12. The gmp library 362

GMP::Column::GetScale

The function GMP::Column::GetScale returns the scaling factor of a column in

the generated mathematical program.

GMP::Column::GetScale(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The scaling factor for the specified column.

See also:

The routines GMP::Instance::Generate and GMP::Row::GetScale.

Chapter 12. The gmp library 363

GMP::Column::GetStatus

The function GMP::Column::GetStatus returns the status of a column in the

matrix of a generated mathematical program.

GMP::Column::GetStatus(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

An element in the predefined set AllRowColumnStatuses. The set

AllRowColumnStatuses contains the following elements:

� Active,

� Deactivated,

� Deleted,

� NotGenerated,

� PresolveDeleted.

Remarks:

� This function will return ’PresolveDeleted’ only if the generated

mathematical program has been created with

GMP::Instance::CreatePresolved. Status ’PresolveDeleted’ means that the

column was generated for the original generated mathematical program

but deleted when the presolved mathematical program was created.

� Status ’Deactivated’ is not possible for columns.

See also:

The routines GMP::Instance::Generate and GMP::Instance::CreatePresolved.

Chapter 12. The gmp library 364

GMP::Column::GetType

The function GMP::Column::GetType returns the type of a column in the matrix

of a generated mathematical program.

GMP::Column::GetType(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

An element in the predefined set AllColumnTypes.

See also:

The routines GMP::Instance::Generate and GMP::Column::SetType.

Chapter 12. The gmp library 365

GMP::Column::GetUpperBound

The function GMP::Column::GetUpperBound returns the upper bound of a

column in the generated mathematical program.

GMP::Column::GetUpperBound(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The upper bound value for the specified column.

Remarks:

� If the column has a unit then the scaled upper bound is returned

(without unit).

� This function can be used to retrieve the upper bound after presolving

in case the GMP was created by GMP::Instance::CreatePresolved, even if

the column was deleted.

Examples:

Assume that ’x1’ is a variable in mathematical program ’MP’ with a unit as

defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Parameter max_wght {

Unit : ton;

InitialValue : 20;

}

Variable x1 {

Range : [0, max_wght];

Unit : ton;

}

If we want to multiply the upper bound by 1.5 and assign it as the new

value by using function GMP::Column::SetUpperBound we can use

Chapter 12. The gmp library 366

ub1 := 1.5 * (GMP::Column::GetUpperBound(’MP’, x1)) [ton];

GMP::Column::SetUpperBound(’MP’, x1, ub1);

if ’ub1’ is a parameter with unit [ton], or we can use

ub2 := 1.5 * GMP::Column::GetUpperBound(’MP’, x1);

GMP::Column::SetUpperBound(’MP’, x1, ub2 * GMP::Column::GetScale(’MP’, x1));

if ’ub2’ is a parameter without a unit.

See also:

The routines GMP::Instance::Generate, GMP::Column::SetUpperBound,

GMP::Column::GetLowerBound, GMP::Column::GetScale and

GMP::Instance::CreatePresolved.

Chapter 12. The gmp library 367

GMP::Column::SetAsMultiObjective

The procedure GMP::Column::SetAsMultiObjective sets a column as one of the

multi-objectives of a generated mathematical program, thereby creating a

multi-objective optimization problem.

GMP::Column::SetAsMultiObjective(

GMP, ! (input) a generated mathematical program

column, ! (input) a scalar reference or column number

priority, ! (input) a numerical expression

weight, ! (input) a numerical expression

[abstol], ! (input/optional) a numerical expression

[reltol] ! (input/optional) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

priority

A scalar value specifying the priority of the objective. An objective

with the highest priority is considered first.

weight

A scalar value specifying the weight of the objective. It defines the

weight by which the objective coefficients are multiplied when

forming a blended objective, i.e., if multiple objectives have the same

priority.

abstol

A scalar value specifying the absolute tolerance by which a solution

may deviate from the optimal value of the objective of the previous

optimization problem. The default value is 0.0.

reltol

A scalar value specifying the relative tolerance by which a solution

may deviate from the optimal value of the objective of the previous

optimization problem. The default value is 0.0.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Chapter 12. The gmp library 368

Remarks:

� The column should be linear and have at exactly one coefficient in the

matrix.

� The column should be free, i.e., not have a lower or upper bound.

� If GMP::Column::SetAsMultiObjective is called twice for the same column

then only the information from the second call is used (and the

information from the first call is ignored).

� Use the procedure GMP::Instance::DeleteMultiObjectives to delete all

multi-objectives.

� Multi-objective optimization is only supported by Cplex 12.9 or higher,

and Gurobi 8.0 or higher.

� The meaning of the relaxation of the objective, which is controlled by

the abstol and reltol arguments, depends on whether the multi-objective

problem is an LP or MIP. See the Multi-Objective Optimization section in

the Cplex Help or the Gurobi Help for more information.

Examples:

In the example below two multi-objectives are specified::

myGMP := GMP::Instance::Generate(MP);

GMP::Column::SetAsMultiObjective(myGMP, TotalDist, 2, 1.0, 0, 0.1);

GMP::Column::SetAsMultiObjective(myGMP, TotalTime, 1, 1.0, 0, 0.0);

GMP::Instance::Solve(myGMP);

We can now switch the priorities of the two objectives by adding:

GMP::Column::SetAsMultiObjective(myGMP, TotalDist, 1, 1.0, 0, 0.1);

GMP::Column::SetAsMultiObjective(myGMP, TotalTime, 2, 1.0, 0, 0.0);

GMP::Instance::Solve(myGMP);

See also:

The procedure GMP::Instance::DeleteMultiObjectives.

Chapter 12. The gmp library 369

GMP::Column::SetAsObjective

The procedure GMP::Column::SetAsObjective sets a column as the new

objective of a generated mathematical program.

GMP::Column::SetAsObjective(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� The column should be linear and have at least one coefficient in the

matrix.

� The column should be free, i.e., not have a lower or upper bound.

� After a call to GMP::Column::SetAsObjective the old objective column will

be treated as a normal column.

See also:

The routines GMP::Column::Add and GMP::Instance::CreateDual.

Chapter 12. The gmp library 370

GMP::Column::SetDecomposition

The procedure GMP::Column::SetDecomposition can be used to specify a

decomposition to be used by a solver. It changes the decomposition value of

a single column in the generated mathematical program.

This procedure can be used to specify a decomposition for the Benders

algorithm in Cplex by assigning the columns to the master problem or a

subproblem. It can also be used to specify a decompostion for Odh-Cplex.

And it can be used to specify a partition for Gurobi to be used by its

partition heuristic.

GMP::Column::SetDecomposition(

GMP, ! (input) a generated mathematical program

column, ! (input) a scalar reference or column number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

The decomposition value assigned to the column.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Use Column::SetDecompositionMulti if the decomposition value of many

columns corresponding to some variable have to be set, because that

will be more efficient.

� This procedure can be used to specify the decomposition in the Benders

algorithm of Cplex 12.7 or higher. See the Cplex option Benders

strategy for more information.

� For Cplex, use a value of 0 to assign a column to the master problem,

and a value between 1 and N to assign a column to one of the N

subproblems (N can be 1 if you only want to use one subproblem). A

value of -1 indicates that the column is not assigned to the master

problem or a subproblem.

� This procedure can be used to specify model structure or a

decomposition used by Odh-Cplex.

Chapter 12. The gmp library 371

� For Odh-Cplex, use a value between 1 and N to assign a column to one

of the N subproblems. A value of 0 or lower indicates that the column

is not assigned to any subproblem.

� This procedure can be used to specify a partition used by the partition

heuristic of Gurobi 8.0 or higher. See the Gurobi option Partition

heuristic for more information.

� For Gurobi, use a positive value to indicate that the column should be

included when the correspondingly numbered sub-MIP is solved, a value

of 0 to indicate that the column should be included in every sub-MIP,

and a value of -1 to indicate that the column should not be included in

any sub-MIP. (Variables that are not included in the sub-MIP are fixed to

their values in the current incumbent solution.)

� This procedure is not used by the Automatic Benders Decomposition

module in Aimms.

Examples:

The first example shows how to specify a decomposition for the Benders

algorithm in Cplex. The integer variable IntVar is assigned to the master

problem while the continuous variable ContVar is assigned to the

subproblem.

myGMP := GMP::Instance::Generate(MP);

! Switch on CPLEX option for using Benders strategy with decomposition specified by user.

GMP::Instance::SetOptionValue(myGMP, ’benders strategy’, 1);

for (i) do

GMP::Column::SetDecomposition(myGMP, IntVar(i), 0);

endfor;

for (j) do

GMP::Column::SetDecomposition(myGMP, ContVar(j), 1);

endfor;

GMP::Instance::Solve(myGMP);

The second example shows how to specify model structure used by

Odh-Cplex. All columns X(i,j) and Y(i,j,k) with the same ’i’ are

assigned to the same subproblem.

myGMP := GMP::Instance::Generate(MP);

for (i,j) do

GMP::Column::SetDecomposition(myGMP, X(i,j), Ord(i));

endfor;

for (i,j,k) do

GMP::Column::SetDecomposition(myGMP, Y(i,j,k), Ord(i));

endfor;

GMP::Instance::Solve(myGMP);

Chapter 12. The gmp library 372

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve and

GMP::Column::SetDecompositionMulti .

Chapter 12. The gmp library 373

GMP::Column::SetDecompositionMulti

The procedure GMP::Column::SetDecompositionMulti can be used to specify a

decomposition to be used by a solver. It changes the decomposition value of

a group of columns, belonging to a variable, in the generated mathematical

program.

This procedure can be used to specify a decomposition for the Benders

algorithm in Cplex by assigning the columns to the master problem or a

subproblem. It can also be used to specify a decompostion for Odh-Cplex.

And it can be used to specify a partition for Gurobi to be used by its

partition heuristic.

GMP::Column::SetDecompositionMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

column, ! (input) a scalar reference or column number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

column

A variable that, combined with the binding domain, specifies the

columns.

value

The new decomposition value for each column, defined over the

binding domain binding.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� This procedure can be used to specify the decomposition in the Benders

algorithm of Cplex 12.7 or higher. See the Cplex option Benders

strategy for more information.

� For Cplex, use a value of 0 to assign a column to the master problem,

and a value between 1 and N to assign a column to one of the N

subproblems (N can be 1 if you only want to use one subproblem). A

value of -1 indicates that the column is not assigned to the master

problem or a subproblem.

Chapter 12. The gmp library 374

� This procedure can be used to specify model structure or a

decomposition used by Odh-Cplex.

� For Odh-Cplex, use a value between 1 and N to assign a column to one

of the N subproblems. A value of 0 or lower indicates that the column

is not assigned to any subproblem.

� This procedure can be used to specify a partition used by the partition

heuristic of Gurobi 8.0 or higher. See the Gurobi option Partition

heuristic for more information.

� For Gurobi, use a positive value to indicate that the column should be

included when the correspondingly numbered sub-MIP is solved, a value

of 0 to indicate that the column should be included in every sub-MIP,

and a value of -1 to indicate that the column should not be included in

any sub-MIP. (Variables that are not included in the sub-MIP are fixed to

their values in the current incumbent solution.)

� This procedure is not used by the Automatic Benders Decomposition

module in Aimms.

Examples:

The first example shows how to specify a decomposition for the Benders

algorithm in Cplex. The integer variable IntVar is assigned to the master

problem while the continuous variable ContVar is assigned to the

subproblem.

myGMP := GMP::Instance::Generate(MP);

! Switch on CPLEX option for using Benders strategy with decomposition specified by user.

GMP::Instance::SetOptionValue(myGMP, ’benders strategy’, 1);

GMP::Column::SetDecompositionMulti(myGMP, i, IntVar(i), 0);

GMP::Column::SetDecompositionMulti(myGMP, j, ContVar(j), 1);

GMP::Instance::Solve(myGMP);

The second example shows how to specify model structure used by

Odh-Cplex. All columns X(i,j) and Y(i,j,k) with the same ’i’ are

assigned to the same subproblem.

myGMP := GMP::Instance::Generate(MP);

GMP::Column::SetDecompositionMulti(myGMP, (i,j), X(i,j), Ord(i));

GMP::Column::SetDecompositionMulti(myGMP, (i,j,k), Y(i,j,k), Ord(i));

GMP::Instance::Solve(myGMP);

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve and

GMP::Column::SetDecomposition.

Chapter 12. The gmp library 375

GMP::Column::SetLowerBound

The procedure GMP::Column::SetLowerBound changes the lower bound of a

column in the generated mathematical program.

GMP::Column::SetLowerBound(

GMP, ! (input) a generated mathematical program

column, ! (input) a scalar reference or column number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

The new value assigned to the lower bound of the column.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Use GMP::Column::SetLowerBoundMulti if the lower bound of many

columns corresponding to some variable have to be set, because that

will be more efficient.

� If the column has a unit then value should have the same unit. If value

has no unit then you should multiply it by the column scale, as returned

by the function GMP::Column::GetScale.

Examples:

Assume that ’x1’ is a variable in mathematical program ’MP’ with a unit as

defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Parameter min_wght {

Unit : ton;

InitialValue : 20;

}

Variable x1 {

Range : [min_wght, inf);

Unit : ton;

}

Chapter 12. The gmp library 376

Then if we run the following code

GMP::Column::SetLowerBound(’MP’, x1, 20 [ton]);

lb1 := GMP::Column::GetLowerBound(’MP’, x1);

display lb1;

GMP::Column::SetLowerBound(’MP’, x1, 30);

lb2 := GMP::Column::GetLowerBound(’MP’, x1);

display lb2;

GMP::Column::SetLowerBound(’MP’, x1, 40 * GMP::Column::GetScale(’MP’, x1));

lb3 := GMP::Column::GetLowerBound(’MP’, x1);

display lb3;

(where ’lb1’, ’lb2’ and ’lb3’ are parameters without a unit) we get the

following results:

lb1 := 20 ;

lb2 := 0.030 ;

lb3 := 40 ;

See also:

The routines GMP::Instance::Generate, GMP::Column::SetLowerBoundMulti,

GMP::Column::SetUpperBound, GMP::Column::GetLowerBound and

GMP::Column::GetScale.

Chapter 12. The gmp library 377

GMP::Column::SetLowerBoundMulti

The procedure GMP::Column::SetLowerBoundMulti changes the lower bound of a

group of columns, belonging to a variable, in the generated mathematical

program.

GMP::Column::SetLowerBoundMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

column, ! (input) a variable expression

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

column

A variable that, combined with the binding domain, specifies the

columns.

value

The new lower bound for each column, defined over the binding

domain binding.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

If the variable has a unit then value should have the same unit. If value

has no unit then you should multiply it by the column scale, as returned

by the function GMP::Column::GetScale. See GMP::Column::SetLowerBound for

an example with units.

Examples:

To set the lower bounds of variable x(i) to lb(i) we can use:

for (i) do

GMP::Column::SetLowerBound(myGMP, x(i), lb(i));

endfor;

It is more efficient to use:

GMP::Column::SetLowerBoundMulti(myGMP, i, x(i), lb(i));

Chapter 12. The gmp library 378

If we only want to set the lower bounds of those x(i) for which dom(i) is

unequal to zero, then we use:

GMP::Column::SetLowerBoundMulti(myGMP, i | dom(i), x(i), lb(i));

See also:

The routines GMP::Instance::Generate, GMP::Column::SetLowerBound,

GMP::Column::SetUpperBound, GMP::Column::GetLowerBound and

GMP::Column::GetScale.

Chapter 12. The gmp library 379

GMP::Column::SetType

The procedure GMP::Column::SetType changes the type of a column in the

matrix of a generated mathematical program.

GMP::Column::SetType(

GMP, ! (input) a generated mathematical program

column, ! (input) a scalar reference or column number

type ! (input) a element in AllColumnTypes

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

type

An element in AllColumnTypes.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP::Instance::Generate and GMP::Column::GetType.

Chapter 12. The gmp library 380

GMP::Column::SetUpperBound

The procedure GMP::Column::SetUpperBound changes the upper bound of a

column in the generated mathematical program.

GMP::Column::SetUpperBound(

GMP, ! (input) a generated mathematical program

column, ! (input) a scalar reference or column number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

The new value assigned to the upper bound of the column.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Use GMP::Column::SetUpperBoundMulti if the upper bound of many

columns corresponding to some variable have to be set, because that

will be more efficient.

� If the column has a unit then value should have the same unit. If value

has no unit then you should multiply it by the column scale, as returned

by the function GMP::Column::GetScale.

Examples:

Assume that ’x1’ is a variable in mathematical program ’MP’ with a unit as

defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Parameter max_wght {

Unit : ton;

InitialValue : 20;

}

Variable x1 {

Range : [0, max_wght];

Unit : ton;

}

Chapter 12. The gmp library 381

Then if we run the following code

GMP::Column::SetUpperBound(’MP’, x1, 20 [ton]);

ub1 := GMP::Column::GetUpperBound(’MP’, x1);

display ub1;

GMP::Column::SetUpperBound(’MP’, x1, 30);

ub2 := GMP::Column::GetUpperBound(’MP’, x1);

display ub2;

GMP::Column::SetUpperBound(’MP’, x1, 40 * GMP::Column::GetScale(’MP’, x1));

ub3 := GMP::Column::GetUpperBound(’MP’, x1);

display ub3;

(where ’ub1’, ’ub2’ and ’ub3’ are parameters without a unit) we get the

following results:

ub1 := 20 ;

ub2 := 0.030 ;

ub3 := 40 ;

See also:

The routines GMP::Instance::Generate, GMP::Column::SetUpperBoundMulti,

GMP::Column::SetLowerBound, GMP::Column::GetUpperBound and

GMP::Column::GetScale.

Chapter 12. The gmp library 382

GMP::Column::SetUpperBoundMulti

The procedure GMP::Column::SetUpperBoundMulti changes the upper bound of

a group of columns, belonging to a variable, in the generated mathematical

program.

GMP::Column::SetUpperBoundMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

column, ! (input) a variable expression

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

column

A variable that, combined with the binding domain, specifies the

columns.

value

The new upper bound for each column, defined over the binding

domain binding.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

If the variable has a unit then value should have the same unit. If value

has no unit then you should multiply it by the column scale, as returned

by the function GMP::Column::GetScale. See GMP::Column::SetUpperBound for

an example with units.

Examples:

To set the upper bounds of variable x(i) to ub(i) we can use:

for (i) do

GMP::Column::SetUpperBound(myGMP, x(i), ub(i));

endfor;

It is more efficient to use:

GMP::Column::SetUpperBoundMulti(myGMP, i, x(i), ub(i));

Chapter 12. The gmp library 383

If we only want to set the upper bounds of those x(i) for which dom(i) is

unequal to zero, then we use:

GMP::Column::SetUpperBoundMulti(myGMP, i | dom(i), x(i), ub(i));

See also:

The routines GMP::Instance::Generate, GMP::Column::SetUpperBound,

GMP::Column::SetLowerBound, GMP::Column::GetUpperBound and

GMP::Column::GetScale.

Chapter 12. The gmp library 384

GMP::Column::Unfreeze

The procedure GMP::Column::Unfreeze removes the frozen status of a column

in the matrix of a generated mathematical program.

GMP::Column::Unfreeze(

GMP, ! (input) a generated mathematical program

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Use GMP::Column::UnfreezeMulti if many columns corresponding to

some variable have to be unfrozen, because that will be more efficient.

� During a call to function GMP::Column::Freeze Aimms stores the upper

and lower bound of the column before the function was called. This

information is used when function GMP::Column::Unfreeze is called

thereafter. This information is not copied by the function

GMP::Instance::Copy. Therefore the call to GMP::Column::Unfreeze in the

following piece of code is useless:

GMP::Column::Freeze(gmp1, x1, 20);

gmp2 := GMP::Instance::Copy(gmp1, "cpy");

GMP::Column::Unfreeze(gmp2, x1);

See also:

The routines GMP::Instance::Generate, GMP::Column::UnfreezeMulti,

GMP::Column::Freeze and GMP::Instance::Copy.

Chapter 12. The gmp library 385

GMP::Column::UnfreezeMulti

The procedure GMP::Column::UnfreezeMulti removes the frozen status of a

group of columns, belonging to a variable, in the matrix of a generated

mathematical program.

GMP::Column::UnfreezeMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

column ! (input) a variable expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

column

A variable that, combined with the binding domain, specifies the

columns.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

During a call to function GMP::Column::FreezeMulti Aimms stores the upper

and lower bound of the column before the function was called. This

information is used when function GMP::Column::UnfreezeMulti is called

thereafter. This information is not copied by the function

GMP::Instance::Copy.

Examples:

To unfreeze variable x(i) we can use:

for (i) do

GMP::Column::Unfreeze(myGMP, x(i));

endfor;

It is more efficient to use:

GMP::Column::UnfreezeMulti(myGMP, i, x(i));

If we only want to unfreeze those x(i) for which dom(i) is unequal to zero,

then we use:

GMP::Column::UnfreezeMulti(myGMP, i | dom(i), x(i));

Chapter 12. The gmp library 386

See also:

The routines GMP::Instance::Generate, GMP::Column::Unfreeze,

GMP::Column::FreezeMulti and GMP::Instance::Copy.

Chapter 12. The gmp library 387

12.4 GMP::Event Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing events:

� GMP::Event::Create

� GMP::Event::Delete

� GMP::Event::Reset

� GMP::Event::Set

Chapter 12. The gmp library 388

GMP::Event::Create

The function GMP::Event::Create creates a new event.

GMP::Event::Create(

Name ! (input) a string expression

)

Arguments:

Name

A string expression holding the name of the event.

Return value:

The function returns an element in the set AllGMPEvents.

See also:

The routines GMP::Event::Delete, GMP::Event::Reset and GMP::Event::Set,

and Section 16.6 of the Language Reference.

Chapter 12. The gmp library 389

GMP::Event::Delete

The procedure GMP::Event::Delete deletes an event.

GMP::Event::Delete(

Event ! (input) an event

)

Arguments:

Event

An element in the set AllGMPEvents.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Event::Create, GMP::Event::Reset and GMP::Event::Set,

and Section 16.6 of the Language Reference.

Chapter 12. The gmp library 390

GMP::Event::Reset

The procedure GMP::Event::Reset resets an event.

GMP::Event::Reset(

Event ! (input) an event

)

Arguments:

Event

An element in the set AllGMPEvents.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

The state of the event will be reset to the state just after creating the

event.

See also:

The routines GMP::Event::Create, GMP::Event::Delete and

GMP::Event::Reset, and Section 16.6 of the Language Reference.

Chapter 12. The gmp library 391

GMP::Event::Set

The procedure GMP::Event::Set activates an event.

GMP::Event::Set(

Event ! (input) an event

)

Arguments:

Event

An element in the set AllGMPEvents.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Event::Create, GMP::Event::Delete and

GMP::Event::Reset, and Section 16.6 of the Language Reference.

Chapter 12. The gmp library 392

12.5 GMP::Instance Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing generated mathematical program instances:

� GMP::Instance::AddIntegerEliminationRows

� GMP::Instance::CalculateSubGradient

� GMP::Instance::Copy

� GMP::Instance::CreateDual

� GMP::Instance::CreateFeasibility

� GMP::Instance::CreateMasterMIP

� GMP::Instance::CreatePresolved

� GMP::Instance::CreateProgressCategory

� GMP::Instance::CreateSolverSession

� GMP::Instance::Delete

� GMP::Instance::DeleteIntegerEliminationRows

� GMP::Instance::DeleteMultiObjectives

� GMP::Instance::DeleteSolverSession

� GMP::Instance::FindApproximatelyFeasibleSolution

� GMP::Instance::FixColumns

� GMP::Instance::Generate

� GMP::Instance::GenerateRobustCounterpart

� GMP::Instance::GenerateStochasticProgram

� GMP::Instance::GetBestBound

� GMP::Instance::GetColumnNumbers

� GMP::Instance::GetDirection

� GMP::Instance::GetMathematicalProgrammingType

� GMP::Instance::GetMemoryUsed

� GMP::Instance::GetNumberOfColumns

� GMP::Instance::GetNumberOfIndicatorRows

� GMP::Instance::GetNumberOfIntegerColumns

� GMP::Instance::GetNumberOfNonlinearColumns

� GMP::Instance::GetNumberOfNonlinearNonzeros

� GMP::Instance::GetNumberOfNonlinearRows

� GMP::Instance::GetNumberOfNonzeros

� GMP::Instance::GetNumberOfRows

� GMP::Instance::GetNumberOfSOS1Rows

� GMP::Instance::GetNumberOfSOS2Rows

� GMP::Instance::GetObjective

� GMP::Instance::GetObjectiveColumnNumber

� GMP::Instance::GetObjectiveRowNumber

� GMP::Instance::GetOptionValue

� GMP::Instance::GetRowNumbers

� GMP::Instance::GetSolver

� GMP::Instance::GetSymbolicMathematicalProgram

Chapter 12. The gmp library 393

� GMP::Instance::MemoryStatistics

� GMP::Instance::Rename

� GMP::Instance::SetCallbackAddCut

� GMP::Instance::SetCallbackAddLazyConstraint

� GMP::Instance::SetCallbackBranch

� GMP::Instance::SetCallbackCandidate

� GMP::Instance::SetCallbackHeuristic

� GMP::Instance::SetCallbackIncumbent

� GMP::Instance::SetCallbackIterations

� GMP::Instance::SetCallbackStatusChange

� GMP::Instance::SetCallbackTime

� GMP::Instance::SetCutoff

� GMP::Instance::SetDirection

� GMP::Instance::SetIterationLimit

� GMP::Instance::SetMathematicalProgrammingType

� GMP::Instance::SetMemoryLimit

� GMP::Instance::SetOptionValue

� GMP::Instance::SetSolver

� GMP::Instance::SetStartingPointSelection

� GMP::Instance::SetTimeLimit

� GMP::Instance::Solve

Chapter 12. The gmp library 394

GMP::Instance::AddIntegerEliminationRows

The procedure GMP::Instance::AddIntegerEliminationRows adds integer

elimination rows to the generated mathematical program which will eliminate

an integer solution.

GMP::Instance::AddIntegerEliminationRows(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

elimNo ! (input) an elimination number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

elimNo

An integer scalar reference to an elimination number.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the GMP is not integer then this procedure will fail.

� Rows and columns added before for elimNo will be deleted first.

� If the GMP contains only binary variables then only one row will be

added; if the GMP contains general integer variables then several rows

and columns will be added.

� The exact definitions of the rows and columns that are added are as

follows. Let xi be an integer column whose level value levi is between

its lower bound lbi and upper bound ubi, i.e., lbi < levi < ubi. Then

columns li ≥ 0 and ui ≥ 0 are added together with a binary column zi.

Also the following three constraints are added:

li + (levi − lbi)zi ≤ (levi − lbi) (12.1)

ui + (levi −ubi)zi ≤ 0 (12.2)

xi −ui + li = levi (12.3)

Every call to GMP::Instance::AddIntegerEliminationRows also adds the

following constraint:

Chapter 12. The gmp library 395

∑

i∈Slo
xi −

∑

i∈Sup
xi +

∑

i∈Sin
(li +ui) ≥ 1+

∑

i∈Slo
levi −

∑

i∈Sup
levi (12.4)

where Slo defines the set of integer columns whose level values equal

their lower bounds, Sup the set of integer columns whose level values

equal their upper bounds, and Sin the set of integer columns whose

level values are between their bounds.

� By using the suffixes .ExtendedConstraint and .ExtendedVariable it is

possible to refer to the rows and columns respectively that are added by

GMP::Instance::AddIntegerEliminationRows:

– Variables v.ExtendedVariable(’EliminationLowerBoundk’,i),

v.ExtendedVariable(’EliminationUpperBoundk’,i) and

v.ExtendedVariable(’Eliminationk’,i) are added for each integer

variable v(i) with the level value between its bounds. (These

variables correspond to li, ui and zi respectively.)

– Constraints v.ExtendedConstraint(’EliminationLowerBoundk’,i),

v.ExtendedConstraint(’EliminationUpperBoundk’,i) and

v.ExtendedConstraint(’Eliminationk’,i) are added for each

integer variable v(i) with the level value between its bounds.

(These constraints correspond to (12.1), (12.2) and (12.3)

respectively.)

– Constraint mp.ExtendedConstraint(’Eliminationk’), where mp

denotes the symbolic mathematical program, is added for every

call to GMP::Instance::AddIntegerEliminationRows. (This constraint

corresponds to (12.4).)

Here k denotes the value of the argument elimNo.

Examples:

The procedure GMP::Instance::AddIntegerEliminationRows can be used to

find the five best integer solutions for some MIP model:

gmp_mip := GMP::Instance::Generate(MIP_Model);

cnt := 1;

while (cnt <= 5) do

GMP::Instance::Solve(gmp_mip);

! Eliminate previous found integer solution.

GMP::Instance::AddIntegerEliminationRows(gmp_mip,1,cnt);

cnt += 1;

! Copy solution at position 1 to solution at position cnt

! in solution repository.

GMP::Solution::Copy(gmp_mip,1,cnt);

endwhile;

Chapter 12. The gmp library 396

After executing this code, the five best integer solutions will be stored at

positions 2 - 6 in the solution repository, with the best solution at position

2 and the 5th best at position 6.

See also:

The routines GMP::Instance::DeleteIntegerEliminationRows and

GMP::Solution::IsInteger. See Section 16.3.6 of the Language Reference

for more details on extended suffixes.

Chapter 12. The gmp library 397

GMP::Instance::CalculateSubGradient

The procedure GMP::Instance::CalculateSubGradient can be used to solve By =

x for a given vector x, where B is the basis matrix of a linear program. This

procedure can only be called after the linear program has been solved to

optimality.

GMP::Instance::CalculateSubGradient(

GMP, ! (input) a generated mathematical program

variableSet, ! (input) a set of variables

constraintSet, ! (input) a set of constraints

[session] ! (input, optional) a solver session

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms. The mathematical

program should have model type LP or RMIP.

variableSet

A subset of AllVariables.

constraintSet

A subset of AllConstraints.

session

An element in the set AllSolverSessions.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Use the .ExtendedConstraint(’RhsChange’,*) suffix of the constraints in

constraintSet to assign values to the vector x.

� The suffix .ExtendedVariable(’RhsChange’,*) of the variables in

variableSet will be used to store the subgradient y.

� The suffixes .ExtendedConstraint and .ExtendedVariable have no unit

and are not scaled.

� This procedure should be called after a normal solve statement or after

a successful call to procedure GMP::Instance::Solve.

� This procedure can also be called after a successful call to the

procedure GMP::SolverSession::Execute or the procedure

GMP::SolverSession::AsynchronousExecute. In that case the solver session

should be passed using the session argument.

� A column corresponding to a variable in variableSet that is not part of

GMP will be ignored. A row corresponding to a constraint in

constraintSet that is not part of GMP will also be ignored.

Chapter 12. The gmp library 398

� This procedure is only supported by Cplex and Gurobi 7.0 or higher.

� This procedure cannot be used if the GMP is created by

GMP::Instance::CreateDual.

Examples:

Assume that ’MP’ is a linear mathematical program and c(i) is a

constraint and v(j) is a variable in this mathematical program. The

following example shows how to calculate a subgradient after a normal

solve statement.

solve MP;

! The next statement needs to be called once.

AllGMPExtensions += { ’RhsChange’ };

c.ExtendedConstraint(’RhsChange’,i) := 1.0;

GMP::Instance::CalculateSubGradient(’MP’,AllVariables,AllConstraints);

display v.ExtendedVariable(’RhsChange’,j);

See also:

The functions GMP::Instance::Generate, GMP::Instance::Solve,

GMP::SolverSession::Execute and

GMP::SolverSession::AsynchronousExecute. See Section 16.3.6 of the

Language Reference for more details on extended suffixes.

Chapter 12. The gmp library 399

GMP::Instance::Copy

The function GMP::Instance::Copy creates a copy of a generated mathematical

program and an associated new element in the set

AllGeneratedMathematicalPrograms.

GMP::Instance::Copy(

GMP, ! (input) a generated mathematical program

name ! (input) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

name

A string that contains the name for the copy of the generated

mathematical program.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� The name argument should be different from the name of the original

generated mathematical program.

� If an element with name specified by the name argument is already

present in the set AllGeneratedMathematicalPrograms then the

corresponding generated mathematical program will be replaced (or

updated in case the same symbolic mathematical program is involved).

� All solutions in the solution repository of the generated mathematical

program are also copied.

� The solver selection as specified by GMP::Instance::SetSolver (if any)

will not be copied.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Rename and

GMP::Instance::SetSolver.

Chapter 12. The gmp library 400

GMP::Instance::CreateDual

The function GMP::Instance::CreateDual generates a mathematical program

that is the dual representation of the specified generated mathematical

program. The generated mathematical program should have model type LP.

GMP::Instance::CreateDual(

GMP, ! (input) a generated mathematical program

name ! (input) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

name

A string that holds the name for the dual of the generated

mathematical program.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� The name argument should be different from the name of the original

generated mathematical program.

� If an element with name specified by the name argument is already

present in the set AllGeneratedMathematicalPrograms the corresponding

generated mathematical program will be replaced (or updated in case

the same symbolic mathematical program is involved).

� Before a generated mathematical program is dualized, Aimms first

transforms it temporary into a standard form using the following rules:

– Each column xi that is frozen to 0 is deleted.

– For each column xi with upper bound ui, ui ≠ 0 and ui <∞, an

extra row xi ≤ ui is added.

– For each column xi with lower bound li, li ≠ 0 and li > −∞, an

extra row xi ≥ li is added.

– Each ranged row lj ≤ aTx ≤ uj (lj > −∞ and uj <∞) is replaced

by two rows lj ≤ aTx and aTx ≤ uj .
� By using the suffix .ExtendedConstraint it is possible to refer to the rows

that are added to create the standard form:

– The constraint v.ExtendedConstraint(’DualUpperBound’,i) is added

for a variable v(i) with an upper bound unequal to 0 and inf.

– The constraint v.ExtendedConstraint(’DualLowerBound’,i) is added

for a variable v(i) with a lower bound unequal to 0 and -inf.

Chapter 12. The gmp library 401

– The constraints c.ExtendedConstraint(’DualLowerBound’,j) and

c.ExtendedConstraint(’DualUpperBound’,j) replace a ranged

constraint c(j).

� The objective variable for the dual mathematical program will become

mp.ExtendedConstraint(DualObjective) and the objective constraint will

be mp.ExtendedVariable(DualDefinition), where mp denotes the symbolic

mathematical program.

Examples:

Assume that ’PrimalModel’ is a mathematical program with the following

declaration (in aim format):

Variable x1 {

Range : [0, 5];

}

Variable x2 {

Range : nonnegative;

}

Variable obj {

Definition : - 7 * x1 - 2 * x2;

}

Constraint c1 {

Definition : -x1 + 2 * x2 <= 4;

}

MathematicalProgram PrimalModel {

Objective : obj;

Direction : minimize;

Type : lp;

}

Then GMP::Instance::CreateDual will create a dual mathematical program

with variables

name lower upper

c1 -inf 0

obj_definition -inf inf

x1.ExtendedConstraint(’DualUpperBound’) -inf 0

PrimalModel.ExtendedConstraint(’DualObjective’) -inf inf

and constraints

x1:

- c1 + 7 * obj_definition + x1.ExtendedConstraint(’DualUpperBound’) >= 0 ;

x2:

+ 2 * c1 + 2 * obj_definition >= 0 ;

obj:

obj_definition = 1 ;

PrimalModel.ExtendedVariable(’DualDefinition’):

- 4 * c1 - 5 * x1.ExtendedConstraint(’DualUpperBound’)

+ PrimalModel.ExtendedConstraint(’DualObjective’) = 0 ;

Chapter 12. The gmp library 402

See also:

The function GMP::Instance::Generate. See Section 16.3.6 of the Language

Reference for more details on extended suffixes.

Chapter 12. The gmp library 403

GMP::Instance::CreateFeasibility

The function GMP::Instance::CreateFeasibility creates a mathematical

program that is the feasibility problem of a generated mathematical program.

Its main purpose is to identify infeasibilities in an infeasible problem. The

feasibility problem can be used to minimize the sum of infeasibilities, or to

minimize the maximum infeasibility.

This function can be used for both linear and nonlinear problems but not for

constraint programming problems.

GMP::Instance::CreateFeasibility(

GMP, ! (input) a generated mathematical program

[name], ! (input, optional) a string expression

[useMinMax] ! (input, optional) integer, default 0

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

name

A string that contains the name for the feasibility problem.

useMinMax

If 0, the sum of infeasibilities will be minimized, else the maximum

infeasibility will be minimized.

Mathematical formulation

In this section we show how the feasibility problem is constructed. To

simplify the explanation we use a linear problem but the same construction

applies to a nonlinear problem.

Consider the following problem where J denotes the set of variables, I1 the

set of ≥ inequalities, I2 the set of ≤ inequalities, and I3 the set of equalities.

max
∑

j∈J
ajxj

s.t.
∑

j∈J
aijxj ≥ bi i ∈ I1

∑

j∈J
aijxj ≤ bi i ∈ I2

∑

j∈J
aijxj = bi i ∈ I3

x ≥ 0

Chapter 12. The gmp library 404

Then if we minimize the sum of infeasibilities the feasibility problem

becomes:

min
∑

i∈I1
z
p
i +

∑

i∈I2
zni +

∑

i∈I3
(z
p
i + zni)

s.t.
∑

j∈J
aijxj + zpi ≥ bi i ∈ I1

∑

j∈J
aijxj − zni ≤ bi i ∈ I2

∑

j∈J
aijxj + zpi − zni = bi i ∈ I3

x,zp , zn ≥ 0

If we minimize the maximum infeasibility the feasibility problem becomes:

min zm

s.t.
∑

j∈J
aijxj + zm ≥ bi i ∈ I1

∑

j∈J
aijxj − zm ≤ bi i ∈ I2

∑

j∈J
aijxj + zpi − zni = bi i ∈ I3

zm − zpi − zni ≥ 0 i ∈ I3
x,zp , zn ≥ 0

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� The name argument should be different from the name of the original

generated mathematical program.

� If the name argument is not specified then Aimms will name the

generated math program as ”Feasibility problem of” followed by the

name of the GMP.

� If an element with name specified by the name argument is already

present in the set AllGeneratedMathematicalPrograms the corresponding

generated mathematical program will be replaced (or updated in case

the same symbolic mathematical program is involved).

� By using the suffices .ExtendedVariable and .ExtendedConstraint it is

possible to refer to the columns and rows that are added to create the

feasibility problem. In case the sum of infeasibilities is minimized only

variables are added:

Chapter 12. The gmp library 405

– The variable c.ExtendedVariable(’PositiveViolation’,i) is added

for a constraint c(i) with type ≥.

– The variable c.ExtendedVariable(’NegativeViolation’,i) is added

for a constraint c(i) with type ≤.

– The variables c.ExtendedVariable(’PositiveViolation’,i) and

c.ExtendedVariable(’NegativeViolation’,i) are added for an

equality constraint c(i).

In case the maximum infeasibility is minimized the following variables

and constraints are added:

– The variable mp.ExtendedVariable(’MaximumViolation’) is added for

math program mp.

– The variables c.ExtendedVariable(’PositiveViolation’,i) and

c.ExtendedVariable(’NegativeViolation’,i) are added for an

equality constraint c(i).

– The constraint c.ExtendedConstraint(’MaximumViolation’,i) is

added for an equality constraint c(i).

In the above mathematical formulation,

– c.ExtendedVariable(’PositiveViolation’,i) corresponds to z
p
i .

– c.ExtendedVariable(’NegativeViolation’,i) corresponds to zni .

– mp.ExtendedVariable(’MaximumViolation’) corresponds to zm.

See also:

The routines GMP::Instance::Generate and GMP::Instance::Solve.

Chapter 12. The gmp library 406

GMP::Instance::CreateMasterMIP

The function GMP::Instance::CreateMasterMIP creates a Master MIP copy of the

specified generated mathematical program. The copy will remove all

nonlinear rows from the GMP.

GMP::Instance::CreateMasterMIP(

GMP, ! (input) a generated mathematical program

name ! (input) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

name

A string that holds the name for the Master MIP.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� The name argument should be different from the name of the original

generated mathematical program.

� If an element with name specified by the name argument is already

present in the set AllGeneratedMathematicalPrograms the corresponding

generated mathematical program will be replaced (or updated in case

the same symbolic mathematical program is involved).

� The generated mathematical program should have type MINLP (or MIQP

or MIQCP). It can also have type NLP in which case the created GMP will

have type LP.

� If the objective constraint is nonlinear, GMP::Instance::CreateMasterMIP

adds an extra row and column to the Master MIP. If mp denotes the

symbolic mathematical program then the extra row will be associated

with mp.ExtendedConstraint(MasterMIPObjective) and the extra column

with mp.ExtendedVariable(MasterMIPObjective). The extra row will be

objvar− mp.ExtendedVariable(MasterMIPObjective) = 0

where objvar denotes the objective variable of the GMP. Column

mp.ExtendedVariable(MasterMIPObjective) will become the objective

column of the Master MIP.

See also:

The function GMP::Instance::Generate. See Section 16.3.6 of the Language

Reference for more details on extended suffixes.

Chapter 12. The gmp library 407

GMP::Instance::CreatePresolved

The function GMP::Instance::CreatePresolved generates a mathematical

program that is the presolved representation of the specified generated

mathematical program. The generated mathematical program can be a linear

or nonlinear model, and should be generated using the function

GMP::Instance::Generate.

GMP::Instance::CreatePresolved(

GMP, ! (input) a generated mathematical program

name ! (input) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

name

A string that holds the name for the presolved mathematical program.

Return value:

A new element in the set AllGeneratedMathematicalPrograms, with the name

as specified by the name argument, if the presolver did not find an

infeasibility. Else, the empty element.

Remarks:

� By using the functions GMP::Column::GetStatus and GMP::Row::GetStatus

it is possible to check whether a column or row was deleted when the

presolved mathematical program was created.

� By using the functions GMP::Column::GetLowerBound and

GMP::Column::GetUpperBound it is possible to retrieve the lower and upper

bound of a column in the presolved mathematical program.

� If the original GMP is deleted then the presolved GMP created by

GMP::Instance::CreatePresolved will also be deleted.

� If the option MINLP Probing is switched on, then this function will

change the mathematical programming type from MINLP (NLP) into MIP

(LP) if the presolved model contains no nonlinear constraints.

Examples:

Assume that ’MP’ is a mathematical program and ’gmpMP’ and ’gmpPre’

are element parameters with range AllGeneratedMathematicalPrograms. To

solve the presolved model using GMP functions we can use:

gmpMP := GMP::Instance::Generate(MP);

gmpPre := GMP::Instance::CreatePresolved(gmpMP, "PresolvedModel");

GMP::Instance::Solve(gmpPre) ;

Chapter 12. The gmp library 408

In case the GMP variant of the AOA module is used we can use:

gmpMP := GMP::Instance::Generate(MP);

gmpPre := GMP::Instance::CreatePresolved(gmpMP, "PresolvedModel");

GMPOuterApprox::DoOuterApproximation(gmpPre);

Here ’GMPOuterApprox’ is the prefix used by the GMP Outer

Approximation Module.

See also:

The functions GMP::Instance::Delete, GMP::Instance::Generate,

GMP::Instance::Solve, GMP::Column::GetStatus, GMP::Row::GetStatus,

GMP::Column::GetLowerBound and GMP::Column::GetUpperBound.

Chapter 12. The gmp library 409

GMP::Instance::CreateProgressCategory

The function GMP::Instance::CreateProgressCategory creates a new GMP

progress category for a generated mathematical program. This progress

category can be used to display GMP related information in the progress

window.

GMP::Instance::CreateProgressCategory(

GMP, ! (input) a generated mathematical program

[Name] ! (input, optional) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Name

A string that holds the name of the progress category.

Return value:

The function returns an element in the set AllProgressCategories.

Remarks:

� If no progress category is specified for the generated mathematical

program then the GMP progress will be displayed in the general Aimms

progress category for GMP progress. This general Aimms progress

category will be used by all generated mathematical programs for which

no progress category is specified. (Progress information for a normal

solve is always displayed in the general Aimms progress category.)

� After calling GMP::Instance::CreateProgressCategory solver progress will

by default be displayed in the solver progress category of the generated

mathematical program, and no longer in the general Aimms progress

category for solver progress.

� If the Name argument is not specified then the name of the generated

mathematical program will be used to name the element in the set

AllProgressCategories.

� The information displayed in a GMP progress category is controlled by

Aimms and cannot be modified by the user.

� A progress category created before for the generated mathematical

program will be deleted.

See also:

The routines GMP::ProgressWindow::DeleteCategory and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 410

GMP::Instance::CreateSolverSession

The function GMP::Instance::CreateSolverSession creates a new solver session

for a generated mathematical program.

GMP::Instance::CreateSolverSession(

GMP, ! (input) a generated mathematical program

[Name], ! (input, optional) a string expression

[Solver] ! (input, optional) a solver

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Name

A string that holds the name of the solver session.

Solver

An element in the set AllSolvers.

Return value:

The function returns an element in the set AllSolverSessions.

Remarks:

� The function GMP::Instance::CreateSolverSession also determines which

solver is assigned to the solver session. After the solver session is

created it is not possible to change the solver assigned to the solver

session! The solver is determined by:

– the Solver argument if it is specified (and not an empty string), else

– the solver that was assigned to the GMP if procedure

GMP::Instance::SetSolver was called before, else

– the default solver in Aimms for the GMP its model type.

� If the Name argument is not specified, or if it is the empty string, the

names of the symbolic mathematical program, the solver and the host

(if any) are used to create a new element in the set

AllGeneratedMathematicalPrograms.

� If an element with name specified by the Name argument is already

present in the set AllSolverSessions then the corresponding solver

session will first be deleted.

See also:

The routines GMP::Instance::DeleteSolverSession,

GMP::Instance::SetSolver, GMP::SolverSession::GetInstance and

GMP::SolverSession::GetSolver.

Chapter 12. The gmp library 411

GMP::Instance::Delete

The procedure GMP::Instance::Delete deletes a generated mathematical

program from the set AllGeneratedMathematicalPrograms.

GMP::Instance::Delete(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

All memory associated with the generated mathematical program is also

freed.

See also:

The function GMP::Instance::Generate.

Chapter 12. The gmp library 412

GMP::Instance::DeleteIntegerEliminationRows

The procedure GMP::Instance::DeleteIntegerEliminationRows deletes a

particular set of integer elimination rows and columns of a generated

mathematical program.

GMP::Instance::DeleteIntegerEliminationRows(

GMP, ! (input) a generated mathematical program

elimNo ! (input) an elimination number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

elimNo

An integer scalar reference to an elimination number.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The procedure GMP::Instance::AddIntegerEliminationRows.

Chapter 12. The gmp library 413

GMP::Instance::DeleteMultiObjectives

The procedure GMP::Instance::DeleteMultiObjectives deletes all

multi-objectives in a generated mathematical program.

GMP::Instance::DeleteMultiObjectives(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

A column can be specified as a multi-objective by using the procedure

GMP::Column::SetAsMultiObjective.

Examples:

In the example below two multi-objectives are specified after which a

multi-objective optimization problem is solved. Next all multi-objectives

are deleted by calling GMP::Instance::CreateDual and the model is solved

once again, this time as an ordinary optimization problem with one

objective (namely the one specified in the objective attribute of the

mathematical programming).

myGMP := GMP::Instance::Generate(MP);

GMP::Column::SetAsMultiObjective(myGMP, TotalDist, 2, 1.0, 0, 0.1);

GMP::Column::SetAsMultiObjective(myGMP, TotalTime, 1, 1.0, 0, 0.0);

GMP::Instance::Solve(myGMP);

GMP::Instance::DeleteMultiObjectives(myGMP);

GMP::Instance::Solve(myGMP);

See also:

The procedure GMP::Column::SetAsMultiObjective.

Chapter 12. The gmp library 414

GMP::Instance::DeleteSolverSession

The procedure GMP::Instance::DeleteSolverSession deletes the specified

solver session.

GMP::Instance::DeleteSolverSession(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP::Instance::CreateSolverSession and

GMP::SolverSession::GetInstance.

Chapter 12. The gmp library 415

GMP::Instance::FindApproximatelyFeasibleSolution

The procedure GMP::Instance::FindApproximatelyFeasibleSolution tries to find

an approximately feasible solution of a generated mathematical program. It

uses the column level values of the first solution as a starting point. The

approximately feasible solution is stored in the second solution.

The algorithm used to find the approximately feasible solution is based on

the constraint consensus method as developed by John W. Chinneck. The

constraint consensus method is an iterative projection algorithm. In each

iteration a new point (i.e., a vector of column values) is constructed in such a

way that it is likely that it is closer to the feasible region (as defined by the

generated mathematical program) then the previous point.

GMP::Instance::FindApproximatelyFeasibleSolution(

GMP, ! (input) a generated mathematical program

solution1, ! (input) a solution

solution2, ! (input) a solution

nrIter, ! (output) a scalar numerical parameter

[maxIter], ! (optional) a scalar value

[feasTol], ! (optional) a scalar value

[moveTol], ! (optional) a scalar value

[imprTol], ! (optional) a scalar value,

[maxTime], ! (optional) a scalar value

[useSum], ! (optional) a scalar value

[augIter], ! (optional) a scalar value

[useBest] ! (optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution1

An integer scalar reference to a solution.

solution2

An integer scalar reference to a solution.

nrIter

The number of iterations used by the algorithm.

maxIter

The maximal number of iterations that can be used by the algorithm.

If its value is 0 (the default) then there is no iteration limit.

feasTol

The feasibility distance tolerance. The default is 1e-5.

moveTol

The movement tolerance. The default is 1e-5.

Chapter 12. The gmp library 416

imprTol

The improvement tolerance. The default is 0.01.

maxTime

The maximum time (in seconds) that can be used by the algorithm. If

its value is 0 (the default) then there is no time limit.

useSum

A scalar binary value to indicate whether the SUM constraint

consensus method should be used (value 1) or not (value 0; the

default).

augIter

An integer scalar reference that specifies the frequency of iterations

in which augumentation should be applied. At the default value of 0

no augumentation is applied.

useBest

A scalar binary value to indicate whether the best point found (value

1) or the last point found should be returnd (value 0; the default).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The (basic) constraint consensus method is described in: John W.

Chinneck, The Constraint Consensus Method for Finding Approximately

Feasible Points in Nonlinear Programs, INFORMS Journal on Computing

16(3) (2004), pp. 255-265.

� The SUM constraint consensus method and a constraint consensus

method using augumentation are described in: Laurence Smith, John

Chinneck, Victor Aitken, Improved constraint consensus methods for

seeking feasibility in nonlinear programs, Computational Optimization

and Applications 54(3) (2013), pp. 555-578.

� The algorithm terminates if:

– The iteration limit maxIter is exceeded.

– The time limit maxTime is exceeded.

– The feasibility distance of each row is smaller than the feasibility

distance tolerance feasTol. The feasibility distance of a row at a

point is defined as the row violation normalized by the length of

the gradient of the row at that point.

– The length of the movement vector is smaller than the movement

tolerance moveTol. The movement vector is the vector along

which the point moves from one iteration to another.

– The relative improvement was smaller than the improvement

tolerance imprTol for 10 successive iterations. The improvement

is defined as the difference between the length of the movement

vector of the current iteration and that of the previous iteration.

Chapter 12. The gmp library 417

� The procedure GMP::Solution::Check can be used to get the sum and

number of infeasibilies before and after calling the procedure

GMP::Instance::FindApproximatelyFeasibleSolution.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve and

GMP::Solution::Check.

Chapter 12. The gmp library 418

GMP::Instance::FixColumns

The procedure GMP::Instance::FixColumns sets the lower and upper bounds of

a set of columns in a generated mathematical program (GMP1) equal to the

level values of the corresponding columns in a solution of a second generated

mathematical program (GMP2).

GMP::Instance::FixColumns(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

solution, ! (input) a solution

variableSet, ! (input) a set of variables

[round] ! (optional) a binary scalar value

)

Arguments:

GMP1

An element in AllGeneratedMathematicalPrograms.

GMP2

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution in the solution repository of

GMP2.

variableSet

A subset of AllVariables.

round

A binary scalar indicating whether the level values of the integer

columns should be rounded to the nearest integer value before fixing

the columns. The default is 0 (no rounding).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� A column corresponding to a variable in variableSet that is not part of

GMP1 will be ignored. This procedure will fail if a column

corresponding to a variable in variableSet is not part of GMP2.

� If the objective variable is part of the set variableSet then it will be

ignored, i.e., the objective variable will not be fixed.

� The same generated mathematical program can be used for GMP1 and

GMP2.

Chapter 12. The gmp library 419

See also:

The functions GMP::Instance::CreateSolverSession and

GMP::SolverSession::GetInstance.

Chapter 12. The gmp library 420

GMP::Instance::Generate

The function GMP::Instance::Generate generates a mathematical program

instance from a symbolic mathematical program.

GMP::Instance::Generate(

MP, ! (input) a symbolic mathematical program

[name] ! (optional) a string expression

)

Arguments:

MP

A symbolic mathematical program in the set AllMathematicalPrograms.

The mathematical program should have model type LP, MIP, QP,

MIQP, QCP, MIQCP, NLP, MINLP, RMIP or RMINLP.

name

A string that holds the name for the mathematical program to be

generated.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� If the second argument is not specified, or if it is the empty string, the

name of the symbolic mathematical program is used to create a new

element in the set AllGeneratedMathematicalPrograms.

� If an element with name specified by the name argument is already

present in the set AllGeneratedMathematicalPrograms the corresponding

generated mathematical program will be replaced (or updated in case

the same symbolic mathematical program is involved). In that case all

existing solver sessions created for the generated mathematical

program will be deleted.

� It is possible to generate indexed mathematical program instances. See

the example in Section 16.13.1 of the Language Reference.

� A callback procedure should be installed using the appropriate GMP

procedure, (e.g., GMP::Instance::SetCallbackIterations) instead of using

a suffix of the mathematical program (e.g., suffix CallbackIterations).

� If an error occurs during the execution of GMP::Instance::Generate, e.g.,

if one of the constraints appears to be empty and infeasible, then the

program status of the mathematical program will be set to Infeasible

and the solver status to PreprocessorError.

Chapter 12. The gmp library 421

See also:

The routines GMP::Instance::Delete and

GMP::Instance::SetCallbackIterations.

Chapter 12. The gmp library 422

GMP::Instance::GenerateRobustCounterpart

The function GMP::Instance::GenerateRobustCounterpart generates the robust

counterpart of a (linear) mathematical program.

If the deterministic model is a linear program (LP) then the robust counterpart

will be a LP if the uncertainty constraints are linear, or a second-order cone

program (SOCP) if some of the uncertainty constraints are ellipsoidal.

If the deterministic model is a mixed-integer program (MIP) then the robust

counterpart will be a MIP if the uncertainty constraints are linear, or a

mixed-integer second-order cone program (MISOCP) if some of the

uncertainty constraints are ellipsoidal.

SOCP and MISOCP problems can be solved by using Cplex or Gurobi.

GMP::Instance::GenerateRobustCounterpart(

MP, ! (input) a symbolic mathematical program

UncertainParameters, ! (input) a set of uncertain parameters

UncertaintyConstraints, ! (input) a set of uncertainty constraints

[Name] ! (optional) a string expression

)

Arguments:

MP

A symbolic mathematical program in the set AllMathematicalPrograms.

The mathematical program should have model type LP or MIP.

UncertainParameters

A subset of AllUncertainParameters.

UncertaintyConstraints

A subset of AllUncertaintyConstraints.

Name

A string that holds the name for the generated robust counterpart.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� If the Name argument is not specified, or if it is the empty string, then

the name of the symbolic mathematical program followed by ’robust

counterpart’ is used to create a new element in the set

AllGeneratedMathematicalPrograms.

Chapter 12. The gmp library 423

� If Aimms detects that the robust counterpart is infeasible during the

generation, Aimms will issue a warning and the robust counterpart will

not be generated.

� As part of the generation, Aimms will check whether the uncertainty set

satisfies the Slater condition (controlled by the option

Slater condition check). To do so, Aimms will solve a linear program (LP)

or a second-order cone program (SOCP).

� The created GMP cannot be modified, e.g., it is not allowed to change

row or columns in the robust counterpart.

See also:

The procedure GMP::Instance::Solve.

Chapter 12. The gmp library 424

GMP::Instance::GenerateStochasticProgram

The function GMP::Instance::GenerateStochasticProgram generates the

deterministic equivalent of a stochastic mathematical program.

GMP::Instance::GenerateStochasticProgram(

MP, ! (input) a symbolic mathematical program

StochasticParameters, ! (input) a set of stochastic parameters

StochasticVariables, ! (input) a set of stochastic variables

Scenarios, ! (input) a set of stochastic scenarios

ScenarioProbability, ! (input) a double parameter

ScenarioTreeMap, ! (input) an element parameter

RootScenarioName, ! (input) a string expression

[GenerationMode], ! (optional) a stochatic generation mode

[Name] ! (optional) a string expression

)

Arguments:

MP

A symbolic mathematical program in the set AllMathematicalPrograms.

The mathematical program should have model type LP or MIP.

StochasticParameters

A subset of AllStochasticParameters.

StochasticVariables

A subset of AllStochasticVariables.

Scenarios

A subset of AllStochasticScenarios.

ScenarioProbability

A double parameter over Scenarios representing the objective

probabilities of the scenarios.

ScenarioTreeMap

An element parameter that defines the scenario-and-stage to scenario

mapping. The range of this parameter should be the set Scenarios.

RootScenarioName

A string that holds the name of the artificial element that will be

added to the set AllStochasticScenarios. This element will be used to

store the solution of non-stochastic variables in their respective

.Stochastic suffixes.

GenerationMode

An element in the predefined set AllStochasticGenerationModes. The

default is ’SubstituteStochasticVariables’.

Name

A string that holds the name for the generated stochastic

mathematical program.

Chapter 12. The gmp library 425

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� If the Name argument is not specified, or if it is the empty string, then

the name of the symbolic mathematical program preceded by

’Stochastic’ is used to create a new element in the set

AllGeneratedMathematicalPrograms.

� The objective of the symbolic mathematical program must be a defined

variable.

See also:

� Stochastic programming is discussed in Chapter 19 of the Language

Reference.

� The procedure GMP::Instance::Solve.

Chapter 12. The gmp library 426

GMP::Instance::GetBestBound

The function GMP::Instance::GetBestBound returns the best known bound for a

generated mathematical program.

GMP::Instance::GetBestBound(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

In case of success, the function returns the best known bound. Otherwise

it returns UNDF.

Remarks:

� This function has only meaning for generated mathematical programs

with model type MIP, MIQP or MIQCP.

See also:

The functions GMP::Instance::Generate,

GMP::Instance::GetMathematicalProgrammingType and

GMP::Instance::GetObjective.

Chapter 12. The gmp library 427

GMP::Instance::GetColumnNumbers

The function GMP::Instance::GetColumnNumbers returns a subset of the column

numbers of a generated mathematical program. It returns the column

numbers that are generated for a set of variables.

GMP::Instance::GetColumnNumbers(

GMP, ! (input) a generated mathematical program

variableSet, ! (input) a set of variables

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

variableSet

A subset of the set AllVariables.

Return value:

The function returns a subset of the column numbers as a subset of the

set Integers.

Examples:

Assume we have generated a mathematical program and we want to

change the upper bound of the variables demand(i) and supply(j,k) into

100. This can be done as follows:

myGMP := GMP::Instance::Generated(MP);

for (i) do

GMP::Column::SetUpperBound(myGMP, demand(i), 100);

endfor;

for (j,k) do

GMP::Column::SetUpperBound(myGMP, supply(j,k), 100);

endfor;

Using the function GMP::Instance::GetColumnNumbers this can also be coded

as follows. Here ColNrs is a subset of Integers with index c, and Vars a

subset of AllVariables.

myGMP := GMP::Instance::Generated(MP);

Vars := { ’demand’, ’supply’ };

ColNrs := GMP::Instance::GetColumnNumbers(myGMP, Vars);

for (c) do

GMP::Column::SetUpperBound(myGMP, c, 100);

endfor;

Chapter 12. The gmp library 428

See also:

The functions GMP::Instance::Generate,

GMP::Instance::GetNumberOfColumns, GMP::Instance::GetRowNumbers,

GMP::Instance::GetObjectiveColumnNumber and

GMP::Instance::GetObjectiveRowNumber.

Chapter 12. The gmp library 429

GMP::Instance::GetDirection

The function GMP::Instance::GetDirection returns the optimization direction

of a generated mathematical program.

GMP::Instance::GetDirection(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the optimization direction as an element in

AllMatrixManipulationDirections.

See also:

The routines GMP::Instance::Generate and the procedure

GMP::Instance::SetDirection.

Chapter 12. The gmp library 430

GMP::Instance::GetMathematicalProgrammingType

The function GMP::Instance::GetMathematicalProgrammingType returns the

model type of a generated mathematical program.

GMP::Instance::GetMathematicalProgrammingType(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the model type as an element in

AllMathematicalProgrammingTypes.

See also:

The function GMP::Instance::Generate and the procedure

GMP::Instance::SetMathematicalProgrammingType .

Chapter 12. The gmp library 431

GMP::Instance::GetMemoryUsed

The function GMP::Instance::GetMemoryUsed returns for a generated

mathematical program the amount of memory used by Aimms to store it.

GMP::Instance::GetMemoryUsed(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The amount of megabytes used to store a generated mathematical

program.

Chapter 12. The gmp library 432

GMP::Instance::GetNumberOfColumns

The function GMP::Instance::GetNumberOfColumns returns the number of

columns of a generated mathematical program.

GMP::Instance::GetNumberOfColumns(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of columns.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfRows

and GMP::Instance::GetNumberOfNonzeros.

Chapter 12. The gmp library 433

GMP::Instance::GetNumberOfIndicatorRows

The function GMP::Instance::GetNumberOfIndicatorRows returns the number of

indicator rows of a generated mathematical program.

GMP::Instance::GetNumberOfIndicatorRows(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of indicator rows.

See also:

The functions GMP::Instance::Generate and

GMP::Instance::GetNumberOfRows.

Chapter 12. The gmp library 434

GMP::Instance::GetNumberOfIntegerColumns

The function GMP::Instance::GetNumberOfIntegerColumns returns the number

of integer columns of a generated mathematical program.

GMP::Instance::GetNumberOfIntegerColumns(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of integer columns.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfColumns

and GMP::Instance::GetNumberOfNonlinearColumns .

Chapter 12. The gmp library 435

GMP::Instance::GetNumberOfNonlinearColumns

The function GMP::Instance::GetNumberOfNonlinearColumns returns the number

of nonlinear columns of a generated mathematical program.

GMP::Instance::GetNumberOfNonlinearColumns(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of nonlinear columns.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfColumns

and GMP::Instance::GetNumberOfIntegerColumns.

Chapter 12. The gmp library 436

GMP::Instance::GetNumberOfNonlinearNonzeros

The function GMP::Instance::GetNumberOfNonlinearNonzeros returns the

number of nonlinear nonzero elements in the coefficient matrix of a

generated mathematical program.

GMP::Instance::GetNumberOfNonlinearNonzeros(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of nonlinear nonzeros.

See also:

The functions GMP::Instance::Generate and

GMP::Instance::GetNumberOfNonzeros .

Chapter 12. The gmp library 437

GMP::Instance::GetNumberOfNonlinearRows

The function GMP::Instance::GetNumberOfNonlinearRows returns the number of

nonlinear rows of a generated mathematical program.

GMP::Instance::GetNumberOfNonlinearRows(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of nonlinear rows.

See also:

The functions GMP::Instance::Generate and

GMP::Instance::GetNumberOfRows.

Chapter 12. The gmp library 438

GMP::Instance::GetNumberOfNonzeros

The function GMP::Instance::GetNumberOfNonzeros returns the number of

nonzero elements in the coefficient matrix of a generated mathematical

program.

GMP::Instance::GetNumberOfNonzeros(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of nonzeros.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfColumns

and GMP::Instance::GetNumberOfRows.

Chapter 12. The gmp library 439

GMP::Instance::GetNumberOfRows

The function GMP::Instance::GetNumberOfRows returns the number of rows of a

generated mathematical program.

GMP::Instance::GetNumberOfRows(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of rows.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfColumns

and GMP::Instance::GetNumberOfNonzeros.

Chapter 12. The gmp library 440

GMP::Instance::GetNumberOfSOS1Rows

The function GMP::Instance::GetNumberOfSOS1Rows returns the number of SOS

rows of type 1 of a generated mathematical program.

GMP::Instance::GetNumberOfSOS1Rows(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of SOS rows of type 1.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfRows

and GMP::Instance::GetNumberOfSOS2Rows.

Chapter 12. The gmp library 441

GMP::Instance::GetNumberOfSOS2Rows

The function GMP::Instance::GetNumberOfSOS2Rows returns the number of SOS

rows of type 2 of a generated mathematical program.

GMP::Instance::GetNumberOfSOS2Rows(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the number of SOS rows of type 2.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetNumberOfRows

and GMP::Instance::GetNumberOfSOS1Rows.

Chapter 12. The gmp library 442

GMP::Instance::GetObjective

The function GMP::Instance::GetObjective returns the current objective

function value of a generated mathematical program.

GMP::Instance::GetObjective(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

In case of success, the function returns the current objective function

value. Otherwise it returns UNDF.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve and

GMP::Instance::GetBestBound.

Chapter 12. The gmp library 443

GMP::Instance::GetObjectiveColumnNumber

The function GMP::Instance::GetObjectiveColumnNumber returns the column

number corresponding to the objective variable of a generated mathematical

program.

GMP::Instance::GetObjectiveColumnNumber(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The function returns the column number as an element of the set

Integers. If the generated mathematical program does not contain an

objective then -1 is returned.

Remarks:

You should assign the return value of this function to an element

parameter with range Integers if you want to use it as (column) argument

to call other GMP routines.

Examples:

Let ColNo be an element parameter with range Integers.

ColNo := GMP::Instance::GetObjectiveColumnNumber(myGMP);

value := GMP::Solution::GetColumnValue(myGMP, 1, ColNo);

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetColumnNumbers,

GMP::Instance::GetObjectiveRowNumber and GMP::Instance::GetRowNumbers.

Chapter 12. The gmp library 444

GMP::Instance::GetObjectiveRowNumber

The function GMP::Instance::GetObjectiveRowNumber returns the row number

corresponding to the constraint or variable definition that defines the

objective of a generated mathematical program.

GMP::Instance::GetObjectiveRowNumber(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The function returns the row number as an element of the set Integers. If

the generated mathematical program does not contain an objective then -1

is returned.

Remarks:

� You should assign the return value of this function to an element

parameter with range Integers if you want to use it as (row) argument to

call other GMP routines.

� If the objective variable appears in more than one constraint (or variable

definition) then the row number of the first of those constraints will be

returned.

Examples:

Assume that we want to change the coefficients of all integer variables in

the objective to 10. This can be done as follows.

RowNo := GMP::Instance::GetObjectiveRowNumber(myGMP);

ColNrs := GMP::Instance::GetColumnNumbers(myGMP, AllIntegerVariables);

for (c) do

GMP::Coefficient::Set(myGMP, RowNo, c, 10);

endfor;

Here RowNo is an element parameter with range Integers and ColNrs a

subset of Integers with index c.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetColumnNumbers,

GMP::Instance::GetObjectiveColumnNumber and

GMP::Instance::GetRowNumbers.

Chapter 12. The gmp library 445

GMP::Instance::GetOptionValue

The function GMP::Instance::GetOptionValue returns the value of a solver

specific option corresponding to a generated mathematical program as set

with the procedure GMP::Instance::SetOptionValue.

This procedure can also be used to retrieve the current option value of certain

Solvers General options (see below).

GMP::Instance::GetOptionValue(

GMP, ! (input) a generated mathematical program

OptionName ! (input) a scalar string expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

OptionName

A string expression holding the name of the option.

Return value:

In case of success, the function returns the current option value.

Otherwise it returns UNDF.

Remarks:

� If the procedure GMP::Instance::SetOptionValue has not been called then

this function will fail and return UNDF (unless the option is a Solvers

General option).

� Options for which strings are displayed in the Aimms Options dialog

box, are also represented by numerical (integer) values. To obtain the

corresponding option keywords, you can use the functions

OptionGetString and OptionGetKeywords.

� This procedure can also be used to retrieve the current option value of

the following Solvers General options:

– Cutoff

– Iteration limit

– Maximal number of domain errors

– Maximal number of integer solutions

– MIP absolute optimality tolerance

– MIP relative optimality tolerance

– Solver workspace

– Time limit

Chapter 12. The gmp library 446

See also:

The routines GMP::Instance::SetOptionValue,

GMP::SolverSession::GetOptionValue , GMP::SolverSession::SetOptionValue,

OptionGetString and OptionGetKeywords.

Chapter 12. The gmp library 447

GMP::Instance::GetRowNumbers

The function GMP::Instance::GetRowNumbers returns a subset of the row

numbers of a generated mathematical program. It returns the row numbers

that are generated for a set of constraints.

GMP::Instance::GetRowNumbers(

GMP, ! (input) a generated mathematical program

constraintSet, ! (input) a set of constraints

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

constraintSet

A subset of the set AllConstraints.

Return value:

The function returns a subset of the row numbers as a subset of the set

Integers.

Examples:

Assume we have generated a mathematical program and we want to

change the right hand side of the constraints c1(i) and c2(j,k) into 100.

This can be done as follows:

myGMP := GMP::Instance::Generated(MP);

for (i) do

GMP::Row::SetUpperBound(myGMP, c1(i), 100);

endfor;

for (j,k) do

GMP::Row::SetRightHandSide(myGMP, c2(j,k), 100);

endfor;

Using the function GMP::Instance::GetRowNumbers this can also be coded as

follows. Here RowNrs is a subset of Integers with index r, and Cons a subset

of AllConstraints.

myGMP := GMP::Instance::Generated(MP);

Cons := { ’c1’, ’c2’ };

RowNrs := GMP::Instance::GetRowNumbers(myGMP, Cons);

for (r) do

GMP::Row::SetRightHandSide(myGMP, r, 100);

endfor;

Chapter 12. The gmp library 448

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetColumnNumbers,

GMP::Instance::GetNumberOfRows, GMP::Instance::GetObjectiveColumnNumber

and GMP::Instance::GetObjectiveRowNumber.

Chapter 12. The gmp library 449

GMP::Instance::GetSolver

The function GMP::Instance::GetSolver returns for a generated mathematical

program the solver that is assigned to it.

GMP::Instance::GetSolver(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The function returns the solver as an element of AllSolvers.

Remarks:

The solver can be assigned by the procedure GMP::Instance::SetSolver, or

derived by Aimms as the default solver for the model class of the

generated mathematical program.

See also:

The routines GMP::Instance::Generate and GMP::Instance::SetSolver.

Chapter 12. The gmp library 450

GMP::Instance::GetSymbolicMathematicalProgram

The function GMP::Instance::GetSymbolicMathematicalProgram returns for a

generated mathematical program the originating symbolic mathematical

program.

GMP::Instance::GetSymbolicMathematicalProgram(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The function returns the symbolic mathematical program as an element of

AllMathematicalPrograms.

See also:

The function GMP::Instance::Generate.

Chapter 12. The gmp library 451

GMP::Instance::MemoryStatistics

With the procedure GMP::Instance::MemoryStatistics you can obtain a report

containing the statistics collected by Aimms’ memory manager for a single or

multiple generated mathemetical programs.

GMP::Instance::MemoryStatistics(

gmpSet, ! (input) a set of generated mathematical programs

OutputFileName, ! (input) scalar string expression

AppendMode, ! (optional, default 0) scalar numerical expression

MarkerText, ! (optional) scalar string expression

ShowLeaksOnly, ! (optional) scalar expression

ShowTotals, ! (optional) scalar expression

ShowSinceLastDump, ! (optional) scalar expression

ShowMemPeak, ! (optional) scalar expression

ShowSmallBlockUsage, ! (optional) scalar expression

doAggregate ! (optional, default 0) scalar expression

)

Arguments:

gmpSet

A subset of AllGeneratedMathematicalPrograms with generated

mathematical programs whose memory statistics are to be reported.

OutputFileName

A string expression holding the name of the file to which the

statistics must be written.

AppendMode

An 0-1 value indicating whether the file must be overwritten or

whether the statistics must be appended to an existing file.

MarkerText

A string printed at the top of the memory statistics report.

ShowLeaksOnly

A 0-1 value that is only used internally by AIMMS. The value specified

doesn’t influence the memory statistics report.

ShowTotals

A 0-1 value indicating whether the report should include detailed

information about the total memory use in Aimms’ own memory

management system until the moment of calling

GMP::Instance::MemoryStatistics.

ShowSinceLastDump

A 0-1 value indicating whether the report should include basic and

detailed information about the memory use in Aimms’ own memory

management system since the previous call to

GMP:Instance::MemoryStatistics.

Chapter 12. The gmp library 452

ShowMemPeak

A 0-1 value indicating whether the report should include detailed

information about the memory use in Aimms’ own memory

management system, when the memory consumption was at its peak

level prior to calling GMP::Instance::MemoryStatistics.

ShowSmallBlockUsage

A 0-1 value indicating whether the detailed information about the

MemoryStatistics memory use in Aimms’ own memory management

system is included at all in the memory statistics report. Setting this

value to 0 results in a report with only the most basic statistical

information about the memory use.

doAggregate

A 0-1 value (default 0) indicating whether a single aggregated report

is to be presented or multiple individual reports.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The procedure prints a report of the statistics collected by Aimms’

memory manager since the last call to GMP::Instance::MemoryStatistics.

� Aimms will only collect memory statistics if the option

memory statistics is on.

Chapter 12. The gmp library 453

GMP::Instance::Rename

The procedure GMP::Instance::Rename can be used to rename a generated

mathematical program.

GMP::Instance::Rename(

GMP, ! (input) a generated mathematical program

Name ! (input) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

Name

A string that holds the new name.

Return value:

GMP::Instance::Rename has no return value.

See also:

The functions GMP::Instance::Generate and GMP::Instance::Copy.

Chapter 12. The gmp library 454

GMP::Instance::SetCallbackAddCut

The procedure GMP::Instance::SetCallbackAddCut installs a callback procedure

adding cuts during the solution process of a MIP model.

GMP::Instance::SetCallbackAddCut(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The procedure GMP::SolverSession::GenerateCut can be used inside a

CallbackAddCut callback procedure to add cuts during the MIP branch &

cut process.

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackAddCut callback procedure should have a return value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

� A CallbackAddCut callback procedure will only be called when solving

mixed integer programs with Cplex, Gurobi or Odh-Cplex.

� This procedure can also be used for MIQP and MIQCP problems.

See also:

The routines GMP::Instance::Generate,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent,

GMP::SolverSession::GenerateBinaryEliminationRow and

GMP::SolverSession::GenerateCut.

Chapter 12. The gmp library 455

GMP::Instance::SetCallbackAddLazyConstraint

The procedure GMP::Instance::SetCallbackAddLazyConstraint installs a

callback procedure for adding lazy constraints during the solution process of

a MIP model.

GMP::Instance::SetCallbackAddLazyConstraint(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The callback procedure is called by the solver in these situations

– when the solver compares an integer-feasible solution (including

an integer-feasible solution provided by a MIP start before any

nodes exist) to lazy constraints;

– when the LP at a node is unbounded, and a lazy constraint might

cut off the primal ray.

� The procedure GMP::SolverSession::GenerateCut can be used inside a

CallbackAddLazyConstraint callback procedure to add (globally or locally

valid) lazy constraints during the MIP branch & cut process. Lazy

constraints added to the problem are first put into a pool of lazy

constraints, so they are not present in the subproblem LP until after the

callback is finished.

� If lazy constraints have been added, the subproblem is re-solved and

evaluated, and, if the LP solution is still integer feasible and not cut off,

the lazy constraint callback is called again.

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackAddLazyConstraint callback procedure should have a return

value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

Chapter 12. The gmp library 456

� A CallbackAddLazyConstraint callback procedure will only be called

when solving mixed integer programs with Cplex or Gurobi.

� This procedure can also be used for MIQP and MIQCP problems.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent and

GMP::SolverSession::GenerateCut.

Chapter 12. The gmp library 457

GMP::Instance::SetCallbackBranch

The procedure GMP::Instance::SetCallbackBranch installs a callback procedure

to be called after a branch has been selected but before the branch is carried

out during the MIP optimization. In the callback routine, the branch selected

by the solver can be changed to a user-selected branch.

GMP::Instance::SetCallbackBranch(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This callback is not called when the subproblem is infeasible.

� In the callback procedure at most 2 branches can be specified.

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackBranch callback procedure should have a return value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

� The CallbackBranch callback procedure cannot be used to get the

column on which the solver will branch.

� A CallbackBranch callback procedure will only be called when solving

mixed integer programs with Cplex.

See also:

The routines GMP::Solution::RetrieveFromSolverSession,

GMP::Solution::SendToModel, GMP::Solution::RetrieveFromModel,

GMP::Solution::SendToSolverSession ,

GMP::SolverSession::GenerateBranchLowerBound,

GMP::SolverSession::GenerateBranchUpperBound,

GMP::SolverSession::GenerateBranchRow,

GMP::SolverSession::GetNumberOfBranchNodes, GMP::Instance::Generate,

Chapter 12. The gmp library 458

GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic and

GMP::Instance::SetCallbackIncumbent.

Chapter 12. The gmp library 459

GMP::Instance::SetCallbackCandidate

The procedure GMP::Instance::SetCallbackCandidate installs a callback

procedure that is called every time an incumbent solution is found during the

solution process of a MIP model. By using the procedure

GMP::SolverSession::RejectIncumbent the incumbent solution can be rejected.

If GMP::SolverSession::RejectIncumbent is not called inside the

CallbackCandidate callback procedure then the incumbent solution will be

accepted and replace the best incumbent solution found by so far.

GMP::Instance::SetCallbackCandidate(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackCandidate callback procedure should have a return value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

If the return value is 0 (i.e., interrupt the solution process) then the

incumbent solution will not be accepted!

� To remove the callback the empty element should be used as the

callback argument.

� If an incumbent callback procedure is installed by using the procedure

GMP::Instance::SetCallbackIncumbent, then that callback will be called

after the candidate callback procedure if the incumbent solution is not

rejected inside the candidate callback.

� A CallbackCandidate callback procedure will only be called when solving

mixed integer programs with Cplex.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

Chapter 12. The gmp library 460

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent and

GMP::SolverSession::RejectIncumbent.

Chapter 12. The gmp library 461

GMP::Instance::SetCallbackHeuristic

The procedure GMP::Instance::SetCallbackHeuristic installs a callback

procedure that is called during the solution process of a MIP model every

time the subproblem has been solved to optimality.

GMP::Instance::SetCallbackHeuristic(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This callback is not called when the subproblem is infeasible or cut off.

� The callback should supply the solver with a heuristically-derived

integer solution.

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackHeuristic callback procedure should have a return value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

� A CallbackHeuristic callback procedure will only be called when solving

mixed integer programs with Cplex, Gurobi or Odh-Cplex.

See also:

The routines GMP::Solution::RetrieveFromSolverSession,

GMP::Solution::SendToModel, GMP::Solution::RetrieveFromModel,

GMP::Solution::SendToSolverSession , GMP::Instance::Generate,

GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate

and GMP::Instance::SetCallbackIncumbent.

Chapter 12. The gmp library 462

GMP::Instance::SetCallbackIncumbent

The procedure GMP::Instance::SetCallbackIncumbent installs a callback

procedure that is called every time a new incumbent solution is found during

the solution process of a MIP model.

GMP::Instance::SetCallbackIncumbent(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackIncumbent callback procedure should have a return value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

� The functionality of the procedure GMP::Instance::SetCallbackIncumbent

has been changed between Aimms versions 4.68 and 4.69. In Aimms

version 4.68 and older this procedure was named

GMP::Instance::SetCallbackNewIncumbent. That procedure has become

deprecated. Aimms version 4.68 and older already contained a

procedure that was named GMP::Instance::SetCallbackIncumbent but

that procedure has been renamed to

GMP::Instance::SetCallbackCandidate.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIterations,

GMP::Instance::SetCallbackStatusChange and

GMP::Instance::SetCallbackTime.

Chapter 12. The gmp library 463

GMP::Instance::SetCallbackIterations

The procedure GMP::Instance::SetCallbackIterations installs a callback

procedure that is called after a specified number of iterations.

GMP::Instance::SetCallbackIterations(

GMP, ! (input) a generated mathematical program

callback, ! (input) an AIMMS procedure

[value] ! (optional) number of iterations

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

value

A scalar value indicating after which number of iterations the

callback procedure should be called. The default value is 0.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackIterations callback procedure should have a return value

of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

� The number of iterations can also be set by the CallbackIterations

suffix of the symbolic mathematical program, but will be overruled if

the value is not equal to 0.

� During a MIP solve, the iterations callback will be called irregularly by

Cplex, Gurobi and Odh-Cplex (especially during the MIP phase).

� The iterations callback will be called less often if Cplex uses dynamic

search as the MIP Search Strategy instead of branch-and-cut.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

Chapter 12. The gmp library 464

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent,

GMP::Instance::SetCallbackStatusChange and

GMP::Instance::SetCallbackTime.

Chapter 12. The gmp library 465

GMP::Instance::SetCallbackStatusChange

The procedure GMP::Instance::SetCallbackStatusChange installs a callback

procedure that is called every time the status changes during the solution

process.

GMP::Instance::SetCallbackStatusChange(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackStatusChange callback procedure should have a return value

of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent,

GMP::Instance::SetCallbackIterations and

GMP::Instance::SetCallbackTime.

Chapter 12. The gmp library 466

GMP::Instance::SetCallbackTime

The procedure GMP::Instance::SetCallbackTime installs a callback procedure

that is called after a specified number of (elapsed) seconds. By default this

callback procedure is called every two seconds.

GMP::Instance::SetCallbackTime(

GMP, ! (input) a generated mathematical program

callback ! (input) an AIMMS procedure

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

callback

A reference to a procedure in the set AllIdentifiers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The callback procedure should have exactly one argument; a scalar

input element parameter into the set AllSolverSessions.

� The CallbackTime callback procedure should have a return value of

– 0, if you want the solution process to stop, or

– 1, if you want the solution process to continue.

� To remove the callback the empty element should be used as the

callback argument.

� The CallbackTime callback procedure is supported by Cplex, Gurobi,

Cbc, Odh-Cplex, Xa, CP Optimizer, Conopt, Knitro, Snopt and Ipopt.

� The number of (elapsed) seconds is determined by the general solvers

option Progress Time Interval. This option also specifies the interval

for updating the Progress Window during a solve. As a consequence, the

information passed to this callback procedure will be the same as the

information displayed in the Progress Window (except for small

differences for the solving time).

� The time callback will be called less often if Cplex uses dynamic search

as the MIP Search Strategy instead of branch-and-cut. In that case the

interval between two successive calls might sometimes be larger than

the interval as specified by the option Progress Time Interval.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

Chapter 12. The gmp library 467

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent and

GMP::Instance::SetCallbackStatusChange.

Chapter 12. The gmp library 468

GMP::Instance::SetCutoff

The procedure GMP::Instance::SetCutoff specifies a cutoff value that is used

during the solution process of the generated mathematical program.

GMP::Instance::SetCutoff(

GMP, ! (input) a generated mathematical program

cutoff ! (input) scalar numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

cutoff

A scalar value.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

This procedure is only used for MIP models.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve,

GMP::Instance::SetIterationLimit,

GMP::Instance::GMP::Instance::SetMemoryLimit and

GMP::Instance::SetTimeLimit.

Chapter 12. The gmp library 469

GMP::Instance::SetDirection

The procedure GMP::Instance::SetDirection changes the direction of a

generated mathematical program.

GMP::Instance::SetDirection(

GMP, ! (input) a generated mathematical program

direction ! (input) an optimization direction

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

direction

An element expression in the set AllMatrixManipulationDirections.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP::Instance::Generate and GMP::Instance::GetDirection.

Chapter 12. The gmp library 470

GMP::Instance::SetIterationLimit

The procedure GMP::Instance::SetIterationLimit limits the number of

iterations that can be used to solve a generated mathematical program.

GMP::Instance::SetIterationLimit(

GMP, ! (input) a generated mathematical program

iterations ! (input) number of iterations

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

iterations

Maximum number of iterations allowed to solve the generated

mathematical program.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve,

GMP::Instance::SetCutoff, GMP::Instance::SetMemoryLimit and

GMP::Instance::SetTimeLimit.

Chapter 12. The gmp library 471

GMP::Instance::SetMathematicalProgrammingType

The procedure GMP::Instance::SetMathematicalProgrammingType changes the

type of a generated mathematical program from MIP into RMIP (or vice versa),

or from MINLP to RMINLP (or vice versa). Also the type can be changed from

MIQP or MIQCP to RMINLP, or from MIP or LS to LP, but not vice versa.

GMP::Instance::SetMathematicalProgrammingType(

GMP, ! (input) a generated mathematical program

MathematicalProgrammingType ! (input) a model type

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

MathematicalProgrammingType

One of the elements LP, MIP, RMIP, MINLP or RMINLP (in the set

AllMatrixManipulationProgrammingTypes).

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP::Instance::Generate and

GMP::Instance::GetMathematicalProgrammingType .

Chapter 12. The gmp library 472

GMP::Instance::SetMemoryLimit

The procedure GMP::Instance::SetMemoryLimit limits the amount of memory

available to solve a generated mathematical program.

GMP::Instance::SetMemoryLimit(

GMP, ! (input) a generated mathematical program

memory ! (input) amount of memory

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

memory

Maximum number of megabytes available to solve the generated

mathematical program.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve,

GMP::Instance::SetCutoff, GMP::Instance::SetIterationLimit and

GMP::Instance::SetTimeLimit.

Chapter 12. The gmp library 473

GMP::Instance::SetOptionValue

The procedure GMP::Instance::SetOptionValue sets the value of a solver

specific option corresponding to a generated mathematical program.

This procedure can also be used to set certain Solvers General options (see

below).

GMP::Instance::SetOptionValue(

GMP, ! (input) a generated mathematical program

OptionName, ! (input) a scalar string expression

Value ! (input) a scalar numeric expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

OptionName

A string expression holding the name of the option.

Value

A scalar numeric expression representing the new value to be

assigned to the option.

Return value:

The procedure returns 1 if the option exists and the value can be assigned

to the option, or 0 otherwise.

Remarks:

� All solvers solving the generated mathematical program will use the

option value as set by this procedure (provided that the solver contains

the option).

� This procedure will be overruled by the procedure

GMP::SolverSession::SetOptionValue in case a solver session is used to

solve the generated mathematical program.

� Options for which strings are displayed in the Aimms Options dialog

box, are also represented by numerical (integer) values. To obtain the

corresponding option keywords, you can use the functions

OptionGetString and OptionGetKeywords.

� This procedure can also be used to set the following Solvers General

options:

– Cutoff

– Iteration limit

– Maximal number of domain errors

– Maximal number of integer solutions

Chapter 12. The gmp library 474

– MIP absolute optimality tolerance

– MIP relative optimality tolerance

– Solver workspace

– Time limit

See also:

The routines GMP::Instance::GetOptionValue,

GMP::SolverSession::GetOptionValue , GMP::SolverSession::SetOptionValue,

OptionGetString and OptionGetKeywords.

Chapter 12. The gmp library 475

GMP::Instance::SetSolver

The procedure GMP::Instance::SetSolver can be used to select for a generated

mathematical program the solver to be called in subsequent calls to

GMP::Instance::Solve.

GMP::Instance::SetSolver(

GMP, ! (input) a generated mathematical program

solver ! (input) a solver

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solver

An element in the set AllSolvers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

The solver set in this procedure will also be assigned to any solver session

created with the function GMP::Instance::CreateSolverSession for the GMP,

unless the Solver argument in the procedure

GMP::Instance::CreateSolverSession is specified. Note that the procedure

GMP::Instance::SetSolver cannot be used to change the solver assigned to

a solver session after GMP::Instance::CreateSolverSession has been called.

See also:

The routines GMP::Instance::CreateSolverSession,

GMP::Instance::Generate, GMP::Instance::GetSolver and

GMP::Instance::Solve.

Chapter 12. The gmp library 476

GMP::Instance::SetStartingPointSelection

The procedure GMP::Instance::SetStartingPointSelection specifies a selection

of columns for which an initial value is given. This selection is only used for

mathematical programs of type COP and CSP.

GMP::Instance::SetStartingPointSelection(

GMP, ! (input) a generated mathematical program

selectedColumnNumbers ! (input) a subset of Integers

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

selectedColumnNumbers

An expression that results in a subset of the set Integers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP::Instance::Generate, GMP::Instance::GetColumnNumbers

and GMP::Instance::Solve.

Chapter 12. The gmp library 477

GMP::Instance::SetTimeLimit

The procedure GMP::Instance::SetTimeLimit limits the elapsed time to solve a

generated mathematical program.

GMP::Instance::SetTimeLimit(

GMP, ! (input) a generated mathematical program

seconds ! (input) number of seconds

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

seconds

Maximum number of seconds available to solve the generated

mathematical program.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate, GMP::Instance::Solve,

GMP::Instance::SetCutoff, GMP::Instance::SetIterationLimit and

GMP::Instance::SetMemoryLimit.

Chapter 12. The gmp library 478

GMP::Instance::Solve

The procedure GMP::Instance::Solve starts up a solver session to solve a

generated mathematical program. In addition, it copies the initial solution

from the model identifiers via solution 1 in the solution repository and stores

the final solution via solution 1 back in the model identifiers.

GMP::Instance::Solve(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

The procedure GMP::Instance::Solve automatically creates a solver session

with the same name as the generated mathematical program in the set

AllSolverSessions.

See also:

The routines GMP::Instance::Generate,

GMP::Instance::CreateSolverSession , GMP::Solution::RetrieveFromModel,

GMP::Solution::SendToSolverSession , GMP::SolverSession::Execute,

GMP::Solution::RetrieveFromSolverSession and

GMP::Solution::SendToModel.

Chapter 12. The gmp library 479

12.6 GMP::Linearization Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing linearizations associated with a generated mathematical program

instance:

� GMP::Linearization::Add

� GMP::Linearization::AddSingle

� GMP::Linearization::Delete

� GMP::Linearization::GetDeviation

� GMP::Linearization::GetDeviationBound

� GMP::Linearization::GetLagrangeMultiplier

� GMP::Linearization::GetType

� GMP::Linearization::GetWeight

� GMP::Linearization::RemoveDeviation

� GMP::Linearization::SetDeviationBound

� GMP::Linearization::SetType

� GMP::Linearization::SetWeight

Chapter 12. The gmp library 480

GMP::Linearization::Add

The procedure GMP::Linearization::Add adds a linearization row to a

generated mathematical program (GMP1) with respect to a solution (column

level values and row marginals) of a second generated mathematical program

(GMP2) for each row in a set of nonlinear constraints of that second generated

mathematical program.

GMP::Linearization::Add(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

solution, ! (input) a solution

constraintSet, ! (input) a set of nonlinear constraints

deviationsPermitted, ! (input) a binary parameter

penaltyMultipliers, ! (input) a double parameter

linNo, ! (input) a linearization number

[jacTol] ! (optional) the Jacobian tolerance

)

Arguments:

GMP1

An element in AllGeneratedMathematicalPrograms.

GMP2

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution in the solution repository of

GMP2.

constraintSet

A subset of AllNonLinearConstraints.

deviationsPermitted

A binary parameter over AllNonLinearConstraints indicating whether

deviations are permitted for these linearizations. If yes, a new column

will also be added to GMP1 with an objective coefficient equal to the

double value given in penaltyMultiplier multiplied with the row

marginal of the row in solution.

penaltyMultipliers

A double parameter over AllNonLinearConstraints representing the

penalty multiplier that will be used if deviationsPermitted indicates

that a deviation is permitted for the linearization.

linNo

An integer scalar reference to the rows and columns of the

linearization.

jacTol

The Jacobian tolerance; if the Jacobian value (in absolute sense) of a

Chapter 12. The gmp library 481

column in a nonlinear row is smaller than this value, the column will

not be added to the linearization of that row. The default is 1e-5.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure fails if one of the constraints is ranged.

� Rows and columns added before for linNo will be deleted first.

� This procedure will fail if GMP2 contains a column that is not part of

GMP1. A column that is part of GMP1 but not of GMP2 will be ignored,

i.e., no coefficient for that column will be added to the linearizations.

� The formula for the linearization of a scalar nonlinear inequality

g(x,y) ≤ bj around the point (x,y) = (x0, y0) is as follows.

g(x0, y0)+▽g(x0, y0)T
[

x − x0

y −y0

]

− zj ≤ bj

where zj ≥ 0 is the extra column that is added if a deviation is

permitted.

� For a scalar nonlinear equality g(x,y) = bj the sense of the

linearization depends on the shadow price of the equality in the

solution. The sense will be ’≤’ if the shadow price is negative and the

optimization direction is minimization, or if the shadow price is

positive and the optimization direction is maximization. The sense will

be ’≥’ if the shadow price is positive and the optimization direction is

minimization, or if the shadow price is negative and the optimization

direction is maximization.

� By using the suffixes .ExtendedConstraint and .ExtendedVariable it is

possible to refer to the rows and columns that are added by

GMP::Linearization::Add:

– Constraint c.ExtendedConstraint(’Linearizationk’,j) is added for

each nonlinear constraint c(j).

– Variable c.ExtendedVariable(’Linearizationk’,j) is added for

each nonlinear constraint c(j) if a deviation is permitted for

constraint c(j).

Here k denotes the value of the argument linNo.

See also:

The routines GMP::Linearization::AddSingle and

GMP::Linearization::Delete. See Section 16.3.6 of the Language Reference

for more details on extended suffixes.

Chapter 12. The gmp library 482

GMP::Linearization::AddSingle

The procedure GMP::Linearization::AddSingle adds a single linearization row

to a generated mathematical program (GMP1) with respect to a solution

(column level values and row marginals) of a second generated mathematical

program (GMP2).

GMP::Linearization::AddSingle(

GMP1, ! (input) a generated mathematical program

GMP2, ! (input) a generated mathematical program

solution, ! (input) a solution

row, ! (input) a scalar reference

deviationPermitted, ! (input) a binary scalar

penaltyMultiplier, ! (input) a double scalar

linNo, ! (input) a linearization number

[jacTol] ! (optional) the Jacobian tolerance

)

Arguments:

GMP1

An element in AllGeneratedMathematicalPrograms.

GMP2

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution in the solution repository of

GMP2.

row

A scalar reference to an existing nonlinear row in GMP2 for which the

linearization is added to GMP1.

deviationPermitted

A binary scalar indicating whether a deviation is permitted for this

linearization. If yes, a new column will also be added to GMP1 with an

objective coefficient equal to the double value given in

penaltyMultiplier multiplied with the row marginal of the row in

solution.

penaltyMultiplier

A double value representing the penalty multiplier that will be used if

deviationPermitted indicates that a deviation is permitted for the

linearization.

linNo

An integer scalar reference to the rows and columns of the

linearization.

jacTol

The Jacobian tolerance; if the Jacobian value (in absolute sense) of a

column in row is smaller than this value, the column will not be

Chapter 12. The gmp library 483

added to the linearization. The default is 1e-5.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure fails if the row is ranged.

� Rows and columns added before for linNo will be deleted first.

� This procedure will fail if GMP2 contains a column that is not part of

GMP1. A column that is part of GMP1 but not of GMP2 will be ignored,

i.e., no coefficient for that column will be added to the linearizations.

� The formula for the linearization of a scalar nonlinear inequality

g(x,y) ≤ bj around the point (x,y) = (x0, y0) is as follows:

g(x0, y0)+▽g(x0, y0)T
[

x − x0

y −y0

]

− zj ≤ bj

where zj ≥ 0 is the extra column that is added if a deviation is

permitted.

� For a scalar nonlinear equality g(x,y) = bj the sense of the

linearization depends on the shadow price of the equality in the

solution. The sense will be ’≤’ if the shadow price is negative and the

optimization direction is minimization, or if the shadow price is

positive and the optimization direction is maximization. The sense will

be ’≥’ if the shadow price is positive and the optimization direction is

minimization, or if the shadow price is negative and the optimization

direction is maximization.

� By using the suffixes .ExtendedConstraint and .ExtendedVariable it is

possible to refer to the row and column that are added by

GMP::Linearization::AddSingle:

– Constraint c.ExtendedConstraint(’Linearizationk’,j) is added for

row c(j).

– Variable c.ExtendedVariable(’Linearizationk’,j) is added for row

c(j) if a deviation is permitted.

Here k denotes the value of the argument linNo.

Examples:

Assume that ’prod03’ is a mathematical program with the following

declaration (in aim format):

Variable i1 {

Range : {

{1..5}

}

}

Variable i2 {

Range : {

Chapter 12. The gmp library 484

{1..5}

}

}

Variable objvar;

Constraint e1 {

Definition : - 3*i1 - 2*i2 + objvar = 0;

}

Constraint e2 {

Definition : - i1*i2 <= -3.5;

}

MathematicalProgram prod03 {

Objective : objvar;

Direction : minimize;

Type : MINLP;

}

Assume that Aimms has executed the following code in which a

mathematical program instance ’gmp1’ is generated from ’prod03’, its

integer variables are relaxed, and it is solved.

gmp1 := GMP::Instance::Generate(prod03);

GMP::Instance::SetMathematicalProgrammingType(gmp1,’RMINLP’);

GMP::Instance::Solve(gmp1);

The optimal solution is i1 = 1.528 and i2 = 2.291, with Jacobian values

−2.291 and −1.528 for i1 and i2 respectively. This solution is stored at

position 1 in the solution repository of ’gmp1’. If we have a second

generated mathematical program ’gmp2’ with the same variables as

’gmp1’ then

GMP::Linearization::AddSingle(gmp2,gmp1,1,e2,0,0,1);

will add a row

e2.ExtendedConstraint(’Linearization1’):

- 2.291 * i1 - 1.528 * i2 <= -7 ;

to ’gmp2’.

See also:

The routines GMP::Linearization::Add and GMP::Linearization::Delete. See

Section 16.3.6 of the Language Reference for more details on extended

suffixes.

Chapter 12. The gmp library 485

GMP::Linearization::Delete

The procedure GMP::Linearization::Delete deletes a set of rows and columns

corresponding to a linearization in a generated mathematical program.

GMP::Linearization::Delete(

GMP, ! (input) a generated mathematical program

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Linearization::Add and GMP::Linearization::AddSingle.

Chapter 12. The gmp library 486

GMP::Linearization::GetDeviation

The function GMP::Linearization::GetDeviation returns the deviation of a

linearization of a row in a generated mathematical program.

GMP::Linearization::GetDeviation(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

The function returns the deviation of the row.

See also:

The routines GMP::Linearization::SetDeviationBound and

GMP::Linearization::GetDeviationBound.

Chapter 12. The gmp library 487

GMP::Linearization::GetDeviationBound

The function GMP::Linearization::GetDeviationBound returns the deviation

bound of a linearization of a row in a generated mathematical program. The

lower bound of the extra column generated for the linearization is always 0;

this function returns the upper bound.

GMP::Linearization::GetDeviationBound(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

The function returns the deviation upperbound of a linearization.

See also:

The routines GMP::Linearization::SetDeviationBound and

GMP::Linearization::GetDeviation.

Chapter 12. The gmp library 488

GMP::Linearization::GetLagrangeMultiplier

The function GMP::Linearization::GetLagrangeMultiplier returns the Lagrange

multiplier used when adding the linearization of a row to a generated

mathematical program. (In other words, the marginal value of the row that

was used when the linearization was added.)

GMP::Linearization::GetLagrangeMultiplier(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

The function returns the Lagrange multiplier used when adding the

linearization of a row.

See also:

The procedure GMP::Linearization::Add.

Chapter 12. The gmp library 489

GMP::Linearization::GetType

The function GMP::Linearization::GetType returns the row type of a

linearization of a row in a generated mathematical program.

GMP::Linearization::GetType(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

An element in the set AllRowTypes.

See also:

The procedure GMP::Linearization::SetType.

Chapter 12. The gmp library 490

GMP::Linearization::GetWeight

The function GMP::Linearization::GetWeight returns the weight of a

linearization of a row in a generated mathematical program. The weight of a

linearization is defined as the objective coefficient of the column that was

added to the generated mathematical program when the linearization was

added and if a deviation was permitted.

GMP::Linearization::GetWeight(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

The function returns the weight of the linearization.

Remarks:

� This function returns 0 if no extra column was added for the

linearization.

� If the objective coefficient of the deviation column (if any) was not

changed, the weight equals the penalty multiplier multiplied with the

marginal value of the row that was used when the linearization was

added with GMP::Linearization::Add or GMP::Linearization::AddSingle.

See also:

The procedures GMP::Linearization::Add, GMP::Linearization::AddSingle

and GMP::Linearization::SetWeight.

Chapter 12. The gmp library 491

GMP::Linearization::RemoveDeviation

The procedure GMP::Linearization::RemoveDeviation removes the deviation of

a linearization of a row in a generated mathematical program. That is, it

deletes the extra column created (if any) when adding the linearization of the

row to the generated mathematical program.

GMP::Linearization::RemoveDeviation(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo ! (input) a linearization number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Linearization::GetDeviation, GMP::Linearization::Add

and GMP::Linearization::AddSingle.

Chapter 12. The gmp library 492

GMP::Linearization::SetDeviationBound

The procedure GMP::Linearization::SetDeviationBound sets the deviation

bound of a linearization of a row in a generated mathematical program. The

lower bound of the extra column generated for the linearization is always 0;

this procedure sets the upper bound.

GMP::Linearization::SetDeviationBound(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo, ! (input) a linearization number

value ! (input) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

value

A scalar value representing the deviaton upper bound of the row.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Linearization::GetDeviationBound,

GMP::Linearization::GetDeviation and

GMP::Linearization::RemoveDeviation.

Chapter 12. The gmp library 493

GMP::Linearization::SetType

The procedure GMP::Linearization::SetType sets the row type of linearization

of a row in a generated mathematical program.

GMP::Linearization::SetType(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo, ! (input) a linearization number

rowtype ! (input) a row type

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

rowtype

An element (or element parameter or element valued expression) in

the predeclared set AllRowTypes.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The function GMP::Linearization::GetType.

Chapter 12. The gmp library 494

GMP::Linearization::SetWeight

The procedure GMP::Linearization::SetWeight sets the weight of a

linearization of a row in a generated mathematical program. The weight of a

linearization is defined as the objective coefficient of the column that was

added to the generated mathematical program when the linearization was

added and if a deviation was permitted.

GMP::Linearization::SetWeight(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

linNo, ! (input) a linearization number

value ! (input) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing nonlinear row in in the matrix.

linNo

An integer scalar reference to the rows and columns of the

linearization.

value

A scalar value representing the new weight of the row.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The function GMP::Linearization::GetWeight.

Chapter 12. The gmp library 495

12.7 GMP::ProgressWindow Procedures and Functions

Aimms supports the following procedures and functions for displaying

progress information in the Progress Window:

� GMP::ProgressWindow::DeleteCategory

� GMP::ProgressWindow::DisplayLine

� GMP::ProgressWindow::DisplayProgramStatus

� GMP::ProgressWindow::DisplaySolver

� GMP::ProgressWindow::DisplaySolverStatus

� GMP::ProgressWindow::FreezeLine

� GMP::ProgressWindow::Transfer

� GMP::ProgressWindow::UnfreezeLine

Chapter 12. The gmp library 496

GMP::ProgressWindow::DeleteCategory

The procedure GMP::ProgressWindow::DeleteCategory deletes a progress

category.

GMP::ProgressWindow::DeleteCategory(

Category ! (input) a progress category

)

Arguments:

Category

An element in the set AllProgressCategories.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::CreateProgressCategory and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 497

GMP::ProgressWindow::DisplayLine

The procedure GMP::ProgressWindow::DisplayLine writes one line with

progress information in the Progress Window. The lineNo argument gives the

number of the line in which the information has to be shown. The title

contains a string that will be displayed on the left side of the line; the value

will be displayed on the right side.

GMP::ProgressWindow::DisplayLine(

lineNo, ! (input) a line number

title, ! (input) a title

value, ! (input) a value

[Category] ! (optional) a progress category

)

Arguments:

lineNo

The number of the line in which the information has to be shown. Its

value should be a number between 1 and the maximum number of

lines available in the Progress Window (currently 6).

title

The string that will be displayed on the left side of the line.

value

The value that will be displayed on the right side of the line.

Category

An element in the set AllProgressCategories.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the Category argument is used then the element should be created

with the function GMP::SolverSession::CreateProgressCategory.

� To freeze (lock) a line the procedure GMP::ProgressWindow::FreezeLine

should be called. To unfreeze it thereafter the procedure

GMP::ProgressWindow::UnfreezeLine should be called.

See also:

The routines GMP::ProgressWindow::DisplaySolverStatus,

GMP::ProgressWindow::DisplayProgramStatus,

GMP::ProgressWindow::DisplaySolver , GMP::ProgressWindow::FreezeLine,

GMP::ProgressWindow::UnfreezeLine and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 498

GMP::ProgressWindow::DisplayProgramStatus

The procedure GMP::ProgressWindow::DisplayProgramStatus writes the program

status (or model status) to the Progress Window.

GMP::ProgressWindow::DisplayProgramStatus(

status, ! (input) a status

[Category], ! (optional) a progress category

[lineNo] ! (optional) a line number

)

Arguments:

status

An element in the set AllSolutionStates.

Category

An element in the set AllProgressCategories.

lineNo

The number of the line in which the program status has to be

displayed. The default is 7.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the Category argument is used then the element should be created

with the function GMP::SolverSession::CreateProgressCategory.

� The program status can also be displayed by using the procedure

GMP::ProgressWindow::DisplayLine with title ’Program Status’.

See also:

The routines GMP::Solution::GetProgramStatus,

GMP::ProgressWindow::DisplayLine,

GMP::ProgressWindow::DisplaySolverStatus and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 499

GMP::ProgressWindow::DisplaySolver

The procedure GMP::ProgressWindow::DisplaySolver writes the solver name to

the Progress Window.

GMP::ProgressWindow::DisplaySolver(

name, ! (input) a solver name

[Category] ! (optional) a progress category

)

Arguments:

name

A scalar string representing the solver name.

Category

An element in the set AllProgressCategories.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

If the Category argument is used then the element should be created with

the function GMP::SolverSession::CreateProgressCategory.

See also:

The routines GMP::ProgressWindow::DisplaySolverStatus,

GMP::ProgressWindow::DisplayProgramStatus,

GMP::ProgressWindow::DisplayLine and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 500

GMP::ProgressWindow::DisplaySolverStatus

The procedure GMP::ProgressWindow::DisplaySolverStatus writes the solver

status to the Progress Window.

GMP::ProgressWindow::DisplaySolverStatus(

status, ! (input) a status

[Category], ! (optional) a progress category

[lineNo] ! (optional) a line number

)

Arguments:

status

An element in the set AllSolutionStates.

Category

An element in the set AllProgressCategories.

lineNo

The number of the line in which the solver status has to be displayed.

The default is 8.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the Category argument is used then the element should be created

with the function GMP::SolverSession::CreateProgressCategory.

� The solver status can also be displayed by using the procedure

GMP::ProgressWindow::DisplayLine with title ’Solver Status’.

See also:

The routines GMP::Solution::GetSolverStatus,

GMP::ProgressWindow::DisplayLine,

GMP::ProgressWindow::DisplayProgramStatus and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 501

GMP::ProgressWindow::FreezeLine

The procedure GMP::ProgressWindow::FreezeLine freezes (or locks) a line in the

Progress Window.

GMP::ProgressWindow::FreezeLine(

lineNo, ! (input) a line number

[totalFreeze], ! (optional) a binary

[Category] ! (optional) a progress category

)

Arguments:

lineNo

The number of the line that should be frozen.

totalFreeze

If it equals 1 (the default) then the line will never change (untill the

procedure GMP::ProgressWindow::UnfreezeLine is called). If it equals 0

then the line will only change if a GMP::ProgressWindow procedure is

called for this line.

Category

An element in the set AllProgressCategories.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the Category argument is used then the element should be created

with the function GMP::SolverSession::CreateProgressCategory.

� If the Category argument is not specified then this procedure will freeze

a line in the general Aimms progress category for displaying solver

progress, or in the solver progress category of the generated

mathematical program in case function

GMP::Instance::CreateProgressCategory was called.

See also:

The procedures GMP::Instance::CreateProgressCategory,

GMP::ProgressWindow::DisplayLine,

GMP::ProgressWindow::DisplayProgramStatus,

GMP::ProgressWindow::DisplaySolverStatus ,

GMP::ProgressWindow::UnfreezeLine and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 502

GMP::ProgressWindow::Transfer

The procedure GMP::ProgressWindow::Transfer transfers a progress category

that was created for a solver session to another solver session. This

procedure allows you to share a progress category among several solver

sessions.

GMP::ProgressWindow::Transfer(

Category, ! (input) a progress category

solverSession ! (input) a solver session

)

Arguments:

Category

An element in the set AllProgressCategories.

solverSession

An element in the set AllSolverSessions.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The Category should have been created with the function

GMP::SolverSession::CreateProgressCategory.

� The solverSession argument specifies the solver session to which the

progress category should be transfered.

Examples:

In the example below we create two GMPs and for each GMP a solver

session. Next we create a progress category for the first solver session.

After executing the first solver session we transfer the progress category

to the second solver session. By transfering the progress category we

ensure that both solver sessions use the same area in the progress

window.

myGMP1 := GMP::Instance::Generated(MP1);

session1 := GMP::Instance::CreateSolverSession(myGMP1);

myGMP2 := GMP::Instance::Generated(MP2);

session2 := GMP::Instance::CreateSolverSession(myGMP2);

pc := GMP::SolverSession::CreateProgressCategory(session1);

GMP::SolverSession::Execute(session1);

GMP::ProgressWindow::Transfer(pc, session2);

GMP::SolverSession::Execute(session2);

Chapter 12. The gmp library 503

See also:

The procedure GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 504

GMP::ProgressWindow::UnfreezeLine

The procedure GMP::ProgressWindow::UnfreezeLine unlocks a frozen line in the

Progress Window.

GMP::ProgressWindow::UnfreezeLine(

lineNo, ! (input) a line number

[Category] ! (optional) a progress category

)

Arguments:

lineNo

The number of the line that should be freed.

Category

An element in the set AllProgressCategories.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the Category argument is used then the element should be created

with the function GMP::SolverSession::CreateProgressCategory.

� If the Category argument is not specified then this procedure will

unfreeze a line in the general Aimms progress category for displaying

solver progress, or in the solver progress category of the generated

mathematical program in case function

GMP::Instance::CreateProgressCategory was called.

See also:

The procedures GMP::Instance::CreateProgressCategory,

GMP::ProgressWindow::DisplayLine, GMP::ProgressWindow::FreezeLine and

GMP::SolverSession::CreateProgressCategory.

Chapter 12. The gmp library 505

12.8 GMP::QuadraticCoefficient Procedures and Functions

Aimms supports the following procedures and functions for modifying the

quadratic coefficients in the matrix associated with a generated mathematical

program instance:

� GMP::QuadraticCoefficient::Get

� GMP::QuadraticCoefficient::Set

Chapter 12. The gmp library 506

GMP::QuadraticCoefficient::Get

The function GMP::QuadraticCoefficient::Get retrieves a quadratic coefficient

in a quadratic row of a generated mathematical program.

GMP::QuadraticCoefficient::Get(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

column1, ! (input) a scalar reference

column2 ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix.

column1

A scalar reference to an existing column in the matrix.

column2

A scalar reference to an existing column in the matrix.

Return value:

The value of the specified quadratic coefficient in the quadratic row.

Remarks:

If column1 equals column2 then Aimms multiplies the quadratic

coefficient by 2 before it is returned by this function.

See also:

The routines GMP::QuadraticCoefficient::Set,

GMP::Coefficient::GetQuadratic and GMP::Coefficient::SetQuadratic.

Chapter 12. The gmp library 507

GMP::QuadraticCoefficient::Set

The procedure GMP::QuadraticCoefficient::Set sets the value for a quadratic

coefficient in a quadratic row of a generated mathematical program.

GMP::QuadraticCoefficient::Set(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

column1, ! (input) a scalar reference

column2, ! (input) a scalar reference

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix.

column1

A scalar reference to an existing column in the matrix.

column2

A scalar reference to an existing column in the matrix.

value

A scalar numerical value indicating the value for the coefficient.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

If column1 equals column2 then Aimms multiplies the quadratic

coefficient by 0.5 before it is stored (and passed to the solver).

See also:

The routines GMP::QuadraticCoefficient::Get,

GMP::Coefficient::GetQuadratic and GMP::Coefficient::SetQuadratic.

Chapter 12. The gmp library 508

12.9 GMP::Robust Procedures and Functions

Aimms supports the following procedures and functions related to robust

optimization:

� GMP::Robust::EvaluateAdjustableVariables

Chapter 12. The gmp library 509

GMP::Robust::EvaluateAdjustableVariables

The procedure GMP::Robust::EvaluateAdjustableVariables evaluates the values

of a set of adjustable variables using the current values of the uncertain

parameters inside the model.

GMP::Robust::EvaluateAdjustableVariables(

GMP, ! (input) a generated mathematical program

Variables, ! (input) a set of variables

[merge] ! (optional, default 0) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Variables

A subset of AllVariables.

merge

A scalar binary value to indicate whether the evaluated values for the

adjustable variables should be merged with the existing values (value

1) or should replace them (value 0).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The GMP must have been created using the procedure

GMP::Instance::GenerateRobustCounterpart.

� This procedure will ignore variables in the set Variables that are not

part of the GMP. It will also ignore non-adjustable variables.

� The evaluated values will be stored in the .robust suffix of the

adjustable variables. (Note that no values are stored inside this suffix

after the robust counterpart is solved.)

� This procedure will fail if the option Keep Uncertain Mathematical Program

was not switched on before calling procedure

GMP::Instance::GenerateRobustCounterpart.

Examples:

Assume that rcGMP is a robust counterpart GMP with one adjustable

variable Production(i,t) that depends on the uncertain parameter

Demand(s). After solving the robust counterpart you can calculate the

values of Production for a certain realization of Demand as follows:

Demand(s) := 5;

GMP::Robust::EvaluateAdjustableVariables(rcGMP, AllVariables);

Chapter 12. The gmp library 510

It is also possible to calculate the values of the adjustable variables

without using this procedure:

Demand(s) := 5;

CalculatedProduction(i,t) := Production.adjustable.Constant(i,t) +

sum(s, Demand(s) * Production.adjustable.Demand(i,t,s));

Here CalculatedProduction(i,t) is a parameter used to store the

calculated values of Production(i,t).

See also:

The function GMP::Instance::GenerateRobustCounterpart.

Chapter 12. The gmp library 511

12.10 GMP::Row Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing matrix rows associated with a generated mathematical program

instance:

� GMP::Row::Activate

� GMP::Row::Add

� GMP::Row::Deactivate

� GMP::Row::Delete

� GMP::Row::DeleteIndicatorCondition

� GMP::Row::Generate

� GMP::Row::GetConvex

� GMP::Row::GetIndicatorColumn

� GMP::Row::GetIndicatorCondition

� GMP::Row::GetLeftHandSide

� GMP::Row::GetName

� GMP::Row::GetRelaxationOnly

� GMP::Row::GetRightHandSide

� GMP::Row::GetScale

� GMP::Row::GetStatus

� GMP::Row::GetType

� GMP::Row::SetConvex

� GMP::Row::SetIndicatorCondition

� GMP::Row::SetLeftHandSide

� GMP::Row::SetPoolType

� GMP::Row::SetPoolTypeMulti

� GMP::Row::SetRelaxationOnly

� GMP::Row::SetRightHandSide

� GMP::Row::SetRightHandSideMulti

� GMP::Row::SetType

Chapter 12. The gmp library 512

GMP::Row::Activate

The procedure GMP::Row::Activate activates a deactivated row in a generated

mathematical program.

GMP::Row::Activate(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The procedure returns 1 on success, and 0 otherwise.

See also:

The routines GMP::Instance::Generate and GMP::Row::Deactivate.

Chapter 12. The gmp library 513

GMP::Row::Add

The procedure GMP::Row::Add adds an empty row to the matrix of a generated

mathematical program.

GMP::Row::Add(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to a row.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Coefficients for this row can be added to the matrix by using the

procedure GMP::Coefficient::Set.

� After calling GMP::Row::Add the type and the left-hand-side and

right-hand-side values are set according to the definition of the

corresponding symbolic constraint. By using the procedures

GMP::Row::SetType, GMP::Row::SetLeftHandSide and

GMP::Row::SetRightHandSide the row type and row bounds can be

changed.

� Use procedure GMP::Row::Generate to generate a (non-empty) row

according to the definition of its associated symbolic constraint.

See also:

The routines GMP::Instance::Generate, GMP::Coefficient::Set,

GMP::Row::Delete, GMP::Row::SetType, GMP::Row::SetLeftHandSide,

GMP::Row::SetRightHandSide and GMP::Row::Generate.

Chapter 12. The gmp library 514

GMP::Row::Deactivate

The procedure GMP::Row::Deactivate deactivates a row in a generated

mathematical program. A deactivated row will not be passed to a solver

session.

GMP::Row::Deactivate(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The procedure returns 1 on success, and 0 otherwise.

See also:

The routines GMP::Instance::Generate and GMP::Row::Activate.

Chapter 12. The gmp library 515

GMP::Row::Delete

The procedure GMP::Row::Delete marks a row in the matrix of a generated

mathematical program as deleted.

GMP::Row::Delete(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� A deleted row remains present in the generated mathematical program

but its contents will not be copied to a solver session.

� The row will not be printed in the constraint listing, nor be visible in the

math program inspector and it will be removed from any solver

maintained copies.

See also:

The routines GMP::Instance::Generate and GMP::Row::Add.

Chapter 12. The gmp library 516

GMP::Row::DeleteIndicatorCondition

The procedure GMP::Row::DeleteIndicatorCondition deletes an indicator

column and condition from a row in a generated mathematical program.

GMP::Row::DeleteIndicatorCondition(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

This procedure transforms an indicator row into a normal row.

See also:

The routines GMP::Row::GetIndicatorColumn,

GMP::Row::GetIndicatorCondition and GMP::Row::SetIndicatorCondition.

Chapter 12. The gmp library 517

GMP::Row::Generate

The procedure GMP::Row::Generate generates a row and adds it to the matrix

of a generated mathematical program. The row is generated according to the

definition of its associated symbolic constraint, or to the definition of its

associated symbolic variable in case the row refers to the definition of a

variable.

GMP::Row::Generate(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference

[autoAddColumn] ! (optional) a binary scalar

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to a row.

autoAddColumn

A binary scalar indicating whether this procedure should

automatically add columns that are not in the GMP. The default is 0

meaning that no columns are added.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Before generating the row all existing matrix coefficients for this row

are removed.

� The row type and the right-hand-side value (and, if the row type is

’ranged’, the left-hand-side value) are set according to the constraint

definition.

� This procedure cannot be used if the row contains the objective

variable, and the row was added or generated before using a different

coefficient for the objective variable.

� If the value of autoAddColumn equals 0, then this procedure will

generate an error if it encounters a column that is not in the GMP. You

then have to add that column before calling this procedure by using the

procedure GMP::Column::Add.

� Setting the value of autoAddColumn to 1 should only be done if you

know exactly which columns are automatically added by this procedure.

Otherwise you might end up with a model in which some columns only

appear in this row, possibly making this row redundant.

Chapter 12. The gmp library 518

� This procedure will never add columns that were deleted before with

the procedure GMP::Column::Delete.

Examples:

To generate the row corresponding to constraint c(i) for element ’1’, we

can use:

GMP::Row::Generate(myGMP, c(’1’));

If the row refers to the definition of a variable then we have to place

’ definition’ behind the name of the variable. For example, if v(j) is a

variable with a definition and we want to generate a row according to its

definition for element ’2’ then we have to use:

GMP::Row::Generate(myGMP, v_definition(’2’));

See also:

The routines GMP::Instance::Generate, GMP::Column::Add,

GMP::Column::Delete, GMP::Row::Add and GMP::Row::Delete.

Chapter 12. The gmp library 519

GMP::Row::GetConvex

The function GMP::Row::GetConvex returns 1 for a row in a generated

mathematical program if it has been marked as being convex; otherwise it

returns 0.

GMP::Row::GetConvex(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns 1 if the row is convex, and 0 otherwise.

Remarks:

Aimms cannot detect whether a row is convex or not. A row is marked as

being convex if the procedure GMP::Row::SetConvex has been called before

or if the Convex suffix has been set to 1 for the corresponding constraint.

See also:

The procedure GMP::Row::SetConvex. The Convex suffix is explained in full

detail in Section 14.2.6 of the Language Reference.

Chapter 12. The gmp library 520

GMP::Row::GetIndicatorColumn

The function GMP::Row::GetIndicatorColumn returns, for a row in a generated

mathematical program, the column number of the indicator column.

GMP::Row::GetIndicatorColumn(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns the column number if the indicator column exists,

and -1 otherwise.

See also:

The routines GMP::Row::DeleteIndicatorCondition,

GMP::Row::GetIndicatorCondition and GMP::Row::SetIndicatorCondition.

Chapter 12. The gmp library 521

GMP::Row::GetIndicatorCondition

The function GMP::Row::GetIndicatorCondition returns the indicator condition

of a row in a generated mathematical program.

GMP::Row::GetIndicatorCondition(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix.

Return value:

The function returns the indicator condition.

Remarks:

This function fails if the row has no indicator column.

See also:

The routines GMP::Row::DeleteIndicatorCondition,

GMP::Row::GetIndicatorColumn and GMP::Row::SetIndicatorCondition.

Chapter 12. The gmp library 522

GMP::Row::GetLeftHandSide

The function GMP::Row::GetLeftHandSide returns the left-hand-side value of a

row as present in the generated mathematical program. This function is

typically used for ranged constraints.

Note that this function does not return the (evaluated) level value of a row;

you should use the function GMP::Solution::GetRowValue instead.

GMP::Row::GetLeftHandSide(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns the left-hand-side value of the specified row.

Remarks:

If the row has a unit then the scaled left-hand-side value is returned

(without unit).

Examples:

Assume that ’c1’ is a constraint in mathematical program ’MP’ with a unit

as defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Parameter wght_lower {

Unit : ton;

InitialValue : 20;

}

Parameter wght_upper {

Unit : ton;

InitialValue : 60;

}

Constraint c1 {

Unit : ton;

Definition : wght_lower <= -x1 + 2 * x2 <= wght_upper;

}

Chapter 12. The gmp library 523

If we want to multiply the left-hand-side value by 1.5 and assign it as the

new value by using function GMP::Row::SetLeftHandSide we can use

lhs1 := 1.5 * (GMP::Row::GetLeftHandSide(’MP’, c1)) [ton];

GMP::Row::SetLeftHandSide(’MP’, c1, lhs1);

if ’lhs1’ is a parameter with unit [ton], or we can use

lhs2 := 1.5 * GMP::Row::GetLeftHandSide(’MP’, c1);

GMP::Row::SetLeftHandSide(’MP’, c1, lhs2 * GMP::Row::GetScale(’MP’, c1));

if ’lhs2’ is a parameter without a unit.

See also:

The routines GMP::Instance::Generate, GMP::Row::SetLeftHandSide,

GMP::Row::GetRightHandSide, GMP::Row::GetScale and

GMP::Solution::GetRowValue.

Chapter 12. The gmp library 524

GMP::Row::GetName

The function GMP::Row::GetName returns the name of a row in the matrix of a

generated mathematical program.

GMP::Row::GetName(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns a string.

See also:

The routines GMP::Instance::Generate and GMP::Column::GetName.

Chapter 12. The gmp library 525

GMP::Row::GetRelaxationOnly

The function GMP::Row::GetRelaxationOnly returns 1 for a row in a generated

mathematical program if it has been marked as being a relaxation-only row;

otherwise it returns 0.

GMP::Row::GetRelaxationOnly(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns 1 if the row is a relaxation-only row, and 0 otherwise.

Remarks:

A row is marked as being a relaxation-only row if the procedure

GMP::Row::SetRelaxationOnly has been called before or if the

RelaxationOnly suffix has been set to 1 for the corresponding constraint.

See also:

The procedure GMP::Row::SetRelaxationOnly. The RelaxationOnly suffix is

explained in full detail in Section 14.2.6 of the Language Reference.

Chapter 12. The gmp library 526

GMP::Row::GetRightHandSide

The function GMP::Row::GetRightHandSide returns the right-hand-side value of

a row as present in the generated mathematical program.

GMP::Row::GetRightHandSide(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns the right-hand-side value of the specified row.

Remarks:

If the row has a unit then the scaled right-hand-side value is returned

(without unit).

Examples:

Assume that ’c1’ is a constraint in mathematical program ’MP’ with a unit

as defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Parameter wght {

Unit : ton;

InitialValue : 20;

}

Constraint c1 {

Unit : ton;

Definition : -x1 + 2 * x2 <= wght;

}

If we want to multiply the right-hand-side value by 1.5 and assign it as the

new value by using function GMP::Row::SetRightHandSide we can use

rhs1 := 1.5 * (GMP::Row::GetRightHandSide(’MP’, c1)) [ton];

GMP::Row::SetRightHandSide(’MP’, c1, rhs1);

Chapter 12. The gmp library 527

if ’rhs1’ is a parameter with unit [ton], or we can use

rhs2 := 1.5 * GMP::Row::GetRightHandSide(’MP’, c1);

GMP::Row::SetRightHandSide(’MP’, c1, rhs2 * GMP::Row::GetScale(’MP’, c1));

if ’rhs2’ is a parameter without a unit.

See also:

The routines GMP::Instance::Generate, GMP::Row::SetRightHandSide,

GMP::Row::GetLeftHandSide and GMP::Row::GetScale.

Chapter 12. The gmp library 528

GMP::Row::GetScale

The function GMP::Row::GetScale returns the scaling factor of a row in the

generated mathematical program.

GMP::Row::GetScale(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The scaling factor for the specified row.

See also:

The routines GMP::Instance::Generate and GMP::Column::GetScale.

Chapter 12. The gmp library 529

GMP::Row::GetStatus

The function GMP::Row::GetStatus returns the status of a row in the matrix of

a generated mathematical program.

GMP::Row::GetStatus(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

An element in the predefined set AllRowColumnStatuses. The set

AllRowColumnStatuses contains the following elements:

� Active,

� Deactivated,

� Deleted,

� NotGenerated,

� PresolveDeleted.

Remarks:

This function will return ’PresolveDeleted’ only if the generated

mathematical program has been created with

GMP::Instance::CreatePresolved. Status ’PresolveDeleted’ means that the

row was generated for the original generated mathematical program but

deleted when the presolved mathematical program was created.

See also:

The routines GMP::Instance::Generate and GMP::Instance::CreatePresolved.

Chapter 12. The gmp library 530

GMP::Row::GetType

The function GMP::Row::GetType returns the type of a row in the matrix of a

generated mathematical program.

GMP::Row::GetType(

GMP, ! (input) a generated mathematical program

row ! (input) a scalar reference or row number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

Return value:

The function returns an element in the predefined set AllRowTypes.

See also:

The routines GMP::Instance::Generate and GMP::Row::SetType.

Chapter 12. The gmp library 531

GMP::Row::SetConvex

The procedure GMP::Row::SetConvex can be used to indicate that a row in a

generated mathematical program is convex. Some solvers (like Baron) can

make use of this information.

GMP::Row::SetConvex(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

value ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

value

A scalar reference to a 0-1 value.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

Aimms cannot detect whether a row is convex or not. A row is marked as

being convex after this procedure is called with the value argument equal

to 1 or if the Convex suffix has been set to 1 for the corresponding

constraint.

See also:

The function GMP::Row::GetConvex. The Convex suffix is explained in full

detail in Section 14.2.6 of the Language Reference.

Chapter 12. The gmp library 532

GMP::Row::SetIndicatorCondition

The procedure GMP::Row::SetIndicatorCondition assigns an indicator column

and condition to a row in a generated mathematical program.

GMP::Row::SetIndicatorCondition(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

column, ! (input) a scalar reference or column number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

A binary value that will be used as indicator condition.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Assigning an indicator column and condition to a row means that the

row must (only) be satisfied if the level value of the indicator column

equals the indicator condition.

� This procedure fails if the row is nonlinear or if the column is not

binary.

See also:

The routines GMP::Row::DeleteIndicatorCondition,

GMP::Row::GetIndicatorColumn and GMP::Row::GetIndicatorCondition.

Chapter 12. The gmp library 533

GMP::Row::SetLeftHandSide

The procedure GMP::Row::SetLeftHandSide changes the left-hand-side of a row

in a generated mathematical program.

GMP::Row::SetLeftHandSide(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

value

The new value that should be assigned to the left-hand-side of the

row.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

If the row has a unit then value should have the same unit. If value has no

unit then you should multiply it by the row scale, as returned by the

function GMP::Row::GetScale.

Examples:

Assume that ’c1’ is a constraint in mathematical program ’MP’ with a unit

as defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Constraint c1 {

Unit : ton;

Definition : -x1 + 2 * x2 <= wght;

}

Then if we run the following code

GMP::Row::SetLeftHandSide(’MP’, c1, 20 [ton]);

lhs1 := GMP::Row::GetLeftHandSide(’MP’, c1);

display lhs1;

Chapter 12. The gmp library 534

GMP::Row::SetLeftHandSide(’MP’, c1, 30);

lhs2 := GMP::Row::GetLeftHandSide(’MP’, c1);

display lhs2;

GMP::Row::SetLeftHandSide(’MP’, c1, 40 * GMP::Row::GetScale(’MP’, c1));

lhs3 := GMP::Row::GetLeftHandSide(’MP’, c1);

display lhs3;

(where ’lhs1’, ’lhs2’ and ’lhs3’ are parameters without a unit) we get the

following results:

lhs1 := 20 ;

lhs2 := 0.030 ;

lhs3 := 40 ;

See also:

The routines GMP::Instance::Generate, GMP::Row::SetRightHandSide,

GMP::Row::GetLeftHandSide and GMP::Row::GetScale.

Chapter 12. The gmp library 535

GMP::Row::SetPoolType

The procedure GMP::Row::SetPoolType can be used to indicate that a row in a

generated mathematical program should become part of a pool of lazy

constraints or a pool of (user) cuts. The solvers Cplex, Gurobi and

Odh-Cplex can make use of this information.

GMP::Row::SetPoolType(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

value, ! (input) a scalar reference

[mode] ! (optional) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

value

A scalar reference to a value. The value 1 specifies that the row

should be added to the lazy constraint pool and 2 specifies that the

row should be added to the cut pool. The value 0 indicates that the

row will be removed from either pools (and treated as a normal row).

mode

A scalar reference to a value representing the lazy constraint mode.

The value should be a number between 0 and 3. The default is 0. The

meaning of these values is explained below.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� The lazy constraint pool is supported by Cplex, Gurobi and Odh-Cplex

while the cut pool is supported by Cplex and Odh-Cplex.

� Use GMP::Row::SetPoolTypeMulti if the pool type of many rows

corresponding to some constraint have to be set, because that will be

more efficient.

� The mode is only used if the row should be added to the lazy constraint

pool (i.e., if value equals 1), and if Gurobi 7.0 or higher is used. The

mode should be a value between 0 and 3, and these values have the

following meaning:

Chapter 12. The gmp library 536

– 0: The mode is specified by the Gurobi option Lazy constraint

mode.

– 1: The lazy constraint can be used to cut off a feasible solution,

but it won’t necessarily be pulled in if another lazy constraint also

cuts off the solution.

– 2: Lazy constraints that are violated by a feasible solution will be

pulled into the model.

– 3: Lazy constraints that cut off the relaxation solution at the root

node are also pulled into the model.

See also:

The procedure GMP::Row::SetPoolTypeMulti. The lazy constraint pool and

the cut pool are explained in full detail in Section 14.2.4 of the Language

Reference.

Chapter 12. The gmp library 537

GMP::Row::SetPoolTypeMulti

The procedure GMP::Row::SetPoolTypeMulti can be used to indicate that a

group of rows, belonging to a constraint, in a generated mathematical

program should become part of a pool of lazy constraints or a pool of (user)

cuts. The solvers Cplex, Gurobi and Odh-Cplex can make use of this

information.

GMP::Row::SetPoolTypeMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

row, ! (input) a scalar reference or row number

value, ! (input) a scalar reference

mode ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

row

A constraint that, combined with the binding domain, specifies the

rows.

value

The pool type for each row, defined over the binding domain binding.

A value of 1 specifies that the row should be added to the lazy

constraint pool and 2 specifies that the row should be added to the

cut pool. The value 0 indicates that the row will be removed from

either pools (and treated as a normal row).

mode

The lazy constraint mode for each row, defined over the binding

domain binding. Its value should be a number between 0 and 3. The

meaning of these values is explained below.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� The lazy constraint pool is supported by Cplex, Gurobi and Odh-Cplex

while the cut pool is supported by Cplex and Odh-Cplex.

� The mode is only used if the row should be added to the lazy constraint

pool (i.e., if value equals 1), and if Gurobi 7.0 or higher is used. The

Chapter 12. The gmp library 538

mode should be a value between 0 and 3, and these values have the

following meaning:

– 0: The mode is specified by the Gurobi option Lazy constraint

mode.

– 1: The lazy constraint can be used to cut off a feasible solution,

but it won’t necessarily be pulled in if another lazy constraint also

cuts off the solution.

– 2: Lazy constraints that are violated by a feasible solution will be

pulled into the model.

– 3: Lazy constraints that cut off the relaxation solution at the root

node are also pulled into the model.

See also:

The procedure GMP::Row::SetPoolType. The lazy constraint pool and the

cut pool are explained in full detail in Section 14.2.4 of the Language

Reference.

Chapter 12. The gmp library 539

GMP::Row::SetRelaxationOnly

The procedure GMP::Row::SetRelaxationOnly can be used to indicate that a row

in a generated mathematical is a relaxation-only row. Some solvers (like

Baron) can make use of this information.

GMP::Row::SetRelaxationOnly(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

value ! (input) a scalar reference

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

value

A scalar reference to a 0-1 value.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

A row is marked as being a relaxation-only row after this procedure is

called with the value argument equal to 1 or if the RelaxationOnly suffix

has been set to 1 for the corresponding constraint.

See also:

The function GMP::Row::GetRelaxationOnly. The RelaxationOnly suffix is

explained in full detail in Section 14.2.6 of the Language Reference.

Chapter 12. The gmp library 540

GMP::Row::SetRightHandSide

The procedure GMP::Row::SetRightHandSide changes the right-hand-side of a

row in a generated mathematical program.

GMP::Row::SetRightHandSide(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

value

The new value that should be assigned to the right-hand-side of the

row.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

� Use GMP::Row::SetRightHandSideMulti if the right-hand-side of many

rows corresponding to some constraint have to be set, because that will

be more efficient.

� If the row has a unit then value should have the same unit. If value has

no unit then you should multiply it by the row scale, as returned by the

function GMP::Row::GetScale.

Examples:

Assume that ’c1’ is a constraint in mathematical program ’MP’ with a unit

as defined by:

Quantity SI_Mass {

BaseUnit : kg;

Conversions : ton -> kg : # -> # * 1000;

}

Constraint c1 {

Unit : ton;

Definition : -x1 + 2 * x2 <= wght;

}

Then if we run the following code

Chapter 12. The gmp library 541

GMP::Row::SetRightHandSide(’MP’, c1, 20 [ton]);

rhs1 := GMP::Row::GetRightHandSide(’MP’, c1);

display rhs1;

GMP::Row::SetRightHandSide(’MP’, c1, 30);

rhs2 := GMP::Row::GetRightHandSide(’MP’, c1);

display rhs2;

GMP::Row::SetRightHandSide(’MP’, c1, 40 * GMP::Row::GetScale(’MP’, c1));

rhs3 := GMP::Row::GetRightHandSide(’MP’, c1);

display rhs3;

(where ’rhs1’, ’rhs2’ and ’rhs3’ are parameters without a unit) we get the

following results:

rhs1 := 20 ;

rhs2 := 0.030 ;

rhs3 := 40 ;

See also:

The routines GMP::Instance::Generate, GMP::Row::SetRightHandSideMulti,

GMP::Row::SetLeftHandSide, GMP::Row::GetRightHandSide and

GMP::Row::GetScale.

Chapter 12. The gmp library 542

GMP::Row::SetRightHandSideMulti

The procedure GMP::Row::SetRightHandSideMulti changes the right-hand-side

of a group of row, belonging to a constraint, in a generated mathematical

program.

GMP::Row::SetRightHandSideMulti(

GMP, ! (input) a generated mathematical program

binding, ! (input) an index binding

row, ! (input) a constraint expression

value ! (input) a numerical expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

binding

An index binding that specifies and possibly limits the scope of

indices.

row

A constraint that, combined with the binding domain, specifies the

rows.

value

The new right-hand-side for each row, defined over the binding

domain binding.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

If the constraint has a unit then value should have the same unit. If value

has no unit then you should multiply it by the row scale, as returned by

the function GMP::Row::GetScale. See GMP::Row::SetRightHandSide for an

example with units.

Examples:

To set the right-hand-side values of constraint c(i) to rhs(i) we can use:

for (i) do

GMP::Row::SetRightHandSide(myGMP, c(i), rhs(i));

endfor;

It is more efficient to use:

GMP::Row::SetRightHandSideMulti(myGMP, i, c(i), rhs(i));

Chapter 12. The gmp library 543

If we only want to set the right-hand-side values of those c(i) for which

dom(i) is unequal to zero, then we use:

GMP::Row::SetRightHandSideMulti(myGMP, i | dom(i), c(i), rhs(i));

See also:

The routines GMP::Instance::Generate, GMP::Row::SetRightHandSide,

GMP::Row::SetLeftHandSide, GMP::Row::GetRightHandSide and

GMP::Row::GetScale.

Chapter 12. The gmp library 544

GMP::Row::SetType

The procedure GMP::Row::SetType changes the type of a row in the matrix of a

generated mathematical program.

GMP::Row::SetType(

GMP, ! (input) a generated mathematical program

row, ! (input) a scalar reference or row number

type ! (input) a element in AllRowTypes

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

type

An element in AllRowTypes.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate and GMP::Row::GetType.

Chapter 12. The gmp library 545

12.11 GMP::Solution Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing solutions in the solution repository associated with a generated

mathematical program instance:

� GMP::Solution::Check

� GMP::Solution::ConstraintListing

� GMP::Solution::ConstructMean

� GMP::Solution::Copy

� GMP::Solution::Count

� GMP::Solution::Delete

� GMP::Solution::DeleteAll

� GMP::Solution::GetBestBound

� GMP::Solution::GetColumnValue

� GMP::Solution::GetDistance

� GMP::Solution::GetFirstOrderDerivative

� GMP::Solution::GetIterationsUsed

� GMP::Solution::GetMemoryUsed

� GMP::Solution::GetNodesUsed

� GMP::Solution::GetObjective

� GMP::Solution::GetPenalizedObjective

� GMP::Solution::GetProgramStatus

� GMP::Solution::GetRowValue

� GMP::Solution::GetSolutionsSet

� GMP::Solution::GetSolverStatus

� GMP::Solution::GetTimeUsed

� GMP::Solution::IsDualDegenerated

� GMP::Solution::IsInteger

� GMP::Solution::IsPrimalDegenerated

� GMP::Solution::Move

� GMP::Solution::RandomlyGenerate

� GMP::Solution::RetrieveFromModel

� GMP::Solution::RetrieveFromSolverSession

� GMP::Solution::SendToModel

� GMP::Solution::SendToModelSelection

� GMP::Solution::SendToSolverSession

� GMP::Solution::SetColumnValue

� GMP::Solution::SetIterationCount

� GMP::Solution::SetMIPStartFlag

� GMP::Solution::SetObjective

� GMP::Solution::SetProgramStatus

� GMP::Solution::SetRowValue

� GMP::Solution::SetSolverStatus

� GMP::Solution::UpdatePenaltyWeights

Chapter 12. The gmp library 546

See also the section on Managing the solution repository, Section 16.4 of the

Language Reference.

Chapter 12. The gmp library 547

GMP::Solution::Check

The procedure GMP::Solution::Check checks the validity of a solution for a

generated mathematical program.

GMP::Solution::Check(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

numInfeas, ! (output) number of infeasibilities

sumInfeas, ! (output) sum of infeasibilities

maxInfeas, ! (output) maximum infeasibility

[skipObj] ! (optional, default 0) a scalar value

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

numInfeas

Number of infeasibilities for the solution.

sumInfeas

Sum of all infeasibilities for the solution.

maxInfeas

Maximum infeasibility for the solution.

skipObj

A scalar binary value to indicate whether constraints containing the

objective variable should be skipped (value 1) or not (value 0).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

The option Constraint Listing Feasibility Tolerance determines the

feasibility tolerance used by this procedure. If a constraint violation is

smaller than this tolerance then it will be ignored.

See also:

The routines GMP::Instance::Generate, GMP::Solution::RetrieveFromModel

and GMP::Solution::RetrieveFromSolverSession.

Chapter 12. The gmp library 548

GMP::Solution::ConstraintListing

The procedure GMP::Solution::ConstraintListing outputs a detailed

description of a generated mathematical program to file. It uses the solution

to provide feasibility, left hand side and derivative information.

GMP::Solution::ConstraintListing(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

Filename, ! (input) a string

[AppendMode] ! (input/optional) integer, default 0

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer that is a reference to a solution.

Filename

The name of the file to which the output is written.

AppendMode

If non-zero, the output will be appended to the file, instead of

overwritten.

This function allows one to inspect a generated mathematical program after it

is generated, modified, or solved.

Usage example

Given the following declarations:

MathematicalProgram sched;

ElementParameter cp_gmp {

Range : AllGeneratedMathematicalPrograms;

}

Parameter vars_in_cl {

Range : binary;

InitialData : 0;

Comment : {

"When 1 the variables and bounds are printed

in the constraint listing"

}

}

The use of the function GMP::Solution::ConstraintListing is illustrated in the

following code fragment.

cp_gmp := gmp::Instance::Generate(sched);

if cp_gmp then

GMP::Solution::RetrieveFromModel(cp_gmp, 1);

Chapter 12. The gmp library 549

block where constraint_listing_variable_values := vars_in_cl ;

GMP::Solution::ConstraintListing(cp_gmp, 1, "sched.constraintlisting");

endblock;

endif ;

The following remarks apply to this code fragment:

� Directly after generation, the generated mathematical program

referenced by cp gmp does not contain a solution. The current values in

the model can be used to obtain such a solution using

GMP::Solution::RetrieveFromModel.

� The actual call to GMP::Solution::ConstraintListing is placed in a block

statement, to permit the programmatic control of output steering

options. The available output steering options are in the option

category Solvers General – Standard Reports – Constraints.

Output

The description that is output by the function

GMP::Solution::ConstraintListing is split into a header, a body, and a footer.

The header of a constraint listing

The brief header contains the solve number (the suffix .number) of the

mathematical program and the name of the generated mathematical program.

Whenever this suffix is less than or equal to twenty, it is written as a word.

When the generated mathematical program is a scheduling problem,

containing activities as documented in Section 22.2.1, the problem schedule

domain is also printed, as illustrated in the following example:

This is the first constraint listing of mySched.

The schedule domain of mySched is the calendar "TimeLine" containing 61 elements

in the range { ’2011-03-31’ .. ’2011-05-30’ }.

This is a constraint listing whereby the scheduling problem mySched is solved

once. In addition, the problem schedule domain is detailed.

The body of a constraint listing

The body of the constraint listing contains all details in the rows of the

generated mathematical program. The information detailed depends both on

option settings and the type of row. Lets begin with a linear row.

Chapter 12. The gmp library 550

An LP row

From Aimms example Transportation model:

---- MeetDemand The amount transported to customer c should meet its demand

MeetDemand(Alkmaar) .. [1 | 2 | Optimal]

+ 1 * Transport(Eindhoven ,Alkmaar) + 1 * Transport(Haarlem ,Alkmaar)

+ 1 * Transport(Heerenveen,Alkmaar) + 1 * Transport(Middelburg,Alkmaar)

+ 1 * Transport(Zutphen ,Alkmaar) >= 793 ; (lhs=793, scale=0.001)

name lower level upper scale

Transport(Eindhoven,Alkmaar) 0 0 inf 0.001

Transport(Haarlem,Alkmaar) 0 793 inf 0.001

Transport(Heerenveen,Alkmaar) 0 0 inf 0.001

Transport(Middelburg,Alkmaar) 0 0 inf 0.001

Transport(Zutphen,Alkmaar) 0 0 inf 0.001

For each group of constraints, the name of that constraint and its text are

printed. Next comes each row of that group, whereby the number of rows per

symbolic constraint can be limited by the option

Number of Rows per Constraint in Listing.

A row starts with its name and then, within square brackets, the solve

number, the row number, and the solution status of the solution. For that

row, it is followed by its contents, whereby all terms containing variables are

moved to the left and all terms without variables to the right and summed to

mimic the LP form Ax ≤ b. Between parentheses the lhs is computed by

filling in the values of the variables. In this version of the model the base unit

for weight is ton, but the constraint uses the unit kg which is 0.001 * ton.

Aimms computes the LP matrix with respect to the base units and

subsequently scales to the units of the variables and constraints. Thus we

have a scaling factor of 0.001 for both the constraint and the variables. The

coefficients presented are the coefficients after this scaling and as such

passed to the solver.

The last part of this example shows the variable values, their bounds, and,

when relevant, the scaling factor. This last part is obtained by setting the

option constraint listing variable values to on.

An NLP row

Consider the arbitrary objective definition

Variable o {

Range : free;

Definition : xˆ3 - yˆ4 + x / y;

}

Filling in the definition attribute of variable o will let Aimms construct the

constraint o definition with the same index domain, empty here, and unit,

empty here. This constraint is presented as follows in the constraint listing.

Chapter 12. The gmp library 551

---- o_definition

o_definition .. [0 | 2 | not solved yet]

+ [-4] * x + [5] * y + 1 * o = 0 ; (lhs=-1) ****

name lower level upper

x 1 1 4

y 1 1 5

o -inf 0 inf

Hessian:

x y

-------------------- --------------------

x -6 1

y 1 10

This example is similar to the example of the linear row, but with some

extras. First, the coefficients -4 and 5 are denoted between brackets to

indicate that they are not fixed coefficients, but first order derivative values

taken at the level values of the variables. We say that the variables x and y

appear non-linear in the constraint o definition. The coefficient 1 before the

variable o is also a first order derivative, but the value of this coefficient does

not depend on the values of the variables and is therefore not denoted

between brackets. We say that the variable o appears linearly in the constraint

o definition. Next, to indicate that the constraint is infeasible, it is postfixed

by ****. Finally, the Hessian containing the second order derivative values is

presented, by switching the option constraint listing Hessian to on. The

Hessian is only presented for those variables that appear non-linear in the

constraint presented.

A typical question concerns the accuracy of these first and second order

derivative values. These derivative values are exact when the non-linear

expressions in the constraint only reference differentiable Aimms intrinsic

functions. The first order derivative values are approximated using

differencing, when there is a non-linear expression in the constraint

referencing an external function. The second order derivative values are not

available when a non-linear expression references an external function.

A COP row

Consider the artificial constraint:

Constraint element_constraint {

Definition : P(eV) = 7;

}

This constraint will lead to the following in the constraint listing.

---- element_constraint

Chapter 12. The gmp library 552

element_constraint .. [0 | 2 | not solved yet]

[1,4,7,10,13,..., 28 (size=10)][eV]

= 7 ****

name lower level upper

eV ’a01’ ’a01’ ’a10’

The main difference between this example and the previous examples is that

the presentation is an instantiated symbolic form of the constraints as the

presentation of the first and second order derivatives is meaningless in the

context of constraint programming.

The footer of a constraint listing

The footer of the constraint listing contains statistics regarding the size of

the problem to give an impression of the relative difficulty of the instance

presented to other instances with the same structure. It should be noted, that

the structure of an instance may have more influence on the difficulty to a

solver than sheer size. The structure of an instance depends on how it is

modeled.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

A SOLVE statement may produce this constraint listing, depending on the

option constraint listing, in the listing file.

See also:

� The Mathematical Program Inspector is an interactive alternative to

constraint listings and has additional facilities such as searching for an

irreducible infeasibility set for linear program.

� The routine GMP::Instance::Generate.

Chapter 12. The gmp library 553

GMP::Solution::ConstructMean

The procedure GMP::Solution::ConstructMean constructs the weighted average

of two solutions of a generated mathematical program by using the column

level values in both solutions. The first solution is replaced by the resulting

mean solution.

GMP::Solution::ConstructMean(

GMP, ! (input) a generated mathematical program

solution1, ! (input) a solution

solution2, ! (input) a solution

weight ! (input) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution1

An integer scalar reference to a solution.

solution2

An integer scalar reference to a solution.

weight

The weight used for solution1.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

The weight argument defines the weight used for solution1; for solution2 a

weight of 1 is used. The constructed mean solution is divided by

(weight+1), and placed in solution1.

Chapter 12. The gmp library 554

GMP::Solution::Copy

The procedure GMP::Solution::Copy copies one solution to another solution in

the solution repository of a generated mathematical program.

GMP::Solution::Copy(

GMP, ! (input) a generated mathematical program

fromSolution, ! (input) a solution

toSolution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

fromSolution

An integer scalar reference to a solution.

toSolution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate and GMP::Solution::Move.

Chapter 12. The gmp library 555

GMP::Solution::Count

The function GMP::Solution::Count returns the number of non-empty

solutions in the solution repository of a generated mathematical program.

GMP::Solution::Count(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The number of non-empty solutions stored in the solution repository.

Remarks:

In order to make the solution repository flexible, it may contain both

feasible and infeasible solutions; any solution algorithm, or hybrid

combinations thereof, may add or remove solutions.

See also:

The functions GMP::Instance::Generate and

GMP::Solution::GetSolutionsSet.

Chapter 12. The gmp library 556

GMP::Solution::Delete

The procedure GMP::Solution::Delete deletes a solution from the solution

repository of a generated mathematical program.

GMP::Solution::Delete(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate and GMP::Solution::DeleteAll.

Chapter 12. The gmp library 557

GMP::Solution::DeleteAll

The procedure GMP::Solution::DeleteAll empties the solution repository of a

generated mathematical program.

GMP::Solution::DeleteAll(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate and GMP::Solution::Delete.

Chapter 12. The gmp library 558

GMP::Solution::GetBestBound

The function GMP::Solution::GetBestBound returns the the best known bound

on a solution.

GMP::Solution::GetBestBound(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

In case of success, the best known bound. Otherwise it returns UNDF.

Remarks:

� This function has only meaning for a generated mathematical program

with model type MIP, MIQP or MIQCP.

�

See also:

The procedure GMP::Solution::GetObjective.

Chapter 12. The gmp library 559

GMP::Solution::GetColumnValue

The function GMP::Solution::GetColumnValue returns the level value or

reduced cost of a column in a solution in the solution repository of a

generated mathematical program.

GMP::Solution::GetColumnValue(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

column, ! (input) a scalar reference or column number

[valueType] ! (input/optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

valueType

A scalar value specifying the value type. If 0 (the default) then the

level value will be returned. If 1, the reduced cost.

Return value:

The level value or reduced cost of the column.

Remarks:

� To get the reduced cost of a column the option Always Store Marginals

should be switched on or the ReducedCost property of the

corresponding variable should be set.

� If the column has a unit then the scaled value is returned (without unit).

You can get the scale factor by using the function

GMP::Column::GetScale.

See also:

The routines GMP::Column::GetScale, GMP::Instance::Generate,

GMP::Solution::GetRowValue and GMP::Solution::SetColumnValue.

Chapter 12. The gmp library 560

GMP::Solution::GetDistance

The function GMP::Solution::GetDistance calculates the Euclidean distance

between the vectors of column level values in a first and second solution of a

generated mathematical program.

GMP::Solution::GetDistance(

GMP, ! (input) a generated mathematical program

solution1, ! (input) a solution

solution2 ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution1

An integer scalar reference to a solution.

solution2

An integer scalar reference to a solution.

Return value:

In case of success, the Euclidean distance between both solutions.

Otherwise it returns UNDF.

Remarks:

The level value of the objective column (if any) is not used.

Chapter 12. The gmp library 561

GMP::Solution::GetFirstOrderDerivative

The function GMP::Solution::GetFirstOrderDerivative returns the first order

derivative for a column in a row in a solution in the solution repository of a

generated mathematical program.

GMP::Solution::GetFirstOrderDerivative(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

row, ! (input) a scalar reference or row number

column ! (input) a scalar reference or column number

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

Return value:

The first order derivative of the column in the row.

Remarks:

If this function is called for multiple rows and columns, then Aimms will

calculate the first order derivatives more efficiently if this function is

called row wise instead of column wise. That is, it is better to call this

function for all columns in a certain row before calling it for the next row.

See also:

The routines GMP::Instance::Generate.

Chapter 12. The gmp library 562

GMP::Solution::GetIterationsUsed

The function GMP::Solution::GetIterationsUsed returns the number of

iterations used to create a solution in the solution repository of a generated

mathematical program.

GMP::Solution::GetIterationsUsed(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The number of iterations used to create a solution.

See also:

The procedures GMP::Instance::SetIterationLimit and

GMP::Solution::SetIterationCount.

Chapter 12. The gmp library 563

GMP::Solution::GetMemoryUsed

The function GMP::Solution::GetMemoryUsed returns the amount of (peak)

memory used to create a solution in the solution repository of a generated

mathematical program.

GMP::Solution::GetMemoryUsed(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The amount of megabytes used to create a solution.

See also:

The procedure GMP::Instance::SetMemoryLimit.

Chapter 12. The gmp library 564

GMP::Solution::GetNodesUsed

The function GMP::Solution::GetNodesUsed returns the number of nodes used

to create a solution in the solution repository of a generated mathematical

program.

GMP::Solution::GetNodesUsed(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The number of nodes used to create a solution.

Remarks:

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can be used inside a candidate, cut or heuristic callback.

See also:

The routines GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackCandidate and

GMP::Instance::SetCallbackHeuristic.

Chapter 12. The gmp library 565

GMP::Solution::GetObjective

The function GMP::Solution::GetObjective retrieves the objective function

value of a solution in the solution repository of a generated mathematical

program.

GMP::Solution::GetObjective(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The objective function value of the solution.

Remarks:

The objective function value is only available if the solution has been

retrieved from the solver, or if the function GMP::Solution::SetObjective

has been called before.

See also:

The routines GMP::Instance::Generate, GMP::Solution::GetProgramStatus,

GMP::Solution::GetSolverStatus and GMP::Solution::SetObjective.

Chapter 12. The gmp library 566

GMP::Solution::GetPenalizedObjective

The function GMP::Solution::GetPenalizedObjective calculates the penalized

objective for a generated mathematical program by using the level values of

the columns in a first solution and the shadow prices in a second solution as

the penalty multipliers for the rows. To avoid a very large value, the

penalized objective value is divided by the square of the number of rows.

GMP::Solution::GetPenalizedObjective(

GMP, ! (input) a generated mathematical program

solution1, ! (input) a solution

solution2, ! (input) a solution

[skipObj] ! (optional, default 0) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution1

An integer scalar reference to a solution.

solution2

An integer scalar reference to a solution.

skipObj

A scalar binary value to indicate whether the objective defining

constraint should be skipped (value 1) or not (value 0).

Return value:

In case of success, the penalized objective function value of the GMP

associated with both solutions. Otherwise it returns -1e80 for a

maximization problem, and 1e80 for a minimization problem (or a

feasibility problem).

Remarks:

Assume that x denotes the level values of the columns in solution1 and w

the shadow prices of the rows in solution2. Then the penalized objective

function P(x,w) is defined as

P(x,w) = f(x)+ dirval∗
∑m
i=1

(

wi ∗ viol(gi(x))
)

m2
,

where f(x) denotes the objective function value, m is the number of rows

and the function viol(gi(x)) equals the absolute amount by which the ith

row is violated at the point x. Here dirval is 1 in case of minization and

-1 in case of maximization.

Chapter 12. The gmp library 567

See also:

The procedure GMP::Solution::UpdatePenaltyWeights.

Chapter 12. The gmp library 568

GMP::Solution::GetProgramStatus

The function GMP::Solution::GetProgramStatus retrieves the program status of

a solution in the solution repository of a generated mathematical program.

GMP::Solution::GetProgramStatus(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

An element in the set AllSolutionStates.

Remarks:

The program status is only available if the solution has been retrieved

from the solver, or if the procedure GMP::Solution::SetProgramStatus has

been called before.

See also:

The routines GMP::Instance::Generate, GMP::Solution::GetSolverStatus,

GMP::Solution::GetObjective and GMP::Solution::SetProgramStatus.

Chapter 12. The gmp library 569

GMP::Solution::GetRowValue

The function GMP::Solution::GetRowValue returns the level value or shadow

price of a row in a solution in the solution repository of a generated

mathematical program.

GMP::Solution::GetRowValue(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

row, ! (input) a scalar reference or row number

[valueType] ! (input/optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..m− 1} where m is the number of rows in

the matrix.

valueType

A scalar value specifying the value type. If 0 (the default) then the

level value as calculated by the solver (or algorithm) will be returned.

If 1, the shadow price. If 2, the level value after evaluating the row

using the column values in the solution.

Return value:

The level value or shadow price of the row.

Remarks:

� To get the level value of a row, if valueType is set to 0, the option Always

Store Constraint Levels should be switched on or the Level property of

the corresponding constraint should be set.

� To get the shadow price of a row the option Always Store Marginals

should be switched on or the ShadowPrice property of the

corresponding constraint should be set.

� If the row has a unit then the scaled value is returned (without unit).

You can get the scale factor by using the function GMP::Row::GetScale.

See also:

The routines GMP::Instance::Generate, GMP::Row::GetScale,

GMP::Solution::GetColumnValue and GMP::Solution::SetRowValue.

Chapter 12. The gmp library 570

GMP::Solution::GetSolutionsSet

The function GMP::Solution::GetSolutionsSet returns the set of non-empty

solutions in the solution repository of a generated mathematical program.

GMP::Solution::GetSolutionsSet(

GMP ! (input) a generated mathematical program

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

Return value:

A subset of Integers.

See also:

The functions GMP::Instance::Generate and GMP::Solution::Count and the

section on Managing the solution repository Section 16.4 of the Language

Reference.

Chapter 12. The gmp library 571

GMP::Solution::GetSolverStatus

The function GMP::Solution::GetSolverStatus retrieves the solver status of a

solution in the solution repository of a generated mathematical program.

GMP::Solution::GetSolverStatus(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

An element in the set AllSolutionStates.

Remarks:

The solver status is only available if the solution has been retrieved from

the solver, or if the procedure GMP::Solution::SetSolverStatus has been

called before.

See also:

The routines GMP::Instance::Generate, GMP::Solution::GetProgramStatus

and GMP::Solution::GetObjective and GMP::Solution::SetSolverStatus.

Chapter 12. The gmp library 572

GMP::Solution::GetTimeUsed

The function GMP::Solution::GetTimeUsed returns the elapsed time (in 1/100th

seconds) used to create a solution in the solution repository of a generated

mathematical program.

GMP::Solution::GetTimeUsed(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The number of 1/100th seconds used to create a solution.

See also:

The procedure GMP::Instance::SetTimeLimit.

Chapter 12. The gmp library 573

GMP::Solution::IsDualDegenerated

The function GMP::Solution::IsDualDegenerated checks whether the solution

for a generated mathematical program, with model type LP, RMIP or QP, is

dual degenerated.

GMP::Solution::IsDualDegenerated(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The function returns 1 if the solution is dual degenerated, and 0

otherwise.

Remarks:

� A solution is dual degenerated if a non-basic variable has a zero

marginal, or if a non-equality constraint is non-basic and has a zero

marginal. In that case the primal solution is not unique.

� This function will always return 0 if the barrier algorithm (without

crossover) of Cplex was used to solve the problem because the barrier

algorithm (without crossover) of Cplex does not provide a basic

solution.

See also:

The routines GMP::Instance::Generate, GMP::Solution::IsPrimalDegenerated

and GMP::Solution::RetrieveFromSolverSession.

Chapter 12. The gmp library 574

GMP::Solution::IsInteger

The function GMP::Solution::IsInteger checks whether the solution for a

generated mathematical program is an integer solution.

GMP::Solution::IsInteger(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

[tolerance] ! (optional) a tolerance

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

tolerance

A numerical value. The default is 0.

Return value:

The function returns 1 if the solution is integer, and 0 otherwise.

Remarks:

If the mathematical program contains Special Ordered Sets (SOS) then this

function also checks whether the solution satisfies them. If one of the SOS

sets is violated then this function returns 0.

See also:

The routines GMP::Instance::Generate, GMP::Solution::RetrieveFromModel

and GMP::Solution::RetrieveFromSolverSession.

Chapter 12. The gmp library 575

GMP::Solution::IsPrimalDegenerated

The function GMP::Solution::IsPrimalDegenerated checks whether the solution

for a generated mathematical program, with model type LP, RMIP or QP, is

primal degenerated.

GMP::Solution::IsPrimalDegenerated(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The function returns 1 if the solution is primal degenerated, and 0

otherwise.

Remarks:

� A solution is primal degenerated if a basic variable is at a bound, or if a

non-equality constraint is basic and at a bound. In that case the dual

solution is not unique.

� This function will always return 0 if the barrier algorithm (without

crossover) of Cplex was used to solve the problem because the barrier

algorithm (without crossover) of Cplex does not provide a basic

solution.

See also:

The routines GMP::Instance::Generate, GMP::Solution::IsDualDegenerated

and GMP::Solution::RetrieveFromSolverSession.

Chapter 12. The gmp library 576

GMP::Solution::Move

The procedure GMP::Solution::Move moves one solution to another solution in

the solution repository of a generated mathematical program.

GMP::Solution::Move(

GMP, ! (input) a generated mathematical program

fromSolution, ! (input) a solution

toSolution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

fromSolution

An integer scalar reference to a solution.

toSolution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

After calling this procedure, the solution at position fromSolution in the

solution repository will be empty. This is not the case if you use the

procedure GMP::Solution::Copy.

See also:

The routines GMP::Instance::Generate and GMP::Solution::Copy.

Chapter 12. The gmp library 577

GMP::Solution::RandomlyGenerate

The procedure GMP::Solution::RandomlyGenerate generates random level

values in a solution for all columns in a generated mathematical program.

Each level value is sampled from the uniform distribution by using the lower

and upper bound of the column as parameters.

GMP::Solution::RandomlyGenerate(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

[maxVarBound], ! (optional) a scalar value

[startPoint], ! (optional) a solution

[perturbation] ! (optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

maxVarBound

The maximal variable bound. If a column has no upper bound then

the sampled level value will be smaller than the maximal variable

bound, and if a column has no lower bound then the sampled level

value will be greater than minus the maximal variable bound. The

default is 1000.

startPoint

An integer scalar reference to a solution representing a starting point.

If specified then the sampled level value of a column will be around

its level value in the starting point. By default no starting point is

used.

perturbation

Used in combination with argument startPoint. A value between 0 and

1 that represents the (relative) perturbation around the starting

pount. The default is 0.1.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure should be called after calling the function

GMP::Instance::CreatePresolved if it is used in combination with that

function. Otherwise the sampled level values might be outside the range

of the columns in the presolved model.

Chapter 12. The gmp library 578

� If argument startPoint is specified then for each column the sampled

value will be in the range

[x − p ∗ (x − lb), x + p ∗ (ub − x)]

where x denotes the level value of the column, lb and ub its lower and

upper bound respectively, and p the perturbation value.

� startPoint cannot be equal to solution.

See also:

The function GMP::Instance::CreatePresolved.

Chapter 12. The gmp library 579

GMP::Solution::RetrieveFromModel

The procedure GMP::Solution::RetrieveFromModel stores the solution from the

model identifiers into the solution repository of a generated mathematical

program.

GMP::Solution::RetrieveFromModel(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

A solution vector in the solution repository only contains solution data for

the generated columns and rows of the GMP. Hence, no solution data is

stored in the solution repository for columns and rows that were not

generated.

See also:

The routines GMP::Instance::Generate, GMP::Solution::SendToModel,

GMP::Solution::RetrieveFromSolverSession and

GMP::Solution::SendToSolverSession .

Chapter 12. The gmp library 580

GMP::Solution::RetrieveFromSolverSession

The procedure GMP::Solution::RetrieveFromSolverSession stores the solution

from a solver session into the solution repository of a generated

mathematical program.

GMP::Solution::RetrieveFromSolverSession(

solverSession, ! (input) a solver session

solution ! (input) a solution

)

Arguments:

solverSession

An element in the set AllSolverSessions.

solution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� For a solver session belonging to a GMP with type MIP, this procedure

retrieves the best integer solution found by so far (i.e., the incumbent),

except when this procedure is called inside a branch, cut, heuristic or

lazy constraint callback. In that case this procedure retrieves the LP

solution of the current node (branch, cut, heuristic) or an integer

feasible solution (lazy constraint).

� The function GMP::SolverSession::GetNodeObjective can be used to get

the objective value corresponding to the solution retrieved with this

procedure inside a branch, candidate, cut, heuristic or lazy constraint

callback.

� By using the procedure GMP::SolverSession::RejectIncumbent the

incumbent solution can be rejected inside a candidate callback.

See also:

The routines GMP::Instance::Generate, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic, GMP::Solution::SendToSolverSession,

GMP::Solution::RetrieveFromModel, GMP::Solution::SendToModel,

GMP::SolverSession::GetNodeObjective and

GMP::SolverSession::RejectIncumbent.

Chapter 12. The gmp library 581

GMP::Solution::SendToModel

The procedure GMP::Solution::SendToModel initializes the model identifiers

with the values in the solution from the solution repository of a generated

mathematical program.

GMP::Solution::SendToModel(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

A solution vector in the solution repository only contains solution data for

the generated columns and rows of the GMP. Hence, no solution data is

stored in the solution repository for columns and rows that were not

generated.

See also:

The routines GMP::Instance::Generate, GMP::Solution::RetrieveFromModel,

GMP::Solution::RetrieveFromSolverSession and

GMP::Solution::SendToSolverSession .

Chapter 12. The gmp library 582

GMP::Solution::SendToModelSelection

The procedure GMP::Solution::SendToModelSelection initializes a part of the

model identifiers with the values in the solution from the solution repository

of a generated mathematical program.

GMP::Solution::SendToModelSelection(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

Identifiers, ! (input) a set expression

Suffices ! (input) a set expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Identifiers

A subset of the predefined set AllVariablesConstraints, containing

the set of all variables and constraints for which the values have to be

changed into those of solution.

Suffices

A subset of the predefined set AllSuffixNames, containing the set of

suffixes for which the values of Identifiers have to be changed into

those of solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the subset Identifiers contains a variable or constraint that is not part

of the generated mathematical program, then that variable or constaint

will be ingnored and its data will not change.

� If the subset Suffices contains a suffix other than ’Level’, ’Basic’,

’ReducedCost’, ’ShadowPrice’, ’SmallestCoefficient’, ’NominalCoefficient’,

’LargestCoefficient’, ’SmallestValue’, ’LargestValue’,

’SmallestRightHandSide’, ’NominalRightHandSide’,

’LargestRightHandSide’, ’SmallestShadowPrice’ and

’LargestShadowPrice’, then that suffix will be ingnored and its data will

not change.

� A solution vector in the solution repository only contains solution data

for the generated columns and rows of the GMP. Hence, no solution

data is stored in the solution repository for columns and rows that were

not generated.

Chapter 12. The gmp library 583

See also:

The routines GMP::Instance::Generate, GMP::Solution::RetrieveFromModel,

GMP::Solution::RetrieveFromSolverSession ,

GMP::Solution::SendToSolverSession and GMP::Solution::SendToModel

Chapter 12. The gmp library 584

GMP::Solution::SendToSolverSession

The procedure GMP::Solution::SendToSolverSession initializes a solver session

with the values in the solution from the solution repository of a generated

mathematical program.

GMP::Solution::SendToSolverSession(

solverSession, ! (input) a solver session

solution ! (input) a solution

)

Arguments:

solverSession

An element in the set AllSolverSessions.

solution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate,

GMP::Solution::RetrieveFromSolverSession ,

GMP::Solution::RetrieveFromModel and GMP::Solution::SendToModel.

Chapter 12. The gmp library 585

GMP::Solution::SetColumnValue

The procedure GMP::Solution::SetColumnValue sets the level value, reduced

cost, hint value or hint priority of a column in a solution in the solution

repository of a generated mathematical program.

Hint values and hint priorities can be used as follows: If you know that a

variable is likely to take a particular value in high quality solutions of a MIP

model, you can provide that value as a hint. You can also (optionally) provide

a hint priority which resembles your level of confidence in a hint.

GMP::Solution::SetColumnValue(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

column, ! (input) a scalar reference or column number

value, ! (input) a scalar value

[valueType] ! (input/optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

column

A scalar reference to an existing column in the matrix or the number

of that column in the range {0..n− 1} where n is the number of

columns in the matrix.

value

The value to be assigned to the column.

valueType

A scalar value specifying the value type. If 0 (the default) then the

level value will be set. If 1, the reduced cost. If 2, the hint value, and if

3 the hint priority.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the column has a unit then the scaled value should be passed. You

can get the scale factor by using the function GMP::Column::GetScale.

� Hint values and priorities are only supported by Gurobi 6.5 or higher.

Chapter 12. The gmp library 586

Examples:

Assume we have a GMP for which we have two solutions in the solution

repository at positions 1 and 2. Our goal is to add up the level values of

each column in the solutions, and place the result in the solution at

position 3 in the solution repository. This can be done in a generic way

using the function GMP::Instance::GetColumnNumbers as follows. Here

ColumnNrs is a subset of Integers with index c.

! Get the column numbers of all variables in myGMP.

ColumnNrs := GMP::Instance::GetColumnNumbers(myGMP, AllVariables);

for (c) do

! Get level value of column c in solution 1.

val1 := GMP::Solution::GetColumnValue(myGMP, 1, c);

! Get level value of column c in solution 2.

val2 := GMP::Solution::GetColumnValue(myGMP, 2, c);

! Assign the sum to column c in solution 3.

GMP::Solution::SetColumnValue(myGMP, 3, c, val1 + val2);

endfor;

! Send solution 3 to the (symbolic) model identifiers.

GMP::Solution::SendToModel(myGMP, 3);

In the next example, we use the current level values of the variable

JobSchedule as variable hints:

myGMP := GMP::Instance::Generate(FlowShopModel);

for (j,s) do

GMP::Solution::SetColumnValue(myGMP, 1, JobSchedule(j,s),

JobSchedule(j,s).level, 2);

GMP::Solution::SetColumnValue(myGMP, 1, JobSchedule(j,s), 10, 3);

endfor;

GMP::Instance::Solve(myGMP);

In this example the hint priority for JobSchedule is set to 10.

See also:

The routines GMP::Column::GetScale, GMP::Instance::Generate,

GMP::Instance::GetColumnNumbers, GMP::Solution::GetColumnValue,

GMP::Solution::SendToModel and GMP::Solution::SetRowValue.

Chapter 12. The gmp library 587

GMP::Solution::SetIterationCount

The procedure GMP::Solution::SetIterationCount sets the iteration count of a

solution in the solution repository of a generated mathematical program.

GMP::Solution::SetIterationCount(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

iterationCount ! (input) iteration count

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

iterationCount

An integer scalar.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate,

GMP::SolverSession::GetIterationsUsed and

GMP::Solution::SetProgramStatus.

Chapter 12. The gmp library 588

GMP::Solution::SetMIPStartFlag

The procedure GMP::Solution::SetMIPStartFlag can be used to mark a solution

in the solution repository of a generated mathematical program such that it

should be used as a MIP start during the a MIP solve (or a MIQP or MIQCP

solve).

GMP::Solution::SetMIPStartFlag(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

flag, ! (input) a scalar value

[effortLevel] ! (optional, default 0) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

flag

A scalar binary value to indicate whether the solution should be

marked (value 1) or unmarked (value 0) as MIP start.

effortLevel

A scalar value to specify the level of effort that the solver should

apply to the solution when using it as MIP start solution. The default

value of 0 indicates that the solver should decide; the other values are

explained below.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The levels of effort and their effect as specified by argument effortLevel

are:

– Level 0: The solver decides.

– Level 1: The solver checks feasibility of the corresponding MIP

start.

– Level 2: The solver solves the fixed LP problem specified by the

MIP start.

– Level 3: The solver solves a subMIP.

– Level 4: The solver attempts to repair the MIP start if it is

infeasible.

– Level 5: A complete solution is injected without the solver

performing the usual checks. If the solution defined by the MIP

start is infeasible, behavior is undefined.

Chapter 12. The gmp library 589

� Level 5 is only supported by Cplex 12.7 or higher (for other solver

versions it is translated to 0).

See also:

The routines GMP::Instance::Generate.

Chapter 12. The gmp library 590

GMP::Solution::SetObjective

The procedure GMP::Solution::SetObjective sets the objective function value

of a solution in the solution repository of a generated mathematical program.

GMP::Solution::SetObjective(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

value ! (input) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

value

A scalar value to be assigned.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The functions GMP::Instance::Generate, GMP::Solution::GetObjective and

GMP::Solution::SendToModel.

Chapter 12. The gmp library 591

GMP::Solution::SetProgramStatus

The procedure GMP::Solution::SetProgramStatus sets the program status of a

solution in the solution repository of a generated mathematical program.

GMP::Solution::SetProgramStatus(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

status ! (input) a status

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

status

An element in the set AllSolutionStates.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate, GMP::Solution::GetProgramStatus

and GMP::Solution::SetSolverStatus.

Chapter 12. The gmp library 592

GMP::Solution::SetRowValue

The procedure GMP::Solution::SetRowValue sets the level value or shadow

price of a row in a solution in the solution repository of a generated

mathematical program.

GMP::Solution::SetRowValue(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

row, ! (input) a scalar reference or row number

value, ! (input) a scalar value

[valueType] ! (input/optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

row

A scalar reference to an existing row in the matrix or the number of

that row in the range {0..n− 1} where n is the number of rows in the

matrix.

value

The value to be assigned to the row.

valueType

A scalar value specifying the value type. If 0 (the default) then the

level value will be set. If 1, the shadow price.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

If the row has a unit then the scaled value should be passed. You can get

the scale factor by using the function GMP::Row::GetScale.

Examples:

Assume we have a GMP for which we want to multiply all shadow prices in

a solution by some value, say 10. This can be done in a generic way using

the function GMP::Instance::GetRowNumbers as follows. Here RowNrs is a

subset of Integers with index r.

! Get the row numbers of all constraints in myGMP.

RowNrs := GMP::Instance::GetRowNumbers(myGMP, AllConstraints);

Chapter 12. The gmp library 593

for (r) do

! Get shadow price of row r in solution 1.

val := GMP::Solution::GetRowValue(myGMP, 1, r, valueType : 1);

! Assign new value for shadow price to row r in solution 1.

GMP::Solution::SetRowValue(myGMP, 1, r, 10 * val, valueType : 1);

endfor;

! Send solution to the (symbolic) model identifiers.

GMP::Solution::SendToModel(myGMP, 1);

Note: the shadow prices will only be stored in the data structures of the

constraints if the ShadowPrice property of the variables is set, or if the

option Always Store Marginals is set.

See also:

The routines GMP::Instance::Generate, GMP::Instance::GetRowNumbers,

GMP::Row::GetScale, GMP::Solution::GetRowValue,

GMP::Solution::SendToModel and GMP::Solution::SetColumnValue.

Chapter 12. The gmp library 594

GMP::Solution::SetSolverStatus

The procedure GMP::Solution::SetSolverStatus sets the solver status of a

solution in the solution repository of a generated mathematical program.

GMP::Solution::SetSolverStatus(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

status ! (input) a status

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

status

An element in the set AllSolutionStates.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routines GMP::Instance::Generate, GMP::Solution::GetSolverStatus and

GMP::Solution::SetProgramStatus.

Chapter 12. The gmp library 595

GMP::Solution::UpdatePenaltyWeights

The procedure GMP::Solution::UpdatePenaltyWeights updates the penalty

weights which are stored as shadow prices in a first solution of a generated

mathematical program. The shadow price of a row in this solution is

compared with the shadow price of the same row in the second solution, and

replaced by the maximum of both shadow prices.

GMP::Solution::UpdatePenaltyWeights(

GMP, ! (input) a generated mathematical program

solution1, ! (input) a solution

solution2, ! (input) a solution

[minValue] ! (optional) a scalar value

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

solution1

An integer scalar reference to a solution.

solution2

An integer scalar reference to a solution.

minValue

The minimum value for each shadow price. The default is 0.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

If for a certain row both the shadow prices in solution1 and solution2 are

smaller than minValue, the new value assigned to the shadow price in

solution1 will be minValue.

See also:

The function GMP::Solution::GetPenalizedObjective.

Chapter 12. The gmp library 596

12.12 GMP::Solver Procedures and Functions

Aimms supports the following procedures and functions for retrieving solver

related information, and managing solver environments:

� GMP::Solver::FreeEnvironment

� GMP::Solver::GetAsynchronousSessionsLimit

� GMP::Solver::InitializeEnvironment

Chapter 12. The gmp library 597

GMP::Solver::FreeEnvironment

The procedure GMP::Solver::FreeEnvironment can be used to free a solver

environment. By using the procedure GMP::Solver::InitializeEnvironment you

can initialize a solver environment; by using this procedure you can free it

again.

Normally AIMMS initializes solver environments at startup and frees them

when it is closed. The procodures GMP::Solver::InitializeEnvironment and

GMP::Solver::FreeEnvironment can be used to initialize and free a solver

environment multiple times inside one AIMMS sesstion. Both procedures are

typically used for solvers running on a remote server or a cloud system.

GMP::Solver::FreeEnvironment(

solver ! (input) a solver

)

Arguments:

solver

An element in the set AllSolvers.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure can be used in combination with a normal solve

statement.

� This procedure is only supported by Gurobi 7.0 or higher.

� This procedure cannot be called inside a solver callback procedure.

� This procedure cannot be called if one of the solver sessions is

asynchronous executing.

Examples:

GMP::Solver::InitializeEnvironment(’Gurobi 7.5’);

solve MP1;

GMP::Solver::FreeEnvironment(’Gurobi 7.5’);

GMP::Solver::InitializeEnvironment(’Gurobi 7.5’);

mgGMP := GMP::Instance::Generate(MP2);

GMP::Instance::Solve(myGMP);

GMP::Solver::FreeEnvironment(’Gurobi 7.5’);

Chapter 12. The gmp library 598

See also:

The procedure GMP::Solver::InitializeEnvironment .

Chapter 12. The gmp library 599

GMP::Solver::GetAsynchronousSessionsLimit

The function GMP::Solver::GetAsynchronousSessionsLimit returns the

maximum number of asynchronous solver sessions that can run simultaneous

for a certain solver. This number depends on the Aimms license.

GMP::Solver::GetAsynchronousSessionsLimit(

solver, ! (input) a solver

[cores], ! (input, optional) a binary scalar value

[GMP] ! (input, optional) a generated mathematical program

)

Arguments:

solver

An element in the set AllSolvers.

cores

A binary scalar indicating whether the this function should take into

account the number of cores on the machine. The default is 0 (cores

are not used).

GMP

An element in AllGeneratedMathematicalPrograms. By default this

argument is empty.

Return value:

The maximal number of asynchronous solver sessions that can run

simultaneous using solver, or any other version of the same solver. If the

cores argument equals 1 then this function returns the number of cores

on the machine if that number is smaller than the maximal number of

asynchronous solver sessions. If the GMP argument is used then this

function will return 0 if the specified generated mathematical program

cannot be used for asynchronous executing (e.g., if it contains a constraint

with a nonlinear expression referencing an external function).

Remarks:

� The function returns 0 if the solver cannot be found or is not licensed.

It also returns 0 if the solver cannot be used to do an asynchronous

solve (e.g., Baron, Cbc, Odh-Cplex).

� The function returns 1 if the solver is not thread-safe (e.g., Ipopt, Snopt.

� To count the number of asynchronous solver sessions currently running

with a solver, Aimms checks all solver versions available. For example, if

one asynchronous solver session is running with Cplex 12.9 and

another simultaneous with Cplex 12.8 then solver Cplex is running two

asynchronous solver sessions. The value returned by this function

limits all solver versions together (even though the argument passed to

the function refers to a particular solver version).

Chapter 12. The gmp library 600

Examples:

Assume that ’MaxSes’ is a parameter then the following statement returns

the maximal number of asynchronous solver sessions for Cplex:

MaxSes := GMP::Solver::GetAsynchronousSessionsLimit(’CPLEX 12.9’);

The value MaxSes is the limit on asynchronous solver sessions that can

run at the same time with Cplex 12.9 plus Cplex 12.8 plus Cplex 12.7, etc.

See also:

The routine GMP::SolverSession::AsynchronousExecute .

Chapter 12. The gmp library 601

GMP::Solver::InitializeEnvironment

The procedure GMP::Solver::InitializeEnvironment can be used to initialize a

solver environment. By using the procedure GMP::Solver::FreeEnvironment you

can free a solver environment; by using this procedure you can initialize it

again.

Normally AIMMS initializes solver environments at startup and frees them

when it is closed. The procodures GMP::Solver::InitializeEnvironment and

GMP::Solver::FreeEnvironment can be used to initialize and free a solver

environment multiple times inside one AIMMS sesstion. Both procedures are

typically used for solvers running on a remote server or a cloud system.

GMP::Solver::InitializeEnvironment(

solver, ! (input) a solver

[computeserver], ! (input, optional) a string expression

[port], ! (input, optional) integer, default -1

[password], ! (input, optional) a string expression

[priority], ! (input, optional) integer, default 0

[timeout], ! (input, optional) integer, default -1

[logfile] ! (input, optional) a string expression

)

Arguments:

solver

An element in the set AllSolvers.

computeserver

A string containing a comma-separated list of compute servers. You

can refer to compute server machines using their names or their IP

addresses.

port

The port number used to connect to the compute server. Use the

default value of -1, which indicates that the default port should be

used, unless your server administrator has changed the

recommended port settings.

password

The password for gaining access to the specified compute servers. Do

not specify this argument if no password is required.

priority

The priority of the job. Priorities must be between -100 and 100, with

a default value of 0. Higher priority jobs are chosen from the server

job queue before lower priority jobs.

timeout

Job timeout (in seconds). If the job does not reach the front of the

queue before the specified timeout, the call will exit with an error. Use

Chapter 12. The gmp library 602

the default value of -1 to indicate that the call should never timeout.

logfile

The name of the log file for this environment. If this argument is not

specified then no log file will be created for this environment.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the solver environment is already initialized when this procedure is

called, the solver environment will be freed first.

� This procedure can be used in combination with a normal solve

statement.

� This procedure is only supported by Gurobi 7.0 or higher.

� If the computeserver argument is not specified then the compute server

must be specified via a Gurobi client license key file.

� The optional arguments port, password, priority, timeout and logfile are

only used if the optional argument computeserver is specified.

� A job with priority 100 runs immediately, bypassing the job queue and

ignoring the job limit on the server. You should exercise caution with

priority 100 jobs, since they can severely overload a server, which can

cause jobs to fail, and in extreme cases can cause the server to crash.

� This procedure cannot be called inside a solver callback procedure.

� This procedure cannot be called if one of the solver sessions is

asynchronous executing.

� Technical note: if the optional argument computeserver is specified then

the Gurobi function GRBloadclientenv is called underneath, otherwise

the Gurobi function GRBloadenv (if the AIMMS license features the Gurobi

Link-only).

Examples:

GMP::Solver::InitializeEnvironment(’Gurobi 7.5’);

solve MP1;

GMP::Solver::FreeEnvironment(’Gurobi 7.5’);

GMP::Solver::InitializeEnvironment(’Gurobi 7.5’, computeserver: "my.server.com",

priority: 10);

mgGMP := GMP::Instance::Generate(MP2);

GMP::Instance::Solve(myGMP);

GMP::Solver::FreeEnvironment(’Gurobi 7.5’);

See also:

The procedure GMP::Solver::FreeEnvironment.

Chapter 12. The gmp library 603

12.13 GMP::SolverSession Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing solver sessions associated with a generated mathematical program

instance:

� GMP::SolverSession::AddBendersFeasibilityCut

� GMP::SolverSession::AddBendersOptimalityCut

� GMP::SolverSession::AddLinearization

� GMP::SolverSession::AsynchronousExecute

� GMP::SolverSession::CreateProgressCategory

� GMP::SolverSession::Execute

� GMP::SolverSession::ExecutionStatus

� GMP::SolverSession::GenerateBinaryEliminationRow

� GMP::SolverSession::GenerateBranchLowerBound

� GMP::SolverSession::GenerateBranchRow

� GMP::SolverSession::GenerateBranchUpperBound

� GMP::SolverSession::GenerateCut

� GMP::SolverSession::GetBestBound

� GMP::SolverSession::GetCallbackInterruptStatus

� GMP::SolverSession::GetCandidateObjective

� GMP::SolverSession::GetInstance

� GMP::SolverSession::GetIterationsUsed

� GMP::SolverSession::GetMemoryUsed

� GMP::SolverSession::GetNodeNumber

� GMP::SolverSession::GetNodeObjective

� GMP::SolverSession::GetNodesLeft

� GMP::SolverSession::GetNodesUsed

� GMP::SolverSession::GetNumberOfBranchNodes

� GMP::SolverSession::GetObjective

� GMP::SolverSession::GetOptionValue

� GMP::SolverSession::GetProgramStatus

� GMP::SolverSession::GetSolver

� GMP::SolverSession::GetSolverStatus

� GMP::SolverSession::GetTimeUsed

� GMP::SolverSession::Interrupt

� GMP::SolverSession::RejectIncumbent

� GMP::SolverSession::SetObjective

� GMP::SolverSession::SetOptionValue

� GMP::SolverSession::Transfer

� GMP::SolverSession::WaitForCompletion

� GMP::SolverSession::WaitForSingleCompletion

Chapter 12. The gmp library 604

GMP::SolverSession::AddBendersFeasibilityCut

The procedure GMP::SolverSession::AddBendersFeasibilityCut generates a

feasibility cut for a Benders’ master problem using the solution of a Benders’

subproblem (or the corresponding feasibility problem). The Benders’ master

problem must be a MIP problem.

The cut is typically added as a lazy constraint in a callback during the MIP

branch & cut search. This procedure is typically used in a Benders’

decomposition algorithm in which a single master MIP problem is solved.

GMP::SolverSession::AddBendersFeasibilityCut(

solverSession, ! (input) a solver session

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

[local], ! (optional, default 0) a scalar binary expression

[purgeable], ! (optional, default 0) a scalar binary expression

[tighten] ! (optional, default 0) a scalar binary expression

)

Arguments:

solverSession

An element in the set AllSolverSessions representing a solver session

for the Benders’ master problem.

GMP

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ subproblem.

solution

An integer scalar reference to a solution of GMP2.

local

A scalar binary value to indicate whether the cut is valid for the local

problem (i.e. the problem corresponding to the current node in the

solution process and all its descendant nodes) only (value 1) or for

the global problem (value 0).

purgeable

A scalar binary value to indicate whether the solver is allowed to

purge the cut if it deems it ineffective. If the value is 1, then it is

allowed.

tighten

A scalar binary value to indicate whether the feasibility cut should be

tightened. If the value is 1, tightening is attempted.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Chapter 12. The gmp library 605

Remarks:

� The generated mathematical program corresponding to the

solverSession should have been created using the function

GMP::Benders::CreateMasterProblem.

� The GMP should have been created using the function

GMP::Benders::CreateSubProblem or the function

GMP::Instance::CreateFeasibility.

� If the function GMP::Benders::CreateSubProblem was used to create a GMP

representing the dual of the Benders’ subproblem then this GMP should

be used as argument GMP2. If it represents the primal of the Benders’

subproblem then first the feasibility problem should be created which

then should be used as argument GMP2.

� The solution of the GMP is used to generate an optimality cut for the

Benders’ master problem (represented by solverSession).

� See Section 21.3 of the Language Reference for more information about

the Benders’ decomposition algorithm in which a single master MIP

problem is solved.

� A feasibility cut aTx ≥ b can be tightened to 1Tx ≥ 1 if x is a vector of

binary variables and ai ≥ b > 0 for all i.

Examples:

The way GMP::Benders::AddFeasibilityCut is called depends on whether

the primal or dual of the Benders’ subproblem was generated. In the

example below we use the dual. In that case an unbounded extreme ray is

used to create a feasibility cut. In this example we solve only one Benders’

master problem (which is a MIP). During the solve, whenever the solver

finds an integer (incumbent) solution we want to run a callback for lazy

constraints. Therefore we install a callback for it.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

useDual : 1, normalizationType : 0);

GMP::Instance::SetCallbackAddLazyConstraint(gmpM, ’LazyCallback’);

! Switch on solver option for calculating unbounded extreme ray.

GMP::Instance::SetOptionValue(gmpS, ’unbounded ray’, 1);

GMP::Instance::Solve(gmpM);

The callback procedure LazyCallback has one argument, namely

ThisSession which is an element parameter with range AllSolverSessions.

Inside the callback procedure we solve the Benders’ subproblem. We

assume that the Benders’ subproblem is always unbounded. The program

status of the subproblem is stored in the element parameter ProgramStatus

Chapter 12. The gmp library 606

with range AllSolutionStates. Note that the subproblem is updated before

it is solved.

! Get MIP incumbent solution.

GMP::Solution::RetrieveFromSolverSession(ThisSession, 1);

GMP::Solution::SendToModel(gmpM, 1);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Unbounded’) then

GMP::SolverSession::AddBendersFeasibilityCut(ThisSession, gmpF, 1);

endif;

In this example we skipped the check for optimality of the Benders’

decomposition algorithm.

See also:

The routines GMP::Benders::CreateMasterProblem,

GMP::Benders::CreateSubProblem, GMP::Benders::AddFeasibilityCut,

GMP::Benders::AddOptimalityCut, GMP::Instance::CreateFeasibility and

GMP::SolverSession::AddBendersOptimalityCut.

Chapter 12. The gmp library 607

GMP::SolverSession::AddBendersOptimalityCut

The procedure GMP::SolverSession::AddBendersOptimalityCut generates an

optimality cut for a Benders’ master problem using the (dual) solution of a

Benders’ subproblem. The Benders’ master problem must be a MIP problem.

The cut is typically added as a lazy constraint in a callback during the MIP

branch & cut search. This procedure is typically used in a Benders’

decomposition algorithm in which a single master MIP problem is solved.

GMP::SolverSession::AddBendersOptimalityCut(

solverSession, ! (input) a solver session

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

[local], ! (optional, default 0) a scalar binary expression

[purgeable] ! (optional, default 0) a scalar binary expression

)

Arguments:

solverSession

An element in the set AllSolverSessions representing a solver session

for the Benders’ master problem.

GMP

An element in the set AllGeneratedMathematicalPrograms representing

a Benders’ subproblem.

solution

An integer scalar reference to a solution of GMP2.

local

A scalar binary value to indicate whether the cut is valid for the local

problem (i.e. the problem corresponding to the current node in the

solution process and all its descendant nodes) only (value 1) or for

the global problem (value 0).

purgeable

A scalar binary value to indicate whether the solver is allowed to

purge the cut if it deems it ineffective. If the value is 1, then it is

allowed.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The generated mathematical program corresponding to the

solverSession should have been created using the function

GMP::Benders::CreateMasterProblem.

Chapter 12. The gmp library 608

� The GMP should have been created using the function

GMP::Benders::CreateSubProblem.

� The solution of the Benders’ subproblem (represented by GMP) is used

to generate an optimality cut for the Benders’ master problem

(represented by solverSession). More precise, the shadow prices of the

constraints and the reduced costs of the variables in the Benders’

subproblem are used.

� See Section 21.3 of the Language Reference for more information about

the Benders’ decomposition algorithm in which a single master MIP

problem is solved.

Examples:

In the example below we solve only one Benders’ master problem (which is

a MIP). During the solve, whenever the solver finds an integer (incumbent)

solution we want to run a callback for lazy constraints. Therefore we

install a callback for it.

myGMP := GMP::Instance::Generated(MP);

gmpM := GMP::Benders::CreateMasterProblem(myGMP, AllIntegerVariables,

’BendersMasterProblem’, 0, 0);

gmpS := GMP::Benders::CreateSubProblem(myGMP, masterGMP, ’BendersSubProblem’,

0, 0);

GMP::Instance::SetCallbackAddLazyConstraint(gmpM, ’LazyCallback’);

GMP::Instance::Solve(gmpM);

The callback procedure LazyCallback has one argument, namely

ThisSession which is an element parameter with range AllSolverSessions.

Inside the callback procedure we solve the Benders’ subproblem. We

assume that the Benders’ subproblem is always feasible. The program

status of the subproblem is stored in the element parameter ProgramStatus

with range AllSolutionStates. Note that the subproblem is updated before

it is solved.

! Get MIP incumbent solution.

GMP::Solution::RetrieveFromSolverSession(ThisSession, 1);

GMP::Solution::SendToModel(gmpM, 1);

GMP::Benders::UpdateSubProblem(gmpS, gmpM, 1, round : 1);

GMP::Instance::Solve(gmpS);

ProgramStatus := GMP::Solution::GetProgramStatus(gmpS, 1) ;

if (ProgramStatus = ’Optimal’) then

GMP::SolverSession::AddBendersOptimalityCut(ThisSession, gmpF, 1);

endif;

In this example we skipped the check for optimality of the Benders’

decomposition algorithm.

Chapter 12. The gmp library 609

See also:

The routines GMP::Benders::CreateMasterProblem,

GMP::Benders::CreateSubProblem, GMP::Benders::AddFeasibilityCut,

GMP::Benders::AddOptimalityCut and

GMP::SolverSession::AddBendersFeasibilityCut.

Chapter 12. The gmp library 610

GMP::SolverSession::AddLinearization

The procedure GMP::SolverSession::AddLinearization adds a linearization row

to a solver session with respect to a solution (column level values and row

marginals) of a generated mathematical program for each row in a set of

nonlinear constraints of that generated mathematical program.

GMP::SolverSession::AddLinearization(

solverSession, ! (input) a solver session

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

constraintSet, ! (input) a set of nonlinear constraints

[jacTol], ! (optional) the Jacobian tolerance

[local], ! (optional, default 0) a scalar value

[purgeable] ! (optional, default 0) a scalar binary expression

)

Arguments:

solverSession

An element in the set AllSolverSessions.

GMP

An element in AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution in the solution repository of

GMP.

constraintSet

A subset of AllNonLinearConstraints.

jacTol

The Jacobian tolerance; if the Jacobian value (in absolute sense) of a

column in a nonlinear row is smaller than this value, the column will

not be added to the linearization of that row. The default is 1e-5.

local

A scalar binary value to indicate whether the linearization is valid for

the local problem (i.e. the problem corresponding to the current node

in the solution process and all its descendant nodes) only (value 1) or

for the global problem (value 0).

purgeable

A scalar binary value to indicate whether the solver is allowed to

purge the cut if it deems it ineffective. If the value is 1, then it is

allowed.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Chapter 12. The gmp library 611

Remarks:

� This procedure fails if one of the constraints is ranged.

� This procedure can only be called from within a CallbackAddCut or

CallbackAddLazyConstraint callback procedure.

� A CallbackAddCut callback procedure will only be called when solving

mixed integer programs with Cplex or Gurobi. In case of Gurobi the

cuts are always local even if argument local has value 0.

� A CallbackAddLazyConstraint callback procedure will only be called

when solving mixed integer programs with Cplex or Gurobi.

� Argument purgeable can only be used with Cplex. If the cut is local then

the cut will not be purgeable even if argument purgeable has value 1.

� This procedure will fail if GMP contains a column that is not part of the

generated mathematical program corresponding to solverSession. A

column that is part of GMP but not of the generated mathematical

program corresponding to solverSession will be ignored, i.e., no

coefficient for that column will be added to the linearizations.

� The formula for the linearization of a scalar nonlinear inequality

g(x,y) ≤ bj around the point (x,y) = (x0, y0) is as follows.

g(x0, y0)+▽g(x0, y0)T
[

x − x0

y −y0

]

≤ bj

See also:

The routines GMP::Linearization::Add, GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint and

GMP::SolverSession::GenerateCut.

Chapter 12. The gmp library 612

GMP::SolverSession::AsynchronousExecute

The procedure GMP::SolverSession::AsynchronousExecute invokes the solution

algorithm to asynchronous solve a generated mathematical program by using

a solver session.

GMP::SolverSession::AsynchronousExecute(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure will not copy the initial solution into the solver, or copy

the final solution back into solution repository or model identifiers.

When you use this function you always have to explicitly call functions

from the GMP::Solution namespace to accomplish these tasks.

� The following solvers are thread-safe and can be used for solving

multiple mathematical programs in parallel using the same solver:

Cplex, Gurobi, Xa, Conopt, and Knitro.

� The following solvers are not thread-safe but the Aimms-solver interface

is thread safe and therefore they can be used in parallel with another

solver: Ipopt and Snopt. For example, Snopt 7.1 can be used in parallel

with Ipopt but it cannot be used in parallel with Snopt 7.1.

� The procedure GMP::SolverSession::AsynchronousExecute cannot be used

by the following solvers: Aoa, Baron, Cbc, Odh-Cplex, and Path.

� Calling GMP::SolverSession::AsynchronousExecute inside a callback

procedure is not allowed.

� The procedure GMP::SolverSession::AsynchronousExecute cannot be used

if an external function is used in a constraint.

� The procedures GMP::SolverSession::WaitForCompletion and

GMP::SolverSession::WaitForSingleCompletion can be used to let Aimms

wait until one or more asynchronous executing solver sessions are

finished.

� Normal solve statements will be ignored during an asynchronous

execution of a solver session.

� Sensitivity ranges will not be calculated during an asynchronous solve.

� This procedure does not create a listing file but you can use the

procedure GMP::Solution::ConstraintListing for that.

Chapter 12. The gmp library 613

See also:

The routines GMP::Instance::Copy, GMP::SolverSession::Execute,

GMP::SolverSession::ExecutionStatus GMP::SolverSession::Interrupt,

GMP::SolverSession::WaitForCompletion,

GMP::SolverSession::WaitForSingleCompletion,

GMP::Solution::ConstraintListing and

GMP::Solver::GetAsynchronousSessionsLimit.

Chapter 12. The gmp library 614

GMP::SolverSession::CreateProgressCategory

The function GMP::SolverSession::CreateProgressCategory creates a new

progress category for a solver session. This progress category can be used to

display solver (session) related information in the Progress Window.

There are three levels of progress categories for solver information. By

default all solver progress will be displayed in the general Aimms progress

category for solver progress. If a progress category was created for the GMP

with procedure GMP::Instance::CreateProgressCategory, then all solver

progress related to that GMP will by default be displayed in the solver

progress category of the GMP. For displaying solver session progress in a

separated category the function GMP::SolverSession::CreateProgressCategory

can be used.

GMP::SolverSession::CreateProgressCategory(

solverSession, ! (input) a solver session

[Name], ! (optional) a string expression

[Size] ! (optional) an integer expession

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Name

A string that holds the name of the progress category.

Size

The number of lines in the progress category. The default is 0

meaning that the size of the progress window will be automatically

adjusted to the number of progress lines used by the solver.

Return value:

The function returns an element in the set AllProgressCategories.

Remarks:

� If the Name argument is not specified then the name of the solver

session will be used to name the element in the set

AllProgressCategories.

� The information displayed in the solver session progress window can be

controlled by using the procedures GMP::ProgressWindow::DisplayLine

and GMP::ProgressWindow::FreezeLine.

� A progress category created before for the solver session will be deleted.

� The procedure GMP::ProgressWindow::Transfer can be used to share a

progress category among several solver sessions.

Chapter 12. The gmp library 615

See also:

The routines GMP::ProgressWindow::CreateProgressCategory,

GMP::ProgressWindow::DeleteCategory, GMP::ProgressWindow::DisplayLine,

GMP::ProgressWindow::FreezeLine, GMP::ProgressWindow::UnfreezeLine and

GMP::ProgressWindow::Transfer.

Chapter 12. The gmp library 616

GMP::SolverSession::Execute

The procedure GMP::SolverSession::Execute invokes the solution algorithm to

solve the mathematical program for which it had been generated.

GMP::SolverSession::Execute(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure will not copy the initial solution into the solver, or copy

the final solution back into solution repository or model identifiers.

When you use this function you always have to explicitly call functions

from the GMP::Solution namespace to accomplish these tasks.

� This procedure does not create a listing file but you can use the

procedure GMP::Solution::ConstraintListing for that.

See also:

The routines GMP::Instance::CreateSolverSession, GMP::Instance::Solve,

GMP::SolverSession::AsynchronousExecute and

GMP::Solution::ConstraintListing.

Chapter 12. The gmp library 617

GMP::SolverSession::ExecutionStatus

The function GMP::SolverSession::ExecutionStatus returns the execution

status of a solver session.

GMP::SolverSession::ExecutionStatus(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

An element in the set AllExecutionStatuses. This set contains the

following elements:

� NotStarted,

� Pending,

� Running,

� Interrupted,

� Finished.

See also:

The routines GMP::SolverSession::AsynchronousExecute,

GMP::SolverSession::Interrupt, GMP::SolverSession::WaitForCompletion

and GMP::SolverSession::WaitForSingleCompletion.

Chapter 12. The gmp library 618

GMP::SolverSession::GenerateBinaryEliminationRow

The procedure GMP::SolverSession::GenerateBinaryEliminationRow adds a

binary row to a solver session which will eliminate a binary solution.

GMP::SolverSession::GenerateBinaryEliminationRow(

solverSession, ! (input) a solver session

solution, ! (input) a solution

branch ! (input) a scalar value

)

Arguments:

solverSession

An element in the set AllSolverSessions.

solution

An integer scalar reference to a solution.

branch

An integer scalar reference to a branch. Value should be either 1 or 2.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure will fail if the GMP corresponding to the solver session

does not have model type MIP.

� This procedure can only be called from within a CallbackBranch,

CallbackAddCut or CallbackAddLazyConstraint callback procedure.

� The branch argument will be ignored if this procedure is called from

within a CallbackAddCut or CallbackAddLazyConstraint callback

procedure.

� Every call to GMP::SolverSession::GenerateBinaryEliminationRow adds

the following row:

∑

i∈Slo
xi −

∑

i∈Sup
xi ≥ 1−

∑

i∈Sup
levi (12.5)

where Slo defines the set of binary columns whose level values equals 0

and Sup the set of binary columns whose level values equals 1.

Examples:

The procedure GMP::SolverSession::GenerateBinaryEliminationRow can be

used to enforce a MIP solver to branch a node that would have been

fathomed otherwise. We can achieve this by installing a branching

callback using procedure GMP::Instance::SetCallbackBranch and adding

the following code to the callback procedure:

Chapter 12. The gmp library 619

! Get LP solution at the current node.

GMP::Solution::RetrieveFromSolverSession(ThisSession,1);

! Get the number of nodes that the MIP solver wants to create from the

! current branch.

NrBranches := GMP::SolverSession::GetNumberOfBranchNodes(ThisSession);

if (NrBranches = 0) then

! The LP solution at the current node appears to be integer feasible.

! We enforce the MIP solver to branch the current node by creating a

! branch containing one constraint that cuts off this LP solution.

GMP::SolverSession::GenerateBinaryEliminationRow(ThisSession,1,1);

endif;

Here ’ThisSession’ is an input argument of the callback procedure and a

scalar element parameter into the set AllSolverSessions.

See also:

The routines GMP::Instance::AddIntegerEliminationRows,

GMP::Instance::SetCallbackAddCut, GMP::Instance::SetCallbackBranch,

GMP::Instance::SetCallbackAddLazyConstraint and

GMP::SolverSession::GetNumberOfBranchNodes.

Chapter 12. The gmp library 620

GMP::SolverSession::GenerateBranchLowerBound

The procedure GMP::SolverSession::GenerateBranchLowerBound specifies the

lower bound change of a column in a branch to be taken from the current

node during MIP branch & cut.

GMP::SolverSession::GenerateBranchLowerBound(

solverSession, ! (input) a solver session

column, ! (input) a scalar reference

bound, ! (input) a numerical expression

branch ! (input) a branch number

)

Arguments:

solverSession

An element in the set AllSolverSessions.

column

A scalar reference to an existing column in the model.

bound

The value assigned to the lower bound change of the column in the

branch.

branch

An integer scalar reference to the branch number. It should be equal

to 1 or 2.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� A branch can be specified by adding multiple bound changes and rows

(with GMP::SolverSession::GenerateBranchRow) to the node problem.

� This procedure can only be called from within a CallbackBranch callback

procedure.

� A CallbackBranch callback procedure will only be called when solving

mixed integer programs with Cplex.

See also:

The procedures GMP::Instance::SetCallbackBranch,

GMP::SolverSession::GenerateBranchUpperBound and

GMP::SolverSession::GenerateBranchRow.

Chapter 12. The gmp library 621

GMP::SolverSession::GenerateBranchRow

The procedure GMP::SolverSession::GenerateBranchRow adds a row to a branch

to be taken from the current node during MIP branch & cut.

GMP::SolverSession::GenerateBranchRow(

solverSession, ! (input) a solver session

row, ! (input) a scalar reference

branch ! (input) a branch number

)

Arguments:

solverSession

An element in the set AllSolverSessions.

row

A scalar reference to an existing row in the model.

branch

An integer scalar reference to the branch number. It should be equal

to 1 or 2.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� A branch can be specified by adding multiple rows and bound changes

(with GMP::SolverSession::GenerateBranchLowerBound and

GMP::SolverSession::GenerateBranchUpperBound) to the node problem.

� This procedure can only be called from within a CallbackBranch callback

procedure.

� A CallbackBranch callback procedure will only be called when solving

mixed integer programs with Cplex.

See also:

The procedures GMP::Instance::SetCallbackBranch,

GMP::SolverSession::GenerateBranchLowerBound and

GMP::SolverSession::GenerateBranchUpperBound.

Chapter 12. The gmp library 622

GMP::SolverSession::GenerateBranchUpperBound

The procedure GMP::SolverSession::GenerateBranchUpperBound specifies the

upper bound change of a column in a branch to be taken from the current

node during MIP branch & cut.

GMP::SolverSession::GenerateBranchUpperBound(

solverSession, ! (input) a solver session

column, ! (input) a scalar reference

bound, ! (input) a numerical expression

branch ! (input) a branch number

)

Arguments:

solverSession

An element in the set AllSolverSessions.

column

A scalar reference to an existing column in the model.

bound

The value assigned to the upper bound change of the column in the

branch.

branch

An integer scalar reference to the branch number. It should be equal

to 1 or 2.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� A branch can be specified by adding multiple bound changes and rows

(with GMP::SolverSession::GenerateBranchRow) to the node problem.

� This procedure can only be called from within a CallbackBranch callback

procedure.

� A CallbackBranch callback procedure will only be called when solving

mixed integer programs with Cplex.

See also:

The procedures GMP::Instance::SetCallbackBranch,

GMP::SolverSession::GenerateBranchLowerBound and

GMP::SolverSession::GenerateBranchRow.

Chapter 12. The gmp library 623

GMP::SolverSession::GenerateCut

The procedure GMP::SolverSession::GenerateCut adds a cut to the LP

subproblem of the current node during MIP branch & cut. It can also be used

to add a lazy constraint inside a callback for adding lazy constraints.

GMP::SolverSession::GenerateCut(

solverSession, ! (input) a solver session

row, ! (input) a scalar reference

[local], ! (optional, default 0) a scalar binary expression

[purgeable] ! (optional, default 0) a scalar binary expression

)

Arguments:

solverSession

An element in the set AllSolverSessions.

row

A scalar reference to an existing row in the model.

local

A scalar binary value to indicate whether the cut is valid for the local

problem (i.e. the problem corresponding to the current node in the

solution process and all its descendant nodes) only (value 1) or for

the global problem (value 0).

purgeable

A scalar binary value to indicate whether the solver is allowed to

purge the cut if it deems it ineffective. If the value is 1, then it is

allowed.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure can only be called from within a CallbackAddCut or

CallbackAddlazyConstraint callback procedure.

� A CallbackAddCut callback procedure will only be called when solving

mixed integer programs with Cplex, Gurobi or Odh-Cplex. In case of

Gurobi the cuts are always local even if argument local has value 0.

� A CallbackAddLazyConstraint callback procedure will only be called

when solving mixed integer programs with Cplex or Gurobi.

� Argument purgeable can only be used with Cplex. If the cut is local then

the cut will not be purgeable even if argument purgeable has value 1.

� This procedure can also be used for MIQP and MIQCP problems.

Chapter 12. The gmp library 624

See also:

The procedures GMP::Instance::SetCallbackAddCut and

GMP::Instance::SetCallbackAddLazyConstraint. See Section 16.2 of the

Language Reference for more details on how to install a callback

procedure to add cuts.

Chapter 12. The gmp library 625

GMP::SolverSession::GetBestBound

The function GMP::SolverSession::GetBestBound returns the best known bound

for a solver session.

GMP::SolverSession::GetBestBound(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

In case of success, the best known bound. Otherwise it returns UNDF.

Remarks:

� This function has only meaning for solver sessions with a

corresponding generated mathematical program that has model type

MIP, MIQP or MIQCP.

See also:

The routines GMP::SolverSession::Execute,

GMP::SolverSession::GetObjective, GMP::SolverSession::GetIterationsUsed,

GMP::SolverSession::GetMemoryUsed and GMP::SolverSession::GetTimeUsed.

Chapter 12. The gmp library 626

GMP::SolverSession::GetCallbackInterruptStatus

The function GMP::SolverSession::GetCallbackInterruptStatus returns the

type of the last callback function that had been called during a specific solver

session.

GMP::SolverSession::GetCallbackInterruptStatus(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

An element in the set AllSolutionStates.

Remarks:

When the solver session has not yet been executed, the empty element will

be returned.

See also:

The procedures GMP::SolverSession::Execute,

GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackIncumbent,

GMP::Instance::SetCallbackIterations,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackStatusChange and

GMP::Instance::SetCallbackTime.

Chapter 12. The gmp library 627

GMP::SolverSession::GetCandidateObjective

The function GMP::SolverSession::GetCandidateObjective returns the objective

value of a candidate solution during MIP optimization from within a

candidate or lazy constraint callback.

GMP::SolverSession::GetCandidateObjective(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

In case of success, the objective value at the current node. Otherwise it

returns UNDF.

Remarks:

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can only be used inside a candidate or lazy constraint

callback.

� The procedure GMP::Solution::RetrieveFromSolverSession can be used to

retrieve a candidate solution inside a candidate or lazy constraint

callback.

� This function is only supported by Cplex and Gurobi. Please note that

the candidate callback is not supported by Gurobi.

See also:

The routines GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackCandidate and

GMP::Solution::RetrieveFromSolverSession .

Chapter 12. The gmp library 628

GMP::SolverSession::GetInstance

The function GMP::SolverSession::GetInstance returns the generated

mathematical program that was used to create a solver session.

GMP::SolverSession::GetInstance(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

An element in the set AllGeneratedMathematicalPrograms.

See also:

The routines GMP::Instance::Generate and

GMP::Instance::CreateSolverSession .

Chapter 12. The gmp library 629

GMP::SolverSession::GetIterationsUsed

The function GMP::SolverSession::GetIterationsUsed returns the number of

iterations used by a solver session.

GMP::SolverSession::GetIterationsUsed(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The number of iterations used by the solver session.

See also:

The routines GMP::SolverSession::Execute,

GMP::Instance::SetIterationLimit, GMP::SolverSession::GetMemoryUsed and

GMP::SolverSession::GetTimeUsed.

Chapter 12. The gmp library 630

GMP::SolverSession::GetMemoryUsed

The function GMP::SolverSession::GetMemoryUsed returns the amount of

memory used by the solver session.

During a solve this function returns the current amount of memory used by

the solver. After the solve, this function returns the peak memory used by the

solver.

GMP::SolverSession::GetMemoryUsed(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The amount of megabytes used to execute a solver session.

Remarks:

� This function should be called inside a callback procedure to retrieve

the current amount of memory used by the solver during a solve.

� During a solve, the memory used by the solver can fluctuate.

See also:

The routines GMP::Instance::SetCallbackIterations,

GMP::Instance::SetCallbackTime, GMP::Instance::SetMemoryLimit,

GMP::SolverSession::Execute, GMP::SolverSession::GetIterationsUsed and

GMP::SolverSession::GetTimeUsed.

Chapter 12. The gmp library 631

GMP::SolverSession::GetNodeNumber

The function GMP::SolverSession::GetNodeNumber returns the number of the

current node during MIP optimization from within a node callback.

GMP::SolverSession::GetNodeNumber(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The number of the node for which the callback is called. It returns -1 if

this function is not called inside a solver callback, or if it is not supported

by the solver.

Remarks:

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can only be used inside a branch, candidate, cut or

heuristic callback.

� This function is only supported by Cplex.

� The root node in a branch-and-bound tree gets number 0.

See also:

The routines GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic and

GMP::SolverSession::GetNodesUsed.

Chapter 12. The gmp library 632

GMP::SolverSession::GetNodeObjective

The function GMP::SolverSession::GetNodeObjective returns the objective

value for the subproblem at the current node during MIP optimization from

within a node callback.

GMP::SolverSession::GetNodeObjective(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

In case of success, the objective value at the current node. Otherwise it

returns UNDF.

Remarks:

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can only be used inside a branch, cut or heuristic

callback.

� The procedure GMP::Solution::RetrieveFromSolverSession can be used to

retrieve the node solution inside a branch, cut or heuristic callback.

� This function is only supported by Cplex, however it is not supported if

the Cplex option Use generic callbacks is switched on in Cplex 12.8 or

higher.

See also:

The routines GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackHeuristic,

GMP::Solution::RetrieveFromSolverSession and

GMP::SolverSession::GetNodeNumber.

Chapter 12. The gmp library 633

GMP::SolverSession::GetNodesLeft

The function GMP::SolverSession::GetNodesLeft returns the number of

unexplored nodes left in the branch-and-bound tree for a solver session.

GMP::SolverSession::GetNodesLeft(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The number of unexplored nodes left in the branch-and-bound tree.

Remarks:

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can be used inside a branch, candidate, cut or heuristic

callback.

� This function is only supported by Cplex and Gurobi.

See also:

The routines GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic, GMP::SolverSession::GetNodeNumber

and GMP::SolverSession::GetNodesUsed.

Chapter 12. The gmp library 634

GMP::SolverSession::GetNodesUsed

The function GMP::SolverSession::GetNodesUsed returns the number of nodes

that are processed by a solver session.

GMP::SolverSession::GetNodesUsed(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The number of nodes that are processed by the solver session.

Remarks:

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can be used inside a branch, candidate, cut or heuristic

callback.

See also:

The routines GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic, GMP::SolverSession::GetNodeNumber

and GMP::SolverSession::GetNodesLeft.

Chapter 12. The gmp library 635

GMP::SolverSession::GetNumberOfBranchNodes

The function GMP::SolverSession::GetNumberOfBranchNodes returns the number

of nodes that the solver will create from the current branch.

GMP::SolverSession::GetNumberOfBranchNodes(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The number of nodes that the solver will create from the current branch.

Remarks:

� If the value returned equals 0, the node will be fathomed unless

user-specified branches are made. That is, no child nodes are created

and the node itself is discarded.

� This function has only meaning for solver sessions belonging to a GMP

with type MIP, MIQP or MIQCP.

� This function can be used inside a branch callback.

See also:

The routines GMP::Instance::SetCallbackBranch.

Chapter 12. The gmp library 636

GMP::SolverSession::GetObjective

The function GMP::SolverSession::GetObjective returns the objective function

value associated with a solver session.

GMP::SolverSession::GetObjective(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The objective function value associated with a solver session.

See also:

The routines GMP::SolverSession::Execute,

GMP::SolverSession::GetBestBound, GMP::SolverSession::GetIterationsUsed,

GMP::SolverSession::GetMemoryUsed, GMP::SolverSession::GetTimeUsed and

GMP::SolverSession::SetObjective.

Chapter 12. The gmp library 637

GMP::SolverSession::GetOptionValue

The function GMP::SolverSession::GetOptionValue returns the value of a solver

specific option for a solver session.

GMP::SolverSession::GetOptionValue(

solverSession, ! (input) a solver session

OptionName ! (input) a scalar string expression

)

Arguments:

solverSession

An element in the set AllSolverSessions.

OptionName

A string expression holding the name of the option.

Return value:

In case of success, the function returns the current option value.

Otherwise it returns UNDF.

Remarks:

Options for which strings are displayed in the Aimms Options dialog box,

are also represented by numerical (integer) values. To obtain the

corresponding option keywords, you can use the functions

OptionGetString and OptionGetKeywords.

See also:

The routines GMP::Instance::GetOptionValue,

GMP::Instance::SetOptionValue, GMP::SolverSession::SetOptionValue,

OptionGetString and OptionGetKeywords.

Chapter 12. The gmp library 638

GMP::SolverSession::GetProgramStatus

The function GMP::SolverSession::GetProgramStatus returns the program

status of the last execution of a solver session.

GMP::SolverSession::GetProgramStatus(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

An element in the set AllSolutionStates.

See also:

The routines GMP::SolverSession::Execute and

GMP::SolverSession::GetSolverStatus.

Chapter 12. The gmp library 639

GMP::SolverSession::GetSolver

The function GMP::SolverSession::GetSolver returns the solver belonging to a

solver session.

GMP::SolverSession::GetSolver(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The solver belonging to a solver session as an element of AllSolvers.

Remarks:

Which solver is assigned to the solver session is determined by the

routines GMP::Instance::CreateSolverSession and

GMP::Instance::SetSolver. Note that if the Solver argument of

GMP::Instance::CreateSolverSession is used then it overrules

GMP::Instance::SetSolver.

See also:

The routines GMP::Instance::CreateSolverSession and

GMP::Instance::SetSolver.

Chapter 12. The gmp library 640

GMP::SolverSession::GetSolverStatus

The function GMP::SolverSession::GetSolverStatus returns the solver status of

the last execution of a solver session.

GMP::SolverSession::GetSolverStatus(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

An element in the set AllSolutionStates.

See also:

The routines GMP::SolverSession::Execute and

GMP::SolverSession::GetProgramStatus.

Chapter 12. The gmp library 641

GMP::SolverSession::GetTimeUsed

The function GMP::SolverSession::GetTimeUsed returns the elapsed time (in

1/100th seconds) needed to execute a solver session.

GMP::SolverSession::GetTimeUsed(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The number of 1/100th seconds used to execute a solver session.

See also:

The routines GMP::Instance::SetTimeLimit, GMP::SolverSession::Execute,

GMP::SolverSession::GetIterationsUsed and

GMP::SolverSession::GetMemoryUsed.

Chapter 12. The gmp library 642

GMP::SolverSession::Interrupt

The procedure GMP::SolverSession::Interrupt interrupts a solver session that

is (asynchronous) executing.

GMP::SolverSession::Interrupt(

solverSession, ! (input) a solver session

[timeout] ! (optional) timeout interval

)

Arguments:

solverSession

An element in the set AllSolverSessions.

timeout

A scalar value indicating the time-out interval (in seconds). The

default value is 600.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This interrupt procedure will wait until the solver session is

successfully interrupted or the time-out interval elapses.

� This procedure can also be called for a solver session that is not

asynchronous executing. In that case the timeout argument will be

ignored.

See also:

The routines GMP::SolverSession::AsynchronousExecute,

GMP::SolverSession::ExecutionStatus, GMP::SolverSession::Interrupt,

GMP::SolverSession::WaitForCompletion and

GMP::SolverSession::WaitForSingleCompletion.

Chapter 12. The gmp library 643

GMP::SolverSession::RejectIncumbent

The procedure GMP::SolverSession::RejectIncumbent rejects the integer

solution found by a solver session during the solution process of a MIP model.

GMP::SolverSession::RejectIncumbent(

solverSession ! (input) a solver session

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure can only be called from within a CallbackCandidate

callback procedure.

� A CallbackCandidate callback procedure will only be called when solving

mixed integer programs with Cplex.

See also:

The procedure GMP::Instance::SetCallbackCandidate. See Section 16.2 of

the Language Reference for more details on how to install a candidate

callback procedure.

Chapter 12. The gmp library 644

GMP::SolverSession::SetObjective

The procedure GMP::SolverSession::SetObjective sets the objective value for

the solution belonging to a solver session.

GMP::SolverSession::SetObjective(

solverSession, ! (input) a solver session

Value ! (input) a scalar numeric expression

)

Arguments:

solverSession

An element in the set AllSolverSessions.

Value

A scalar numeric expression representing the new value to be

assigned as the objective value.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The routine GMP::SolverSession::Execute and

GMP::SolverSession::GetObjective.

Chapter 12. The gmp library 645

GMP::SolverSession::SetOptionValue

The procedure GMP::SolverSession::SetOptionValue sets the value of a solver

specific option for a solver session. To a solver session corresponds to one

unique solver, and the option will only be set for that solver.

GMP::SolverSession::SetOptionValue(

solverSession, ! (input) a solver session

OptionName, ! (input) a scalar string expression

Value ! (input) a scalar numeric expression

)

Arguments:

solverSession

An element in the set AllSolverSessions.

OptionName

A string expression holding the name of the option.

Value

A scalar numeric expression representing the new value to be

assigned to the option.

Return value:

The procedure returns 1 if the option exists and the value can be assigned

to the option, or 0 otherwise.

Remarks:

� The option value of a solver specific option can also be set in other

ways. The value of an option belonging to a solver session is

determined by:

– the procedure GMP::SolverSession::SetOptionValue if it is called

for the solver session, else

– the procedure GMP::Instance::SetOptionValue if it is called for the

generated mathematical program corresponding to the solver

session, else

– the value used in the OPTION statement if that statement is used

(see also Section 8.5 of the Language Reference), else

– the option value in the option tree.

� Options for which strings are displayed in the Aimms Options dialog

box, are also represented by numerical (integer) values. To obtain the

corresponding option keywords, you can use the functions

OptionGetString and OptionGetKeywords.

Chapter 12. The gmp library 646

See also:

The routines GMP::Instance::GetOptionValue,

GMP::Instance::SetOptionValue, GMP::SolverSession::GetOptionValue,

OptionGetString and OptionGetKeywords.

Chapter 12. The gmp library 647

GMP::SolverSession::Transfer

The procedure GMP::SolverSession::Transfer can be used to transfer a solver

session from its current GMP to another similar GMP. Both GMPs should be

created from the same symbolic math program.

Currently this procedure is only supported for stochastic Benders

decomposition.

GMP::SolverSession::Transfer(

solverSession, ! (input) a solver session

GMP ! (input) a generated mathematical program

)

Arguments:

solverSession

An element in the set AllSolverSessions.

GMP

An element in the set AllGeneratedMathematicalPrograms.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

If each GMP has its own solver session then more memory is required

which might not be available for large models or if many GMPs are used.

To save memory this procedure can be used since it allows similar GMPs

to share one solver session. After transfering a solver session to a GMP,

only the differences between the old and new GMP will be passed as

updates to the solver.

See also:

The routines GMP::Instance::CreateSolverSession,

GMP::Instance::GenerateStochasticProgram and

GMP::Stochastic::BendersFindReference.

Chapter 12. The gmp library 648

GMP::SolverSession::WaitForCompletion

The procedure GMP::SolverSession::WaitForCompletion has a set of objects as

its input. The set of objects may contain solver sessions that are

asynchronous executing and events. This procedure lets Aimms wait until all

the solver sessions have completed their asynchronous execution and all the

events get activated.

GMP::SolverSession::WaitForCompletion(

solSesSet ! (input) a set of objects

)

Arguments:

solSesSet

A subset of AllSolverSessionCompletionObjects.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

This procedure ignores solver sessions that are not asynchronous

executing but using the procedure GMP::SolverSession::Execute.

See also:

The routines GMP::Event::Create, GMP::Event::Set,

GMP::SolverSession::AsynchronousExecute, GMP::SolverSession::Execute,

GMP::SolverSession::ExecutionStatus, GMP::SolverSession::Interrupt and

GMP::SolverSession::WaitForSingleCompletion.

Chapter 12. The gmp library 649

GMP::SolverSession::WaitForSingleCompletion

The routine GMP::SolverSession::WaitForSingleCompletion has a set of objects

as its input. The set of objects may contain solver sessions that are

asynchronous executing and events. This routine lets Aimms waits until one

of the solver sessions has completed its asynchronous execution or one of the

events gets activated, and it returns the completed object.

GMP::SolverSession::WaitForSingleCompletion(

Objects ! (input) a set of objects

)

Arguments:

Objects

A subset of AllSolverSessionCompletionObjects.

Return value:

An element in the set AllSolverSessionCompletionObjects.

Remarks:

� This routine ignores solver sessions that are not asynchronous

executing but using the procedure GMP::SolverSession::Execute.

� This routine will return immediately if one of the objects is a solver

session that has execution status ’Finished’.

See also:

The routines GMP::Event::Create, GMP::Event::Set,

GMP::SolverSession::AsynchronousExecute, GMP::SolverSession::Execute,

GMP::SolverSession::ExecutionStatus, GMP::SolverSession::Interrupt and

GMP::SolverSession::WaitForCompletion.

Chapter 12. The gmp library 650

12.14 GMP::Stochastic Procedures and Functions

Aimms supports the following procedures and functions for creating and

managing generated stochastic mathematical program instances:

� GMP::Stochastic::AddBendersFeasibilityCut

� GMP::Stochastic::AddBendersOptimalityCut

� GMP::Stochastic::BendersFindFeasibilityReference

� GMP::Stochastic::BendersFindReference

� GMP::Stochastic::CreateBendersRootproblem

� GMP::Stochastic::GetObjectiveBound

� GMP::Stochastic::GetRelativeWeight

� GMP::Stochastic::GetRepresentativeScenario

� GMP::Stochastic::MergeSolution

� GMP::Stochastic::UpdateBendersSubproblem

Chapter 12. The gmp library 651

GMP::Stochastic::AddBendersFeasibilityCut

The procedure GMP::Stochastic::AddBendersFeasibilityCut adds a Benders

feasibility cut to the parent of a Benders feasibility problem. (The parent of a

Benders feasibility problem is the parent of the corresponding Benders

problem.) It uses the dual information from a solution of the Benders

feasibility problem.

GMP::Stochastic::AddBendersFeasibilityCut(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

cutNo ! (input) a scalar reference

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

cutNo

An integer scalar reference to a cut number.

Return value:

The procedure returns 1 on success, or 0 otherwise..

Remarks:

� The GMP should have been created by the function

GMP::Stochastic::CreateBendersFeasibilitySubproblem.

� By using the suffix .SubproblemFeasibilityCuts of the associated

symbolic mathematical program it is possible to refer to the row that is

added by GMP::Stochastic::AddBendersFeasibilityCut. Let gmpBen be a

Benders problem corresponding to the symbolic mathematical program

mp. Then the row mp.SubproblemFeasibilityCuts(gmpBen,lbl) is added to

the GMP, where lbl is an element in the set AllGMPExtensions created by

this procedure using cutNo.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::AddBendersOptimalityCut ,

GMP::Stochastic::CreateBendersFeasibilitySubproblem and

GMP::Stochastic::BendersFindReference.

Chapter 12. The gmp library 652

GMP::Stochastic::AddBendersOptimalityCut

The procedure GMP::Stochastic::AddBendersOptimalityCut adds a Benders

optimality cut to the parent of a Benders problem by using the dual

information from a solution of the Benders problem.

GMP::Stochastic::AddBendersOptimalityCut(

GMP, ! (input) a generated mathematical program

solution, ! (input) a solution

cutNo ! (input) a scalar reference

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

cutNo

An integer scalar reference to a cut number.

Return value:

The procedure returns 1 on success, or 0 otherwise..

Remarks:

� The GMP should have been created by the function

GMP::Stochastic::BendersFindReference.

� By using the suffix .SubproblemOptimalityCuts of the associated symbolic

mathematical program it is possible to refer to the row that is added by

GMP::Stochastic::AddBendersOptimalityCut. Let gmpBen be a Benders

problem corresponding to the symbolic mathematical program mp. Then

the row mp.SubproblemOptimalityCuts(gmpBen,lbl) is added to the GMP,

where lbl is an element in the set AllGMPExtensions created by this

procedure using cutNo.

� The first time this procedure is called for a Benders problem a new

column mp.SubproblemObjectiveBound(gmpBen) is added to the parent of

the Benders problem. For this column a coefficient equal to the relative

weight of the Benders problem will be added to the objective of the

parent. For this column a coefficient of 1 is added to the optimality cut.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::AddBendersFeasibilityCut,

GMP::Stochastic::BendersFindReference,

Chapter 12. The gmp library 653

GMP::Stochastic::GetObjectiveBound and

GMP::Stochastic::GetRelativeWeight .

Chapter 12. The gmp library 654

GMP::Stochastic::BendersFindFeasibilityReference

The function GMP::Stochastic::BendersFindFeasibilityReference returns the

reference to the (feasibility) generated math program belonging to a node in

the scenario tree. This generated math program represents the Benders

feasibility problem for a stage and for some representive scenario in the

scenario tree of a stochastic mathematical program.

GMP::Stochastic::BendersFindFeasibilityReference(

GMP, ! (input) a generated mathematical program

stage, ! (input) a scalar reference

scenario ! (input) a scenario

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

stage

An integer scalar reference to a stage.

scenario

An element in the set AllStochasticScenarios.

Return value:

An element in the set AllGeneratedMathematicalPrograms.

Remarks:

� The function GMP::Stochastic::CreateBendersRootproblem creates all

Benders feasibility problems for all nodes in the scenario tree, and must

be called before calling GMP::Stochastic::BendersFindReference.

� The GMP should correspond to a root node, i.e., be created by using the

function GMP::Stochastic::CreateBendersRootproblem.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::BendersFindReference and

GMP::Stochastic::CreateBendersRootproblem.

Chapter 12. The gmp library 655

GMP::Stochastic::BendersFindReference

The function GMP::Stochastic::BendersFindReference returns the reference to

the generated math program belonging to a node in the scenario tree. This

generated math program represents the Benders problem for a stage and for

some representive scenario in the scenario tree of a stochastic mathematical

program.

GMP::Stochastic::BendersFindReference(

GMP, ! (input) a generated mathematical program

stage, ! (input) a scalar reference

scenario ! (input) a scenario

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

stage

An integer scalar reference to a stage.

scenario

An element in the set AllStochasticScenarios.

Return value:

An element in the set AllGeneratedMathematicalPrograms.

Remarks:

� The function GMP::Stochastic::CreateBendersRootproblem creates all

Benders problems for all nodes in the scenario tree, and must be called

before calling GMP::Stochastic::BendersFindReference.

� The GMP should correspond to a root node, i.e., be created by using the

function GMP::Stochastic::CreateBendersRootproblem.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::BendersFindFeasibilityReference and

GMP::Stochastic::CreateBendersRootproblem.

Chapter 12. The gmp library 656

GMP::Stochastic::CreateBendersRootproblem

The function GMP::Stochastic::CreateBendersRootproblem generates a

mathematical program that represents the Benders problem at the unique

node at stage 1 in the scenario tree of a stochastic mathematical program,

and it also creates all Benders problems for all other nodes.

This function collects all columns and rows that correspond to the unique

(representive) scenario at stage 1 in the scenario tree.

GMP::Stochastic::CreateBendersRootproblem(

GMP, ! (input) a generated mathematical program

[name] ! (optional) a string expression

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

name

A string that holds the name for the Benders problem created for

GMP at stage 1.

Return value:

A new element in the set AllGeneratedMathematicalPrograms with the name

as specified by the name argument.

Remarks:

� The GMP should have been created by the function

GMP::Instance::GenerateStochasticProgram.

� The generated math program belonging to the node of a Benders

subproblem can be obtained by using the function

GMP::Stochastic::BendersFindReference.

� If the name argument is not specified, or if it is the empty string, then

the name of the GMP, stage 1 and the unique representive scenario at

stage 1 are used to create a new element in the set

AllGeneratedMathematicalPrograms.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::BendersFindReference and

GMP::Stochastic::UpdateBendersSubproblem . See Section 19.1 of the

Language Reference for more details on scenario tree, scenarios and

stages.

Chapter 12. The gmp library 657

GMP::Stochastic::GetObjectiveBound

The function GMP::Stochastic::GetObjectiveBound returns the level value of

the column mp.SubproblemObjectiveBound in a solution of a Benders problem,

where mp denotes the corresponding symbolic mathematical program.

GMP::Stochastic::GetObjectiveBound(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

In case of success, the level value. Otherwise it returns UNDF.

Remarks:

� The GMP should have been created by the function

GMP::Stochastic::BendersFindReference.

� Initially, the column mp.SubproblemObjectiveBound is not part of the

Benders problem but it will be added if the procedure

GMP::Stochastic::AddBendersOptimalityCut is called.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::AddBendersOptimalityCut and

GMP::Stochastic::BendersFindReference.

Chapter 12. The gmp library 658

GMP::Stochastic::GetRelativeWeight

The function GMP::Stochastic::GetRelativeWeight returns the relative weight

of a scenario at some stage in the scenario tree belonging to a stochastic

mathematical program. The weight is relative to the sum of the weights of all

scenarios that have the same parent at that stage.

GMP::Stochastic::GetRelativeWeight(

GMP, ! (input) a generated mathematical program

stage, ! (input) a scalar reference

scenario ! (input) a scenario

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

stage

An integer scalar reference to a stage.

scenario

An element in the set AllStochasticScenarios.

Return value:

In case of success, the relative weight. Otherwise it returns UNDF.

Remarks:

The GMP should have been created by the function

GMP::Instance::GenerateStochasticProgram.

See also:

The routines GMP::Instance::GenerateStochasticProgram and

GMP::Stochastic::GetRepresentativeScenario. See Section 19.1 of the

Language Reference for more details on scenario tree, scenarios and

stages.

Chapter 12. The gmp library 659

GMP::Stochastic::GetRepresentativeScenario

The function GMP::Stochastic::GetRepresentativeScenario returns the

representive scenario of a scenario at some stage in the scenario tree

belonging to a stochastic mathematical program.

GMP::Stochastic::GetRepresentativeScenario(

GMP, ! (input) a generated mathematical program

stage, ! (input) a scalar reference

scenario ! (input) a scenario

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

stage

An integer scalar reference to a stage.

scenario

An element in the set AllStochasticScenarios.

Return value:

An element in the set AllStochasticScenarios.

Remarks:

The GMP should have been created by the function

GMP::Instance::GenerateStochasticProgram.

See also:

The routines GMP::Instance::GenerateStochasticProgram and

GMP::Stochastic::GetRelativeWeight . See Section 19.1 of the Language

Reference for more details on scenario tree, scenarios and stages.

Chapter 12. The gmp library 660

GMP::Stochastic::MergeSolution

The procedure GMP::Stochastic::MergeSolution merges a solution of a

Benders problem into a solution of the stochastic mathematical program

belonging to the Benders problem. Only the level values of the columns are

merged. The objective level value is updated by using the objective definition

and the level values in the solution.

GMP::Stochastic::MergeSolution(

GMP, ! (input) a generated mathematical program

solution1, ! (input) a solution

solution2, ! (input) a solution

[updObj] ! (optional) a binary scalar value

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution1

An integer scalar reference to a solution of GMP.

solution2

An integer scalar reference to a solution of the stochastic

mathematical program that belongs to GMP.

updObj

A binary scalar indicating whether the (stochastic) objective value

should be updated. Its default value is 1 which means that the

objective is updated.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The GMP should have been created by the function

GMP::Stochastic::CreateBendersRootproblem or by the function

GMP::Stochastic::BendersFindReference.

� It is most efficient to only update the objective value during the last call

to GMP::Stochastic::MergeSolution, i.e., set updObj to 1 for the last call

and to 0 for all preceding calls.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::CreateBendersRootproblem and

GMP::Stochastic::BendersFindReference.

Chapter 12. The gmp library 661

GMP::Stochastic::UpdateBendersSubproblem

The procedure GMP::Stochastic::UpdateBendersSubproblem updates the right

hand side values of a Benders problem by using a solution of the parent

Benders problem.

GMP::Stochastic::UpdateBendersSubproblem(

GMP, ! (input) a generated mathematical program

solution ! (input) a solution

)

Arguments:

GMP

An element in the set AllGeneratedMathematicalPrograms.

solution

An integer scalar reference to a solution.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The GMP should have been created by the function

GMP::Stochastic::CreateBendersRootproblem or obtained by the function

GMP::Stochastic::BendersFindReference.

� This procedure does not use the solution if the GMP belongs to the

Benders problem at (the unique node at) stage 1, i.e., if it was created by

the function GMP::Stochastic::CreateBendersRootproblem.

See also:

The routines GMP::Instance::GenerateStochasticProgram,

GMP::Stochastic::BendersFindReference and

GMP::Stochastic::CreateBendersRootproblem.

Chapter 12. The gmp library 662

12.15 GMP::Tuning Procedures and Functions

Aimms supports the following procedures and functions for tuning models:

� GMP::Tuning::SolveSingleMPS

� GMP::Tuning::TuneMultipleMPS

� GMP::Tuning::TuneSingleGMP

Chapter 12. The gmp library 663

GMP::Tuning::SolveSingleMPS

The procedure GMP::Tuning::SolveSingleMPS solves a MPS, LP or SAV file.

GMP::Tuning::SolveSingleMPS(

FileName, ! (input) scalar string expression

Solver, ! (input) scalar element parameter

SolverStatus, ! (output) scalar element parameter

ProgramStatus, ! (output) scalar element parameter

Objective, ! (output) scalar numerical parameter

Iterations, ! (output) scalar numerical parameter

Nodes, ! (output) scalar numerical parameter

SolutionTime, ! (output) scalar numerical parameter

[SolutionFile] ! (optional) a scalar numerical expression

)

Arguments:

FileName

The name of the file, with file format ’.mps’, ’.lp’ or ’.sav’, to be solved.

Solver

An element in the set AllSolvers.

SolverStatus

The solver status as an element in the set AllSolutionStates.

ProgramStatus

The program status as an element in the set AllSolutionStates.

Objective

The objective value returned by the solver.

Iterations

The number of iterations used by the solver to solve the model.

Nodes

The number of nodes used by the solver to solve the model.

SolutionTime

The solution time (in seconds) used by the solver to solve the model.

SolutionFile

A 0-1 value indicating whether a solution file should be created. If 1,

then the solution file will be named ’FileName.sol’. The default is 0.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The solver will use the option settings as specified in the Aimms project.

Chapter 12. The gmp library 664

� This procedure is supported by the solvers Cplex, Gurobi, CBC,

Odh-Cplex and XA. XA does not support the LP format. Only Cplex

supports the SAV format.

Examples:

To solve model ’mod1.mps’ using Cplex 12.9 execute:

GMP::Tuning::SolveSingleMPS(’mod1.mps’, ’CPLEX 12.9’, SolStat, ProStat, obj, iter,

nodes, soltime);

See also:

The routine GMP::Tuning::TuneMultipleMPS.

Chapter 12. The gmp library 665

GMP::Tuning::TuneMultipleMPS

The procedure GMP::Tuning::TuneMultipleMPS tunes the solver options for a

set of problems represented by MPS, LP or SAV files.

GMP::Tuning::TuneMultipleMPS(

DirectoryName, ! (input) scalar string expression

Solver, ! (input) scalar element parameter

FixedOptions, ! (input) set expression

[ApplyTunedSettings], ! (optional) scalar numerical expression

[OptionFileName] ! (optional) scalar string expression

)

Arguments:

DirectoryName

The name of the directory containing the problems to be tuned. All

problems with file format ’.mps’, ’.lp’ or ’.sav’ inside the directory will

be used.

Solver

An element in the set AllSolvers.

FixedOptions

A subset of the predefined set AllOptions, containing the set of all

solver options that should not be tuned by the solver. For fixed

options the current Aimms project settings are used.

ApplyTunedSettings

A 0-1 value indicating whether the tuned option settings should be

used inside the project immediately. The default is 0.

OptionFileName

The name of the options file to which the tuned options will be

written. If this argument is not specified then no options file will be

created.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� All solver options not in the set FixedOptions will be subject to tuning

even if such an option is set to a non-default value inside the Aimms

project.

� Mixed problem sets are not supported, i.e., you cannot mix LP problems

with MIP problems.

� The tuned options will be written to the listing file.

� The options file (if any) can be imported into the Aimms project using

the options dialog box.

Chapter 12. The gmp library 666

� This procedure is only supported by Cplex and Gurobi.

� Only Cplex supports the SAV format.

Examples:

Assume we have a set ’FixedOptions’ defined as:

Set FixedOptions {

SubsetOf : AllOptions;

Definition : data { ’CPLEX 12.9::mip_search_strategy’ };

}

Using Cplex 12.9 we tune all ’.mps’, ’.lp’ and ’.sav’ problems inside the

directory ’Set1’ by executing:

GMP::Tuning::TuneMultipleMPS("Set1", ’CPLEX 12.9’, FixedOptions);

Note that the opion ’mip search strategy’ is fixed and will not be tuned.

See also:

The routines GMP::Tuning::SolveSingleMPS and GMP::Tuning::TuneSingleGMP.

Chapter 12. The gmp library 667

GMP::Tuning::TuneSingleGMP

The procedure GMP::Tuning::TuneSingleGMP tunes the solver options for a

generated mathematical program.

GMP::Tuning::TuneSingleGMP(

GMP, ! (input) generated mathematical program

FixedOptions, ! (input) set expression

[ApplyTunedSettings], ! (optional) scalar numerical expression

[OptionFileName] ! (optional) scalar string expression

)

Arguments:

GMP

An element in AllGeneratedMathematicalPrograms.

FixedOptions

A subset of the predefined set AllOptions, containing the set of all

solver options that should not be tuned by the solver. For fixed

options the current Aimms project settings are used.

ApplyTunedSettings

A 0-1 value indicating whether the tuned option settings should be

used inside the project immediately. The default is 0.

OptionFileName

The name of the options file to which the tuned options will be

written. If this argument is not specified then no options file will be

created.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� All solver options not in the set FixedOptions will be subject to tuning

even if such an option is set to a non-default value inside the Aimms

project.

� This procedure does not return a solution for the GMP and therefore the

model identifiers are not changed.

� The tuned options will be written to the listing file.

� The options file (if any) can be imported into the Aimms project using

the options dialog box.

� This procedure is only supported by Cplex and Gurobi.

Chapter 12. The gmp library 668

Examples:

Assume that ’MP’ is a mathematical program and ’gmpMP’ an element

parameter with range ’AllGeneratedMathematicalPrograms’. Furthermore,

we have a set ’FixedOptions’ defined as:

Set FixedOptions {

SubsetOf : AllOptions;

Definition : data { ’CPLEX 12.9::mip_search_strategy’ };

}

To tune ’MP’ we have to run:

gmpMP := GMP::Instance::Generate(MP);

GMP::Tuning::TuneSingleGMP(gmpMP, FixedOptions);

Here the opion ’mip search strategy’ is fixed and will not be tuned

(assuming we are using solver Cplex 12.9).

See also:

The routines GMP::Instance::Generate, GMP::Tuning::SolveSingleMPS and

GMP::Tuning::TuneMultipleMPS.

Part III

Model Handling

Chapter 13

Model Query Functions

Aimms supports the following functions to query the structure of the

identifiers in the model:

� AttributeToString

� CallerAttribute

� CallerLine

� CallerNode

� CallerNumberOfLocations

� ConstraintVariables

� DeclaredSubset

� DomainIndex

� IdentifierAttributes

� IdentifierDimension

� IdentifierShowAttributes

� IdentifierShowTreeLocation

� IdentifierElementRange

� IdentifierText

� IdentifierType

� IdentifierUnit

� IndexRange

� IsRuntimeIdentifier

� ReferencedIdentifiers

� SectionIdentifiers

� VariableConstraints

SelectedIdentifiers := AllParameters ; ! Or some other selection.

put outf ;

outf.pagewidth := 255 ; ! Wide

put "type":20, " ", "name":32, " ", "dim ", "unit":20, " ",

"range":20, " ", "Text", / ;

put "-"*20, " ", "-"*32, " ", "--- ", "-"*20, " ", "-"*40, / ;

for (si) do ! For each selected identifier

put IdentifierType(si):20, " " ! Type

si:32, " ", ! name

"(", IdentifierDimension(si):1:0, ") ", ! dimension

IdentifierUnit(si):20, " ", ! unit

Chapter 13. Model Query Functions 671

IdentifierElementRange(si):20, " ", ! range

IdentifierText(si), / ! Documenting text.

endfor ;

putclose ;

Chapter 13. Model Query Functions 672

AttributeToString

The function AttributeToString converts a specified attribute for a given

identifier to a string.

AttributeToString(

IdentifierName, ! (input) scalar element parameter

AttributeName ! (input) scalar element parameter

)

Arguments:

IdentifierName

An element expression in the predefined set AllIdentifiers specifying

the identifier for which an attribute should be converted to a string.

AttributeName

An element expression in the predefined set AllAttributeNames

specifying the attribute that should be converted to string format.

Return value:

This function returns a string representation of the attribute on success

or the empty string otherwise and the predeclared identifier

CurrentErrorMessage contains an appropriate error message.

Remarks:

In order to protect the intellectual property of the model developer, the

string Encrypted is returned and the predeclared identifier

CurrentErrorMessage contains an appropriate error message, when the

identifier is in an encrypted section of the model. There is one exception;

if the procedure making the call AttributeToString(id,attr) is in the same

component as the identifier id, the attribute attr is still returned as string.

Here component is the main model or one of the libraries.

See also:

The function me::GetAttribute.

Chapter 13. Model Query Functions 673

CallerAttribute

The function CallerAttribute returns the attribute of a node that is on the

current execution stack.

CallerAttribute(

Depth ! (optional) scalar element parameter

)

Arguments:

Depth

An numeric optional expression with default 1. The value should be

in the range {1 . . .CallerNumberOfLocations} The value 1, refers to

the caller of the currently running procedure.

Return value:

This function returns an element in AllAttributeNames.

See also:

� The example at CallerNumberOfLocations

� The functions errh::Attribute, CallerLine, CallerNode, and

CallerNumberOfLocations.

Chapter 13. Model Query Functions 674

CallerLine

The function CallerLine returns the line of a node that is on the current

execution stack.

CallerLine(

Depth ! (optional) scalar element parameter

)

Arguments:

Depth

An numeric optional expression with default 1. The value should be

in the range {1 . . .CallerNumberOfLocations} The value 1, refers to

the caller of the currently running procedure.

Return value:

This function returns a line number.

See also:

� The example at CallerNumberOfLocations

� The functions CallerAttribute, errh::Line, CallerNode, and

CallerNumberOfLocations.

Chapter 13. Model Query Functions 675

CallerNode

The function CallerNode returns the node that is on the current execution

stack.

CallerNode(

Depth ! (optional) scalar element parameter

)

Arguments:

Depth

An numeric optional expression with default 1. The value should be

in the range {1 . . .CallerNumberOfLocations} The value 1, refers to

the caller of the currently running procedure.

Return value:

This function returns an element in AllSymbols.

See also:

� The example at CallerNumberOfLocations

� The functions CallerAttribute, CallerLine, errh::Node, and

CallerNumberOfLocations.

Chapter 13. Model Query Functions 676

CallerNumberOfLocations

The function CallerNumberOfLocations returns the number of nodes on the

current execution stack, not counting the current internal procedure or

function.

CallerNumberOfLocations()

Example:

The following code provides the skeleton of a simple stack dump.

Parameter noLocs ;

Parameter aDepth ;

Parameter aLine ;

ElementParameter aNode {

range : AllIdentifiers ;

}

ElementParameter anAttr {

range : AllAttributeNames ;

}

File outf {

Name: "a41t001.put";

}

Procedure reportStack {

Body: {

noLocs := callerNumberOfLocations();

aDepth := 1 ;

put outf, "Current execution stack: ", / ;

put "depth":5, " ", "node":20, " ", "attribute":12, " ", "line":4, / ;

put "-"*5, " ", "-"*20, " ", "-"*12, " ", "-"*4, / ;

while aDepth <= noLocs do

aLine := callerLine(aDepth);

aNode := callerNode(aDepth);

anAttr := callerAttribute(aDepth);

put aDepth:5:0, " ", aNode:20, " ", anAttr:12, " ", aLine:4:0, " ", / ;

aDepth += 1 ;

endwhile ;

putclose ;

}

}

An instance of its output might be:

Current execution stack:

depth node attribute line

----- -------------------- ------------ ----

1 work1 body 4

2 MainExecution body 1

See also:

The functions CallerAttribute, CallerLine, CallerNode, and

errh::NumberOfLocations.

Chapter 13. Model Query Functions 677

ConstraintVariables

The function ConstraintVariables returns all the symbolic variables that are

referred in a certain collection of constraints, including the variables that are

referred in the definitions of these variables.

ConstraintVariables(

Contraints ! (input) a subset of AllConstraints

)

Arguments:

Contraints

The set of constraints for which you want to retrieve the referred

variables.

Remarks:

This function operates on the compiled definition of constraints; it will

skip inline variables.

Example:

Model Main_cv {

Variable x {

Range: free;

}

Variable y {

Range: free;

}

Variable z {

Range: free;

Property: Inline;

Definition: x + y;

}

Constraint c {

Definition: z > 0;

}

Set S {

SubsetOf: AllConstraints;

Index: i;

Definition: data { c };

}

Set T {

SubsetOf: AllVariables;

Index: j;

}

Set U {

SubsetOf: AllVariables;

Index: k;

}

Set setje {

Index: ii;

Definition: data { a, b };

}

Chapter 13. Model Query Functions 678

Parameter P {

IndexDomain: ii;

Definition: data { a : 3, b : 4 };

}

ElementParameter colPar {

IndexDomain: ii;

Range: AllColors;

Definition: data { a : red, b : yellow };

}

Procedure MainInitialization;

Procedure MainExecution {

Body: {

T := ConstraintVariables(S);

U := ReferencedIdentifiers(S, AllAttributeNames, recursive: 1);

display T, U ;

}

}

Procedure MainTermination {

Body: {

return 1 ;

}

}

}

Running MainExecution will create the following listing file:

T := data { x, y } ;

U := data { x, y, z } ;

Because z is an inline variable.

Return value:

The function returns a subset of the set AllVariables, containing the

variables found.

See also:

The function VariableConstraints and ReferencedIdentifiers.

Chapter 13. Model Query Functions 679

DeclaredSubset

The function DeclaredSubset returns 1 if both subsetName and superName

refer to a one-dimensional set and subsetName is directly or indirectly declared

to be a subset of supersetName.

DeclaredSubset(

subsetName, ! (input) scalar element parameter

supersetName ! (input) scalar element parameter

)

Arguments:

subsetName

An element expression in the predefined set AllIdentifiers.

supersetName

An element expression in the predefined set AllIdentifiers.

Return value:

This function returns 1 iff subsetName is directly or indirectly a subset of

supersetName. If subsetName or supersetName does not refer to a

one-dimensional set, this function will return 0 without any warning or

error message.

Example:

With the following declarations:

Set MasterSet {

Index : ms;

}

Set DomainSet {

SubsetOf : MasterSet;

Index : ds;

}

Set ActiveSet {

SubsetOf : DomainSet;

Index : as;

}

File outf {

Name : "outf.put";

}

The following statements:

put outf ;

put "ActiveSet(=DomainSet =", DeclaredSubset(’ActiveSet’, ’DomainSet’):0:0,/;

put "ActiveSet(=MasterSet =", DeclaredSubset(’ActiveSet’, ’MasterSet’):0:0,/;

put "MasterSet(=ActiveSet =", DeclaredSubset(’MasterSet’, ’ActiveSet’):0:0,/;

put "MasterSet(=outf =", DeclaredSubset(’MasterSet’, ’outf’):0:0,/;

putclose ;

Return the following output.

Chapter 13. Model Query Functions 680

ActiveSet(=DomainSet =1 ! ActiveSet is directly a subset of DomainSet

ActiveSet(=MasterSet =1 ! ActiveSet is indirectly a subset of MasterSet

MasterSet(=ActiveSet =0 ! But the reverse is not true.

MasterSet(=outf =0 ! outf isn’t even a set.

See also:

The function IndexRange.

Chapter 13. Model Query Functions 681

DomainIndex

The function DomainIndex returns the indexPosition-th index of identifierName

as an element in AllIdentifiers.

DomainIndex(

identifierName, ! (input) scalar element parameter

indexPosition

) ! (input) scalar integer parameter

Arguments:

identifierName

An element expression in the predefined set AllIdentifiers

specifying the identifier for which an index should be obtained.

indexPosition

An expression in the range {1..dim} where dim is the dimension of

identifierName.

Return value:

This function returns an element in the set AllIdentifiers representing

the indexPosition index of identifierName. If identifierName is not an

indexed parameter, variable or constraint, or if indexPosition is outside

the range {1..dim}, the empty element is returned without further

warning.

Example:

The following code uses the function DomainIndex to obtain the indices of

the index domain of a parameter:

put outf ;

for (IndexParameters | IdentifierDimension(IndexParameters) > 0) do

put IndexParameters:0, "(" ;

while loopcount <= IdentifierDimension(IndexParameters) do

put DomainIndex(IndexParameters, loopcount):0 ;

if loopCount < IdentifierDimension(IndexParameters) then put "," ; endif ;

endwhile ;

put ")", / ;

endfor ;

putclose ;

A fragment of the output of this code might look as follows:

LowFP(f,p)

UppFP(f,p)

Supply(c)

Demand(f)

See also:

The functions IdentifierDimension, DeclaredSubset and IndexRange.

Chapter 13. Model Query Functions 682

IdentifierAttributes

The function IdentifierAttributes determines which attributes a specified

identifier has.

IdentifierAttributes(

IdentifierName ! (input) scalar element parameter

)

Arguments:

IdentifierName

An element expression specifying the identifier for which the

attributes should be determined.

Return value:

This function returns a subset of AllAttributeNames containing all the

attributes for the specified identifier.

Chapter 13. Model Query Functions 683

IdentifierDimension

The function IdentifierDimension returns the data dimension of

identifierName.

IdentifierDimension(

identifierName) ! (input) scalar element parameter

Arguments:

identifierName

An element expression in the predefined set AllIdentifiers

specifying the identifier for which the dimension should be obtained.

Return value:

This function returns a non-negative integer. If identifierName is not an

identifier, an error message is issued. If identifierName is not an indexed

parameter, variable or constraint, a 0 is returned without further warning.

Remarks:

This function replaces the deprecated suffix .dim.

See also:

� The functions DomainIndex and IndexRange.

� Section 25.4 of the Language Reference.

� The common example on page 670.

Chapter 13. Model Query Functions 684

IdentifierShowAttributes

The function IdentifierShowAttributes allows you to programmatically open

the attribute window of a specific identifier in your model. The function only

works in a developer system, in an end-user system the function raises an

error message.

IdentifierShowAttributes(

identifier ! (input) element in AllIdentifiers

)

Arguments:

identifier

The identifier for which you want to open the attribute window.

See also:

The function IdentifierShowTreeLocation.

Chapter 13. Model Query Functions 685

IdentifierShowTreeLocation

The function IdentifierShowTreeLocation allows you to programmatically

show the position of a specific identifier in the Model Explorer tree. If the

Model Explorer is not currently opened, it will open automatically. The

function only works in a developer system, in an end-user system the

function raises an error message.

IdentifierShowTreeLocation(

identifier ! (input) element in AllIdentifiers

)

Arguments:

identifier

The identifier for whcih you want to show the location in the Model

Explorer.

See also:

The function IdentifierShowAttributes.

Chapter 13. Model Query Functions 686

IdentifierElementRange

The function IdentifierElementRange returns the range as a set.

IdentifierElementRange(

identifierName) ! (input) scalar element parameter

Arguments:

identifierName

An element expression in the predefined set AllSymbols specifying the

identifier for which the range should be obtained.

Return value:

This function returns the set, as an element in AllSymbols, that is the

range of identifierName if it is element valued. If identifierName is not an

identifier, an error message is issued. If identifierName is not element

valued, the empty element is returned without further warning.

See also:

� The functions DomainIndex, IdentifierDimension, and IndexRange.

� Section 25.4 of the Language Reference.

� The common example on page 670.

Chapter 13. Model Query Functions 687

IdentifierText

The function IdentifierText returns the text of identifierName or, if the text

is not specified, the name of the identifier.

IdentifierText(

identifierName) ! (input) scalar element parameter

Arguments:

identifierName

An element expression in the predefined set AllIdentifiers

specifying the identifier for which the text should be obtained.

Return value:

This function returns a non-negative integer. If identifierName is not an

identifier, an error message is issued. When the text is not specified, the

name of the identifier is returned.

Remarks:

This function replaces the deprecated suffix .txt.

See also:

� The functions IdentifierText.

� Section 25.4 of the Language Reference.

� The common example on page 670.

Chapter 13. Model Query Functions 688

IdentifierType

The function IdentifierType returns the type of identifierName as an element

in AllIdentifierTypes.

IdentifierType(

identifierName) ! (input) scalar element parameter

Arguments:

identifierName

An element expression in the predefined set AllIdentifiers

specifying the identifier for which the type should be obtained.

Return value:

This function returns a type as an element in AllIdentifierTypes. If

identifierName is not an identifier, an error message is issued.

Remarks:

This function replaces the suffix .type; this suffix is deprecated.

See also:

� The functions IdentifierDimension and IdentifierUnit.

� Section 25.4 of the Language Reference.

� The common example on page 670.

Chapter 13. Model Query Functions 689

IdentifierUnit

The function IdentifierUnit returns the unit of identifierName as it is

declared.

IdentifierUnit(

identifierName) ! (input) scalar element parameter

Arguments:

identifierName

An element expression in the predefined set AllIdentifiers

specifying the identifier for which the unit should be obtained.

Return value:

This function returns a unit. If identifierName is not an identifier, an error

message is issued. If identifierName is not a parameter, variable or

constraint, the unit [] is returned without further warning.

Remarks:

This function complements the suffix .unit; when the unit of an identifier

is a unit parameter, this function will return that unit parameter, whilst

the suffix unit will return the value of that unit parameter.

See also:

� The functions IdentifierDimension and IdentifierType.

� Section 25.4 of the Language Reference.

� The common example on page 670.

Chapter 13. Model Query Functions 690

IndexRange

The function IndexRange returns the range of an index as an element in

AllIdentifiers.

IndexRange(

indexName ! (input) scalar element parameter

)

Arguments:

indexName

An element expression in the predefined set AllIdentifiers

specifying the index for which the range should be returned.

Return value:

This function returns the range of index indexName as an element in

AllIdentifiers. If indexName is not an index or if it does not have a range

the empty element is returned.

Example:

With the declarations

Set MasterSet {

Index : a;

}

Index b {

Range : MasterSet;

}

Index c;

The output of the statements

put "IndexRange(’a’) = \"", IndexRange(’a’):10, "\"", / ;

put "IndexRange(’b’) = \"", IndexRange(’b’):10, "\"", / ;

put "IndexRange(’c’) = \"", IndexRange(’c’):10, "\"", / ;

is:

IndexRange(’a’) = "MasterSet "

IndexRange(’b’) = "MasterSet "

IndexRange(’c’) = " "

See also:

The functions DeclaredSubset and DomainIndex.

Chapter 13. Model Query Functions 691

IsRuntimeIdentifier

The function IsRuntimeIdentifier returns 1 when the argument

identifierName is created at runtime.

IsRuntimeIdentifier(

identifierName) ! (input) scalar element parameter

Arguments:

identifierName

An element expression in the predefined set AllIdentifiers

specifying the identifier for which it should be determined whether or

not it is created at runtime.

Return value:

This function returns 0 or 1. If identifierName is not an identifier, an error

message is issued.

Remarks:

In order to determine whether or not the value of string parameter myStr

is an identifier, you can use StringToElement(AllIdentifiers, myStr) or

myStr in AllIdentifiers.

See also:

� The functions StringToElement, DeclaredSubset and IndexRange.

� Section 25.4 of the Language Reference.

� The common example on page 670.

Chapter 13. Model Query Functions 692

ReferencedIdentifiers

The function ReferencedIdentifiers determines which identifiers are used in

the specified attributes of a subset of AllIdentifiers.

ReferencedIdentifiers(

searchIdentSet ! (input) subset of AllIdentifiers

searchAttrSet ! (input) subset of AllAttributeNames

recursive ! (optional) numerical expression

)

Arguments:

searchIdentSet

The set of identifiers to search in for referenced identifiers. This is a

subsetof AllIdentifiers.

searchAttrSet

The set of attributes to search in for referenced identifiers. This is a

subset of AllAttributeNames.

recursive

Optional argument, default 0, if 1 this function will also search in the

referenced identifiers for identifier references.

Return value:

This function returns a subset of AllIdentifiers containing all the

identifiers that are referenced in the attributes in searchAttrSet in one of

the identifiers in searchIdentSet.

See also:

The function ConstraintVariables and VariableConstraints

Chapter 13. Model Query Functions 693

SectionIdentifiers

The function SectionIdentifiers determines which identifiers are declared

within a specific section in the model tree.

SectionIdentifiers(

SectionName ! (input) scalar element parameter

)

Arguments:

SectionName

An element expression in the set AllSections specifying the section

for which the identifiers should be listed.

Return value:

This function returns a subset of AllIdentifiers containing all the

identifiers that are declared within the specified section, excluding the

section itself and its prefix (if the section is a module or library). When

SectionName is the empty element, the empty set is returned.

Chapter 13. Model Query Functions 694

VariableConstraints

The function VariableConstraints returns all the symbolic constraints that

refer to one or more variables in a given set of variables.

VariableConstraints(

Variables ! (input) a subset of AllVariables

)

Arguments:

Variables

The set of variables for which you want to retrieve the constraints

that refer to them. This is a subset of AllVariables.

Remarks:

This function operates on the compiled definition of constraints; it will

skip inline variables during the recursion step.

Return value:

The function returns a subset of the set AllConstraints, containing the

constraints found.

See also:

The functions ConstraintVariables and ReferencedIdentifiers.

Chapter 14

Model Edit Functions

Aimms supports the following functions for model editing:

� me::AllowedAttribute

� me::ChangeType

� me::ChangeTypeAllowed

� me::ChildTypeAllowed

� me::Children

� me::Compile

� me::Create

� me::CreateLibrary

� me::Delete

� me::ExportNode

� me::GetAttribute

� me::ImportLibrary

� me::ImportNode

� me::IsRunnable

� me::Move

� me::Parent

� me::Rename

� me::SetAttribute

Chapter 14. Model Edit Functions 696

me::AllowedAttribute

The function me::AllowedAttribute returns 1 if the attribute is allowed for the

runtime id.

me::AllowedAttribute(

runtimeId, ! (input) an element

attr ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

attr

An element in the set AllAttributeNames

Return value:

Returns 1 if the attribute attr of runtime identifier runtimeId is allowed.

When runtimeId doesn’t reference a runtime identifier an error will be

raised.

See also:

The procedures me::SetAttribute and me::Create.

Chapter 14. Model Edit Functions 697

me::ChangeType

The procedure me::ChangeType changes the type of a runtime identifier.

me::ChangeType(

runtimeId, ! (input) an element

newType ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

newType

An element in the set AllIdentifierTypes.

Return value:

Returns 1 if the change type operation is successful, 0 otherwise. In the

latter case error(s) have been raised. When runtimeId doesn’t reference a

runtime identifier an error will be raised.

See also:

The functions me::Create and me::Move.

Chapter 14. Model Edit Functions 698

me::ChangeTypeAllowed

The function me::ChangeTypeAllowed returns 1 if the type of runtime identifier

runtimeId can be changed into type newType.

me::ChangeTypeAllowed(

runtimeId, ! (input) an element

newType ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

newType

An element in the set AllIdentifierTypes.

Return value:

Returns 1 if the identifier runtimeId can be changed into newType. When

runtimeId doesn’t reference a runtime identifier an error will be raised.

See also:

The functions me::Create and me::Move.

Chapter 14. Model Edit Functions 699

me::ChildTypeAllowed

The function me::ChildTypeAllowed returns 1 if a child of type newType can be

added as a child to runtime identifier runtimeId..

me::ChildTypeAllowed(

runtimeId, ! (input) an element

newType ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

newType

An element in the set AllIdentifierTypes.

Return value:

Returns 1 if the identifier of type newType can be added as a child to

identifier runtimeId. When runtimeId doesn’t reference a runtime identifier

an error will be raised.

See also:

The functions me::Create and me::Move.

Chapter 14. Model Edit Functions 700

me::Children

The procedure me::Children returns the number of children of a runtime

identifier and fills an output parameter with those children.

me::Children(

runtimeId, ! (input) an element

runtimeChildren(i) ! (output) indexed element parameter.

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

runtimeChildren

The children in the runtime identifier tree. This parameter needs to

be an output parameter indexed over a (subset of) the set Integers.

Return value:

This procedure returns the number of children of runtimeId. When

runtimeId doesn’t reference a runtime identifier an error will be raised.

See also:

The functions me::Parent and me::GetAttribute.

Chapter 14. Model Edit Functions 701

me::Compile

The procedure me::Compile compiles a runtime identifier and all runtime

identifiers below that identifier. If that runtime identifier is a runtime library,

all procedures can be run and set / parameter definitions can be evaluated

provided there are no errors.

me::Compile(

runtimeId ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

Return value:

Returns 1 if the compilation operation is successful, 0 otherwise. In the

latter case error(s) have been raised. When runtimeId doesn’t reference a

runtime identifier an error will be raised.

See also:

� The functions me::IsRunnable and the APPLY statement 10.3.1.

� The Aimms blog post: Getting value of a dynamic identifier illustrates

the use of model edit functions. The purpose of me::Compile in that post

is to check the code in the runtime library and prepare it for execution.

http://blog.aimms.com/2011/11/getting-value-of-a-dynamic-identifier/

Chapter 14. Model Edit Functions 702

me::Create

The function me::Create creates a runtime identifier.

me::Create(

name, ! (input) a string

newType, ! (input) an element

parentId, ! (input) an element

pos ! (optional) an integer

)

Arguments:

name

A string that is valid name for a runtime identifier.

newType

An element in the set AllIdentifierTypes.

parentId

An element in the set AllSymbols referencing a runtime identifier.

pos

1 is the first position, and 0 means ”place at end”, the default is 0.

Return value:

Returns an element in AllSymbols if successful or the empty element

otherwise. In the latter case error(s) have been raised. When runtimeId

doesn’t reference a runtime identifier an error will be raised.

See also:

� The functions me::Delete and me::SetAttribute.

� The Aimms blog post: Getting value of a dynamic identifier illustrates

the use of model edit functions. The purpose of me::Create in that post

is to create the procedure that does the actual retrieving of the data.

http://blog.aimms.com/2011/11/getting-value-of-a-dynamic-identifier/

Chapter 14. Model Edit Functions 703

me::CreateLibrary

The function me::CreateLibrary creates a new runtime library.

me::CreateLibrary(

libraryName, ! (input) a string

prefixName ! (optional) a string

)

Arguments:

libraryName

The name of the new runtime library.

prefixName

The name of the new prefix, when not specified one is generated from

the libraryName.

Return value:

The function returns an element in the set AllIdentifiers referencing the

library when successful and the empty element upon failure. In the latter

case at least one error has been raised.

See also:

� The functions me::ImportLibrary and me::Create.

� The Aimms blog post: Getting value of a dynamic identifier illustrates

the use of model edit functions.

http://blog.aimms.com/2011/11/getting-value-of-a-dynamic-identifier/

Chapter 14. Model Edit Functions 704

me::Delete

The procedure me::Delete a runtime identifier and all runtime identifiers

below that identifier.

me::Delete(

runtimeId ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

Return value:

Returns 1 if the delete operation is successful, 0 otherwise. In the latter

case error(s) have been raised. When runtimeId doesn’t reference a

runtime identifier an error will be raised.

See also:

� The functions me::Children and me::GetAttribute.

� The Aimms blog post: Getting value of a dynamic identifier illustrates

the use of model edit functions. The purpose of me::Delete in that post

is to remove an old existing library before creating a new one.

http://blog.aimms.com/2011/11/getting-value-of-a-dynamic-identifier/

Chapter 14. Model Edit Functions 705

me::ExportNode

The procedure me::ExportNode writes a section to file.

me::ExportNode(

esection, ! (input) section element.

filename) ! (input) a string

Arguments:

esection

An element in the set AllIdentifiers referencing a runtime library or

a section in a runtime library.

filename

The name of file to which the section is written. The filename should

have the .ams extension.

Return value:

The procedure returns 1 if the file is written successfully. If the procedure

fails to write the file it returns 0 after raising errors.

See also:

The functions me::CreateLibrary, me::ImportLibrary and me::ImportNode.

Chapter 14. Model Edit Functions 706

me::GetAttribute

The function me::GetAttribute returns the contents of an attribute as a string.

me::GetAttribute(

runtimeId, ! (input) an element

attr ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

attr

An element in the set AllAttributeNames

Return value:

Returns the contents of the attribute attr of runtime identifier runtimeId

as a string. When runtimeId doesn’t reference a runtime identifier an error

will be raised.

See also:

The procedures AttributeToString, me::SetAttribute and me::Create.

Chapter 14. Model Edit Functions 707

me::ImportLibrary

The function me::ImportLibrary reads a runtime library from an .ams file.

me::ImportLibrary(

filename) ! (input) a string

Arguments:

filename

The name of file that contains a runtime library.

Return value:

The function returns an element in the set AllIdentifiers referencing the

library when successful and the empty element upon failure. In the latter

case at least one error has been raised.

See also:

The functions me::CreateLibrary, me::ImportNode and me::ExportNode.

Chapter 14. Model Edit Functions 708

me::ImportNode

The procedure me::ImportNode reads a section from file.

me::ImportNode(

esection, ! (input) section element.

filename) ! (input) a string

Arguments:

esection

An element in the set AllIdentifiers referencing a section in a

runtime library.

filename

The name of file that contains a runtime library. The filename should

have the .ams extension.

Return value:

The procedure returns 1 if the file is read successfully. If the procedure

fails to read the file it returns 0 after raising errors.

See also:

The functions me::CreateLibrary and me::ExportNode.

Chapter 14. Model Edit Functions 709

me::IsRunnable

The function me::IsRunnable determines whether or not the runtime identifier

resides in a runtime library for which all procedures are runnable and all

definitions can be evaluated.

me::IsRunnable(

runtimeId ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

Return value:

The function returns 1 iff runtimeId resides in a runtime library where all

procedures are runnable and all definitions can be evaluated. When

runtimeId doesn’t reference a runtime identifier an error will be raised.

See also:

The functions me::Compile and me::IsReadonly.

Chapter 14. Model Edit Functions 710

me::Move

The procedure me::Move renames a runtime identifier. In addition, when the

move changes the namespace of the runtime identifier all text within the

runtime library referencing that runtime identifier will be adapted

accordingly.

me::Move(

runtimeId, ! (input) an element

parentid, ! (input) an element

pos ! (input) integer

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

parentid

An element in the set AllIdentifiers referencing a runtime identifeir

in the same runtime library.

pos

An integer position in the section. 1 is the first position, and 0 means

”place at end”.

Return value:

Returns 1 if the move operation is successful, 0 otherwise. In the latter

case error(s) have been raised. When runtimeId doesn’t reference a

runtime identifier an error will be raised.

Remarks:

The name change file is not supported for runtime libraries.

See also:

The functions me::ChangeType and me::Rename.

Chapter 14. Model Edit Functions 711

me::Parent

The function me::Parent returns the parent of a runtime identifier.

me::Parent(

runtimeId ! (input) an element

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

Return value:

The function returns an element in the set AllIdentifiers referencing the

parent of the referenced identifier or the empty element if the referenced

identifier is a runtime library. When runtimeId doesn’t reference a runtime

identifier an error will be raised.

See also:

The functions me::Children and me::GetAttribute.

Chapter 14. Model Edit Functions 712

me::Rename

The procedure me::Rename renames a runtime identifier. In addition, all text

within the runtime library referencing that runtime identifier will be adapted

accordingly.

me::Rename(

runtimeId, ! (input) an element

newname ! (input) a string

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

newname

A string.

Return value:

Returns 1 if the rename operation is successful, 0 otherwise. In the latter

case error(s) have been raised. When runtimeId doesn’t reference a

runtime identifier an error will be raised.

Remarks:

The name change file is not supported for runtime libraries.

See also:

The functions me::ChangeType and me::Move.

Chapter 14. Model Edit Functions 713

me::SetAttribute

The procedure me::SetAttribute changes the type of a runtime identifier.

me::SetAttribute(

runtimeId, ! (input) an element

attr, ! (input) an element

txt ! (input) a string expression

)

Arguments:

runtimeId

An element in the set AllIdentifiers referencing a runtime identifier.

attr

An element in the set AllAttributeNames

txt

The text to be assigned. Using the empty string will effectively delete

the attribute from the runtime identifier.

Return value:

Returns 1 if the text assignment to the attribute is successful, 0 otherwise.

In the latter case error(s) have been raised. When runtimeId doesn’t

reference a runtime identifier an error will be raised.

See also:

� The procedures me::Create and me::ChangeType.

� The Aimms blog post: Getting value of a dynamic identifier illustrates

the use of model edit functions. The purpose of me::SetAttribute in that

post is to specify the body of the procedure that does the actual work.

http://blog.aimms.com/2011/11/getting-value-of-a-dynamic-identifier/

Part IV

Data Management

Chapter 15

Case management

If your project has set the option Data Management style to

Disk files and folders, Aimms supports a set of data management functions,

that allow you to modify the default data management behavior.

There are two groups of functions. The Core functions and the GUI/IDE

related functions.

The core functions allow you to save data to and load data from case files

located on your system. These core functions do not keep track of whether a

specific case file is the current one, nor do they check whether current data

needs to be saved. These core functions are:

� CaseFileLoad

� CaseFileMerge

� CaseFileSave

� CaseFileGetContentType

� CaseCompareIdentifier

� CaseCreateDifferenceFile

� CaseFileSectionExists

� CaseFileSectionGetContentType

� CaseFileSectionLoad

� CaseFileSectionMerge

� CaseFileSectionRemove

� CaseFileSectionSave

� CaseFileURLtoElement

The GUI/IDE related data management functions can be used to create a

specific GUI for your own (modified) data management. They allow you to

re-use some of the default data management features. For example the

selecting of case files using dialog boxes, and the concept of a current case.

� CaseFileSetCurrent

� CaseCommandLoadAsActive

� CaseCommandLoadIntoActive

� CaseCommandMergeIntoActive

� CaseCommandNew

� CaseCommandSave

� CaseCommandSaveAs

� CaseDialogConfirmAndSave

Chapter 15. Case management 716

� CaseDialogSelectForLoad

� CaseDialogSelectForSave

� CaseDialogSelectMultiple

� DataManagementExit

Chapter 15. Case management 717

CaseFileLoad

With the function CaseFileLoad, you can load the data of an existing case file

into memory. All identifiers read from the case file will replace the

corresponding data of the identifier in the current model.

CaseFileLoad(

url, ! (input) a scalar string expression

[keepUnreferencedRuntimeLibs] ! (optional) 0 or 1

)

Arguments:

url

A string referencing the url of the case file that should be loaded.

This url can point to a file on your local file system, or to a network

location.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the data is loaded, but not referenced in the case file,

should be kept in memory or destroyed during the data load. The

default is 0, indicating that the runtime libraries not referenced in the

case file should be destroyed during the case load.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

� Data stored in user sections of the case file, will not be read by

CaseFileLoad.

See also:

The procedure CaseFileMerge.

Chapter 15. Case management 718

CaseFileMerge

With the function CaseFileMerge, you can merge the data of an existing case

file with the current data in memory. When merging, the current data in

memory will only be overwritten by the non-defaults of the identifiers read

from the case file.

CaseFileMerge(

url, ! (input) a scalar string expression

[keepUnreferencedRuntimeLibs] ! (optional) 0 or 1

)

Arguments:

url

A string referencing the url of the case file that should be merged.

This url can point to a file on your local file system, or to a network

location.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the data is loaded, but not referenced in the case file,

should be kept in memory or destroyed during the data load. For a

merge, the default is 1, indicating that the runtime libraries not

referenced in the case will be retained during the case merge.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

� Data stored in user sections of the case file will not be read by

CaseFileMerge.

See also:

The procedure CaseFileLoad

Chapter 15. Case management 719

CaseFileSave

The function CaseFileSave saves a specific subset of identifiers to a case file.

If the file already exists, it is completely overwritten.

CaseFileSave(

url, ! (input) a scalar string expression

contents ! (input) a subset of AllIdentifiers

)

Arguments:

url

A string referencing the url of the case file in which you want to save

the data. This url can point to a file on your local file system, or to a

network location.

contents

A subset of AllIdentifiers containing all the identifiers that must be

saved. Preferrably, this set is an element of AllCaseFileContentTypes

such that, when reading back the case file, the content type can be

determined correctly.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function will only save the data to the specified file. It does not

change the value of CurrentCase or CurrentCaseFileContentType, nor does

it mark the current data as being saved.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

� When you save using CaseFileSave to an existing .data file with sections,

the sections are removed.

See also:

The functions CaseFileSectionSave and CaseFileLoad

Chapter 15. Case management 720

CaseCompareIdentifier

With the function CaseCompareIdentifier you can determine whether or not

two cases differ with respect to a certain identifier.

CaseCompareIdentifier(

FirstCase, ! (input) element in the set AllCases

SecondCase, ! (input) element in the set AllCases

Identifier, ! (input) element in the set AllIdentifiers

Suffix ! (optional) element in the set AllSuffixNames

Mode ! (optional) element in the set AllCaseComparisonModes

)

Arguments:

FirstCase

An element in the set AllCases

SecondCase

An element in the set AllCases

Identifier

An element in the set AllIdentifiers, refering to the specific identifier

that you want to compare.

Suffix

An element in the set AllSuffixNames with respect to which you want

to compare the data.

Mode

An element in the AllCaseComparisonModes with respect to how you

want to compare the data.

Return value:

� For numerical identifiers the function returns the differences between

the values of the identifier in both cases, based on the mode. It can be

the minimum, maximum, average, sum or count of all differences.

� For non-numerical identifiers the function counts the number of

differences between the identifier in both cases.

Chapter 15. Case management 721

CaseCreateDifferenceFile

With the procedure CaseCreateDifferenceFile you can create an Aimms input

file containing the differences between the current data and a reference case.

CaseCreateDifferenceFile(

referenceCase, ! (input) element in the set AllCases

outputFilename, ! (input) scalar string expression

diffTypes, ! (input) indexed element parameter

absoluteTolerance, ! (optional) scalar expression

relativeTolerance, ! (optional) scalar expression

outputPrecision, ! (optional) scalar expression

respectDomainCurrentCase ! (optional) scalar expression

)

Arguments:

referenceCase

An element in the set AllCases specifying the case to which the

current data should be compared.

outputFilename

A string expression specifying the name of the file the differences are

written to.

diffTypes

An element parameter indexed over (a subset of) AllIdentifiers with

range the predeclared set AllDifferencingModes.

absoluteTolerance

A scalar expression specifying the absolute tolerance when

comparing numerical values. The range of this argument is [0, inf),

the default is the value of the option equality absolute tolerance.

relativeTolerance

A scalar expression specifying the relative tolerance when comparing

numerical values. The range of this argument is [0,1], the default is

the value of the option equality relative tolerance.

outputPrecision

A scalar expression specifying how many decimals should be printed.

The range of the argument is {0 . . .20}, the default is the value of the

option listing precision.

respectDomainCurrentCase

A scalar expression specifying whether or not the current domain

should be taken into account. When 0: The current domain is not

taken into account and all differences are written to the output file.

When 1: The current domain is taken into account; the differences are

filtered according to the domain of the identifier.

Chapter 15. Case management 722

Return value:

This procedure returns 0 upon failure, 1 upon success. When successful

all differences between the current model data and the data in the

reference case are written to a file.

Chapter 15. Case management 723

CaseFileGetContentType

The procedure CaseFileGetContentType retrieves the subset reference that was

used when saving the case file.

CaseFileGetContentType(

url, ! (input) a scalar string expression

contents ! (output) a scalar element parameter into the

! set AllSubsetsOfAllIdentifiers

)

Arguments:

url

A string referencing the url of an existing case file from which you

want to retrieve the contents information. This url can point to a file

on your local file system, or to a network location.

contents

An element parameter in AllSubsetsOfAllIdentifiers. On return it

holds the reference to the subset that was used when saving the case

file.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

See also:

The function CaseFileSave.

Chapter 15. Case management 724

CaseFileSectionExists

The function CaseFileSectionExists returns whether a user section exists in a

given case file.

CaseFileSectionExists(

url, ! (input) a scalar string expression

sectionName ! (input) a scalar string expression

)

Arguments:

url

A string referencing the url an existing case file. This url can point to

a file on your local file system, or to a network location.

sectionName

The name of the user section. Any leading or trailing spaces in the

name are ignored, and an empty string is not allowed. The length of

the name is limited to 27 characters.

Return value:

The procedure returns 1 if the section exists or 0 if the section does not

exist. If any other error occurs, the procedure returns −1 and

CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

See also:

The functions CaseFileSectionSave, CaseFileSectionLoad,

CaseFileSectionMerge, CaseFileSectionRemove

Chapter 15. Case management 725

CaseFileSectionGetContentType

The procedure CaseFileSectionGetContentType retrieves the subset reference

that was used when saving a user section in a case file.

CaseFileSectionGetContentType(

url, ! (input) a scalar string expression

sectionName, ! (input) a scalar string expression

contents ! (output) a scalar element parameter in the

! set AllSubsetsOfAllIdentifiers

)

Arguments:

url

A string referencing the url of an existing case file from which you

want to retrieve the contents information. This url can point to a file

on your local file system, or to a network location.

sectionName

The name of the user section. Any leading or trailing spaces in the

name are ignored, and an empty string is not allowed.

contents

An element parameter in AllSubsetsOfAllIdentifiers. Upon return, it

holds the reference to the subset that was used when saving the user

section in the case file.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

See also:

The functions CaseFileSectionSave, CaseFileGetContentType

Chapter 15. Case management 726

CaseFileSectionLoad

With the function CaseFileSectionLoad, you can load the data of a user section

in an existing case file into memory. All identifiers stored in the case file

section will replace the corresponding data of the identifier in the current

model.

CaseFileSectionLoad(

url, ! (input) a scalar string expression

sectionName, ! (input) a scalar string expression

[keepUnreferencedRuntimeLibs] ! (optional) 0 or 1

)

Arguments:

url

A string referencing the url of the case file that should be loaded.

This url can point to a file on your local file system, or to a network

location.

sectionName

The name of the user section from which you want to load the data.

Any leading or trailing spaces in the name are ignored, and an empty

string is not allowed. The length of the name is limited to 27

characters.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the data is loaded, but not referenced in the case file,

should be kept in memory or destroyed during the data load. The

default is 0, indicating that the runtime libraries not referenced in the

case file should be destroyed during the case load.

Return value:

The procedure returns 1 on success. If any other error occur, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

See also:

The functions CaseFileLoad, CaseFileSectionSave, CaseFileSectionMerge,

CaseFileSectionExists, CaseFileSectionRemove

Chapter 15. Case management 727

CaseFileSectionMerge

With the function CaseFileSectionMerge, you can merge the data of a user

section in an existing case file with the current data in memory. When

merging, the current data in memory will only be overwritten by the

non-defaults of the identifiers stored in the case file section.

CaseFileSectionMerge(

url, ! (input) a scalar string expression

sectionName, ! (input) a scalar string expression

[keepUnreferencedRuntimeLibs] ! (optional) 0 or 1

)

Arguments:

url

A string referencing the url of the case file that should be merged.

This url can point to a file on your local file system, or to a network

location.

sectionName

The name of the user section from which you want to load the data.

Any leading or trailing spaces in the name are ignored, and an empty

string is not allowed. The length of the name is limited to 27

characters.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the data is loaded, but not referenced in the case file,

should be kept in memory or destroyed during the data load. The

default is 0, indicating that the runtime libraries not referenced in the

case file should be destroyed during the case load.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

See also:

The functions CaseFileMerge, CaseFileSectionSave, CaseFileSectionLoad,

CaseFileSectionExists, CaseFileSectionRemove

Chapter 15. Case management 728

CaseFileSectionRemove

The function CaseFileSectionRemove can remove a user section from a

specified existing case file.

CaseFileSectionRemove(

url, ! (input) a scalar string expression

sectionName ! (input) a scalar string expression

)

Arguments:

url

A string referencing the url of an existing case file. This url can point

to a file on your local file system, or to a network location.

sectionName

The name of the user section to remove. Any leading or trailing

spaces in the name are ignored, and an empty string is not allowed.

The length of the name is limited to 27 characters.

Return value:

The function returns 1 if the section was successfully removed or did not

exist at all. It returns 0 if the section exists, but could not be removed. In

case of any other error, the function returns −1 and CurrentErrorMessage

will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

See also:

The functions CaseFileSectionSave, CaseFileSectionLoad,

CaseFileSectionMerge, CaseFileSectionExists

Chapter 15. Case management 729

CaseFileSectionSave

Beside the main data area in a case file, which is written using the function

CaseFileSave, you can store additional data in user defined sections of the

case file. To save data in a user section, you call the function

CaseFileSectionSave.

CaseFileSectionSave(

url, ! (input) a scalar string expression

sectionName, ! (input) a scalar string expression

contents ! (input) a subset of AllIdentifiers

)

Arguments:

url

A string referencing the url of an existing case file in which you want

to save the additional data. This url can point to a file on your local

file system, or to a network location.

sectionName

The name of the section in which you want to write additional data. If

the section does not yet exist, it is created. Otherwise, the existing

contents of the section is replaced by the newly saved data. Any

leading or trailing spaces in the name are ignored, and an empty

string is not allowed. The length of the name is limited to 27

characters.

contents

A subset of AllIdentifiers containing all the identifiers that must be

saved.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

� You cannot use this function to create a new case file. A new case file

can only be created using CaseFileSave.

See also:

The functions CaseFileSave, CaseFileSectionLoad, CaseFileSectionMerge,

CaseFileSectionExists, CaseFileSectionRemove

Chapter 15. Case management 730

CaseFileURLtoElement

For each case file that has been accessed during an Aimms session, a new

element is created in the predefined set AllCases. The predefined string

parameter CaseFileURL is updated accordingly. When working with a selection

of case files, for example in a multiple case view, or in statements with the

case dot notation, you should actually create a subset of AllCases. In that

process, it may be useful to find the corresponding element in AllCases given

the url of a case file.

CaseFileURLtoElement(

url, ! (input) a scalar string expression

caseFileElement, ! (output) element in AllCases

[checkURLExists] ! (optional) 0 or 1

)

Arguments:

url

A string referencing the url of a case file. This url can point to an

existing file on your local file system, or to a network location. The

given url does not need to be present in AllCases a priori.

caseFileElement

On return, this element parameter is set to the element in AllCases

that corresponds to the given url. In other words, the following

condition will be true: CaseFileUrl(caseFileElement) = url.

checkURLExists (optional)

If this value is set to 1 then the procedure always returns 0 if the

specified url cannot be found in the underlying file system. If set to 0

and the underlying file does not exist, the procedure returns 1 if the

corresponding element already existed in AllCases. The default value

is 0.

Return value:

The procedure returns 1 on success. If any error occurs, the procedure

returns 0 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

� If url exists, but is not in CaseFileURL, an element will be added to

AllCases.

Chapter 15. Case management 731

� If url does not exist, but there is a corresponding entry CaseFileURL, the

procedure returns is 1 if checkURLExists is set to 0 and it returns 0 if

checkURLExists is set to 1.

See also:

The procedures CaseDialogSelectMultiple

Chapter 15. Case management 732

CaseFileSetCurrent

The procedure CaseFileSetCurrent sets the predefined element parameter

CurrentCase and, as a result, updates the corresponding field in the status bar

of the IDE.

CaseFileSetCurrent(

url ! (input) a scalar string expression

)

Arguments:

url

A string referencing the url of the case file that should be loaded.

This url can point to a file on your local file system, or to a network

location. If you specify the empty string, the element parameter

CurrentCase will be emptied.

Return value:

The procedure returns 1 on success. If any other error occurs, the

procedure returns 0 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� If your application is linked to the AimmsPRO server, the url can also

point to a case file stored at the server.

Chapter 15. Case management 733

CaseCommandLoadAsActive

The procedure CaseCommandLoadAsActive executes the same code that is behind

the menu command Data-Load Case-As Active in the IDE by default (please

note that you can override items in the Data menu using the options listed

under Project - Data manager - Using disk files and folders - Data menu

overrides). It shows a dialog box in which the user can select a case file, and

subsequently tries to load the data from that file. If the previously active case

needs to be saved, a confirmation dialog box will be displayed first.

Afterwards, the active case will reference the selected case file.

CaseCommandLoadAsActive

Return value:

The procedure returns 1 on success, or 0 if the user cancelled the

operation in one of the dialog boxes. If any other error occurs, the

procedure returns −1 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseCommandLoadIntoActive, CaseCommandMergeIntoActive,

CaseCommandNew, CaseCommandSave, CaseCommandSaveAs

Chapter 15. Case management 734

CaseCommandLoadIntoActive

The procedure CaseCommandLoadIntoActive executes the same code that is

behind the menu command Data-Load Case-Into Active in the IDE by default

(please note that you can override items in the Data menu using the options

listed under Project - Data manager - Using disk files and folders - Data

menu overrides). It shows a dialog box in which the user can select a case file,

and subsequently tries to load the data from that file. The command changes

the data for the active case. It does not set the active case to the selected

case, though.

CaseCommandLoadIntoActive

Return value:

The procedure returns 1 on success, or 0 if the user cancelled the

operation in one of the dialog boxes. If any other error occurs, the

procedure returns −1 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseCommandLoadAsActive, CaseCommandMergeIntoActive,

CaseCommandNew, CaseCommandSave, CaseCommandSaveAs

Chapter 15. Case management 735

CaseCommandMergeIntoActive

The procedure CaseCommandMergeIntoActive executes the same code that is

behind the menu command Data-Load Case-Merging into Active in the IDE

by default (please note that you can override items in the Data menu using

the options listed under Project - Data manager - Using disk files and

folders - Data menu overrides). It shows a dialog box in which the user can

select a case file, and subsequently tries to merge the data from that file. The

command changes the data for the active case. It does not set the active case

to the selected case, though.

CaseCommandMergeIntoActive

Return value:

The procedure returns 1 on success, or 0 if the user cancelled the

operation in one of the dialog boxes. If any other error occurs, the

procedure returns −1 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseCommandLoadAsActive, CaseCommandLoadIntoActive,

CaseCommandNew, CaseCommandSave, CaseCommandSaveAs

Chapter 15. Case management 736

CaseCommandNew

The procedure CaseCommandNew executes the same code that is behind the

menu command Data-New Case in the IDE by default (please note that you

can override items in the Data menu using the options listed under Project -

Data manager - Using disk files and folders - Data menu overrides). If the

data of the currently active case needs to be saved, a confirmation dialog box

will be displayed first. Afterwards, the active case will not refer to any case

file.

CaseCommandNew

Return value:

The procedure returns 1 on success, or 0 if the user cancelled the

operation in one of the dialog boxes. If any other error occurs, the

procedure returns −1 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

� An alternative for calling CaseCommandNew is calling CaseFileSetCurrent

with an empty string. The latter will not check whether the current case

should be saved first.

See also:

The procedures CaseCommandLoadAsActive, CaseCommandLoadIntoActive,

CaseCommandMergeIntoActive, CaseCommandSave, CaseCommandSaveAs

Chapter 15. Case management 737

CaseCommandSave

The procedure CaseCommandSave executes the same code that is behind the

menu command Data-Save Case in the IDE by default (please note that you

can override items in the Data menu using the options listed under Project -

Data manager - Using disk files and folders - Data menu overrides). If there

is no active case yet, this procedure behaves the same as CaseCommandSaveAs.

Otherwise, the active data is saved to the active case file.

CaseCommandSave

Return value:

The procedure returns 1 on success, or 0 if the user cancelled the

operation in one of the dialog boxes. If any other error occurs, the

procedure returns −1 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseCommandLoadAsActive, CaseCommandLoadIntoActive,

CaseCommandMergeIntoActive, CaseCommandNew, CaseCommandSaveAs

Chapter 15. Case management 738

CaseCommandSaveAs

The procedure CaseCommandSaveAs executes the same code that is behind the

menu command Data-Save Case As in the IDE by default (please note that

you can override items in the Data menu using the options listed under

Project - Data manager - Using disk files and folders - Data menu

overrides). It shows a dialog box in which the user can select a (new) case file,

and subsequently tries to save the data to that case file. Afterwards, the

active case will reference the selected case file.

CaseCommandSaveAs

Return value:

The procedure returns 1 on success, or 0 if the user cancelled the

operation in one of the dialog boxes. If any other error occurs, the

procedure returns −1 and CurrentErrorMessage will contain a proper error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseCommandLoadAsActive, CaseCommandLoadIntoActive,

CaseCommandMergeIntoActive, CaseCommandNew, CaseCommandSave

Chapter 15. Case management 739

CaseDialogConfirmAndSave

The procedure CaseDialogConfirmAndSave shows and handles the standard

confirmation dialog box, in which the user is asked whether he wants to save

the currently active data before continuing.

CaseDialogConfirmAndSave

Return value:

The procedure returns 1 if the user chooses not to save the data, or if the

user chooses to save the data and the save was executed successfully. It

returns 0 if the user cancelled any of the dialog boxes. If any other error

occurs, the procedure returns −1 and CurrentErrorMessage will contain a

proper error message.

Remarks:

� This procedure is only applicable if the project option

Data Management style is set to Disk files and folders.

� This procedure returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

� This procedure does not check whether the data needs to be saved; that

check should be made by the calling code, prior to calling this

procedure.

� If the user confirms to save the data, the function CaseDialogSave is

called. If no active case file exists, this implies that the CaseDialogSaveAs

is called instead.

See also:

The procedure DataChangeMonitorAnyChange

Chapter 15. Case management 740

CaseDialogSelectForLoad

The procedure CaseDialogSelectForLoad shows the case file selection dialog

box. This dialog box allows the user to select an existing case file. The

procedure only results in the url of the selected case file, it does not actually

load any data from the case file.

CaseDialogSelectForLoad(

url ! (input/output) a scalar string parameter

)

Arguments:

url

A string representing the case file to be loaded. On entry, the string is

used to initialize the dialog box to the correct folder location. On

return, the string will contain the reference to the selected case file.

Return value:

The procedure returns 1 if the user selected an existing url, and 0 if the

user cancelled the dialog box.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseDialogSelectForSave, CaseFileLoad

Chapter 15. Case management 741

CaseDialogSelectForSave

The procedure CaseDialogSelectForSave shows the case file selection dialog

box. This dialog box allows the user to select an existing or a new case file. If

the selected file already exists, an overwrite confirmation dialog box is

displayed. The procedure only results in the url of the selected case file, it

does not actually create the file or replace the existing contents. If the

predefined set AllCaseFileContentTypes contains multiple elements, then the

dialog box also allows the user to select the specific contents that he wants to

save.

CaseDialogSelectForSave(

url, ! (input/output) a scalar string parameter

contentType ! (input/output) an element in AllCaseFileContentTypes

)

Arguments:

url

A string representing the case file to be saved. On entry, the string is

used to initialize the dialog box to the correct folder location. On

return, the string will contain the reference to the selected case file.

contentType

An element parameter in AllCaseFileContentTypes. On return, this

element parameter will contain the element that the user selected.

Return value:

The procedure returns 1 if the user selected an existing or new url, and 0

if the user cancelled the dialog box.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

See also:

The procedures CaseDialogSelectForLoad, CaseFileSave

Chapter 15. Case management 742

CaseDialogSelectMultiple

The procedure CaseDialogSelectMultiple shows a case file selection dialog box

in which you can select multiple case files. The result is a subset of AllCases

that can be used in multiple case views, or in execution statements with the

case dot notation.

CaseDialogSelectMultiple(

selectedCaseFiles ! (input/output) a subset of AllCases

)

Arguments:

selectedCaseFiles

A subset of AllCases. On entry, this subset is used to initalize the

selection in the dialog box. On return, it contains the subset that has

been selected by the user.

Return value:

The procedure returns 1 if the user selected a set of case files, and 0 if the

user cancelled the dialog box.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Disk files and folders.

� This function returns 0 if the IDE is not loaded, for example when

running the component version of Aimms, or when running with the

command line option --as-server.

� You can use any subset of AllCases as an argument to this function, but

if you want to use it for a multiple case view in one of your pages, you

should use the predefined set CurrentCaseSelection.

� If the subset should have the selected cases in the order as specified in

the dialog, you must make sure that the given subset has the attribute

Order by set to user.

See also:

The procedure CaseFileURLtoElement, the string parameter CaseFileURL and

the set AllCases.

Chapter 15. Case management 743

DataManagementExit

The function DataManagementExit checks whether any data should be saved

according to the active data management style. If any of the data needs

saving, a dialog box is displayed, in which the user can select to save the data,

not to save the data, or to cancel the current operation.

DataManagementExit

Return value:

The procedure returns 1 if the current data does not need to be saved, or

if the user explicitly decided to save or not to save the data. If the user

cancelled the dialog box, or if the saving of the data resulted in an error,

the return value is 0.

Remarks:

� This function is applicable if the project option Data Management style is

set to either Disk files and folders or Single Data Manager file.

� When the project option Data Management style is set to

Disk files and folders, the ”dirty” status can be cleared using the

following statement: DataChangeMonitorReset(DataManagementMonitorID,

AllIdentifiers)

� This function is used as the default content of the procedure

MainTermination, such that upon project close the data management can

check whether any data needs to be saved first.

� This function always returns 1 if the IDE is not loaded, for example

when running the component version of Aimms, or when running with

the command line option --as-server.

See also:

The predeclared identifier DataManagementMonitorID and the intrinsic

function DataChangeMonitorReset

Chapter 16

Data Change Monitor Functions

To keep track of which data has been changed during a session, you can

define one or more Data Change Monitors. The following functions are for

creating and maintaining these monitors:

� DataChangeMonitorCreate

� DataChangeMonitorDelete

� DataChangeMonitorHasChanged

� DataChangeMonitorReset

Chapter 16. Data Change Monitor Functions 745

DataChangeMonitorCreate

With the function DataChangeMonitorCreate, you can create a new data change

monitor. With a data change monitor, you can determine whether any

identifiers in a subset of AllIdentifiers have been changed since the latest

call to DataChangeMonitorCreate or DataChangeMonitorReset. To check for any

changes, you can use DataChangeMonitorHasChanged.

DataChangeMonitorCreate(

ID, ! (input) a scalar string expression

monitoredIdentifiers, ! (input) subset of AllIdentifiers

[excludeNonSaveables] ! (optional) 0 or 1

)

Arguments:

ID

A string identifying a (new) data change monitor.

monitoredIdentifiers

The subset of identifiers that you want to monitor for this data

change monitor.

excludeNonSaveables (optional)

If the data change monitor is used to monitor whether or not a subset

of identifiers needs to be saved, it is unnecessary to include

identifiers that have the Nosave property. If you set this argument to

1, these identifiers will automatically be excluded from the given

subset of identifiers. The default of this argument is 1. This exclusion

is applied also on any subset that is passed in later calls to

DataChangeMonitorReset.

Return value:

The function returns 1 upon success. If there already exists a data change

monitor for the given ID, the function returns 0. In case of any other error,

it returns −1. If the return value is 0 or −1 CurrentErrorMessage will

contain a proper error message.

Remarks:

� The newly created monitor is reset automatically, so there is no need to

call the function DataChangeMonitorReset immediately after creation.

� If your project uses the Data management style ’Disk files and folders’,

Aimms itself uses a data change monitor to keep track of whether the

active data needs to be saved before exiting, or before loading any new

data. The ID of this internal data change monitor is given by the

predeclared string parameter DataManagementMonitorID.

Chapter 16. Data Change Monitor Functions 746

See also:

The functions DataChangeMonitorHasChanged, DataChangeMonitorReset,

DataChangeMonitorDelete.

Chapter 16. Data Change Monitor Functions 747

DataChangeMonitorDelete

With the function DataChangeMonitorDelete, you can delete a data change

monitor that was created using the function DataChangeMonitorCreate.

DataChangeMonitorDelete(

ID ! (input) a scalar string expression

)

Arguments:

ID

A string identifying an existing data change monitor.

Return value:

The function returns 1 upon success. If there exists no data change

monitor for the given ID, the function returns 0. In case of any other error,

it returns −1 and CurrentErrorMessage will contain a proper error message.

See also:

The functions DataChangeMonitorCreate, DataChangeMonitorReset,

DataChangeMonitorHasChanged.

Chapter 16. Data Change Monitor Functions 748

DataChangeMonitorHasChanged

The function DataChangeMonitorHasChanged returns whether the data of any

identifier that is monitored by the specified data change monitor has been

changed since a previous call to DataChangeMonitorCreate or

DataChangeMonitorReset.

DataChangeMonitorHasChanged(

ID ! (input) a scalar string expression

)

Arguments:

ID

A string identifying an existing data change monitor.

Return value:

The function returns 1 if any of the identifiers monitored by the data

change monitor has been changed since a previous call to either

DataChangeMonitorCreate or DataChangeMonitorReset. If none of the

identifiers has been changed, the function returns 0. In case of any other

error, it returns −1 and CurrentErrorMessage will contain a proper error

message. If the monitored set contains identifiers that were not present in

that set at the previous call to either DataChangeMonitorCreate or

DataChangeMonitorReset, these identifiers are assumed to be changed, and

the function returns 1 as well.

Remarks:

� Calling DataChangeMonitorHasChanged does not reset the data change

monitor.

See also:

The functions DataChangeMonitorCreate, DataChangeMonitorReset,

DataChangeMonitorDelete.

Chapter 16. Data Change Monitor Functions 749

DataChangeMonitorReset

The function DataChangeMonitorReset assigns a new set of identifiers to an

existing data change monitor and resets the monitor to the ’unchanged’

status.

DataChangeMonitorReset(

ID, ! (input) a scalar string expression

monitoredIdentifiers ! (input) subset of AllIdentifiers

)

Arguments:

ID

A string identifying an existing data change monitor.

monitoredIdentifiers

The subset of identifiers that should be monitored by the data change

monitor.

Return value:

The function returns 1 upon success. If there exists no data change

monitor for the given ID, the function returns 0. In case of any other error

it returns −1 and CurrentErrorMessage will contain a proper error message.

See also:

The functions DataChangeMonitorCreate, DataChangeMonitorHasChanged,

DataChangeMonitorDelete.

Chapter 17

Database Functions

Aimms supports the following database related functions:

� CloseDataSource

� CommitTransaction

� DirectSQL

� LoadDatabaseStructure

� RollbackTransaction

� SaveDatabaseStructure

� StartTransaction

� TestDataSource

� TestDatabaseTable

� TestDatabaseColumn

� GetDataSourceProperty

� SQLCreateConnectionString

� SQLNumberOfColumns

� SQLNumberOfTables

� SQLNumberOfViews

� SQLNumberOfDrivers

� SQLColumnData

� SQLTableName

� SQLViewName

� SQLDriverName

Chapter 17. Database Functions 751

CloseDataSource

With the procedure CloseDataSource you can temporarily close the connection

to a data source. Aimms automatically opens the connection to a data source

if needed, and closes the connection when the project is exited.

CloseDataSource(

Datasource ! (input) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

Remarks:

When CloseDataSource is called during a transaction that was explicitly

started by calling StartTransaction the transaction is rolled back before

actually closing the data source. CurrentErrorMessage contains a message

telling it did so.

Chapter 17. Database Functions 752

CommitTransaction

By default, Aimms places a transaction around any single WRITE statement to a

database table. In this way, Aimms makes sure that the complete WRITE

statement can be rolled back in the event of a database error during the

execution of that WRITE statement. With the procedure CommitTransaction you

can commit all the changes to the database (through WRITE statements or SQL

queries) made since the last call to StartTransaction.

CommitTransaction

Arguments:

None

Return value:

The procedure returns 1 if the transaction was committed successfully, or

0 otherwise.

See also:

The procedures StartTransaction, RollbackTransaction.

Chapter 17. Database Functions 753

DirectSQL

With the procedure DirectSQL you can directly execute SQL statements within

a data source.

DirectSQL(

Datasource, ! (input) a string expression

SQLstatement ! (input) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

SQLstatement

A string containing the SQL statement that must be executed within

the data source.

Return value:

The procedure returns 1 if the SQL statement is executed successfully, or

0 if the execution failed. In case of failure, the corresponding error

message can be obtained through the predefined string parameter

CurrentErrorMessage.

Remarks:

� If the SQL statement also produces a result set, then this set is ignored

by Aimms.

� Note that the SQL dialect used by, for instance, Oracle, SQL Server and

Microsoft Access may differ. If a call to DirectSQL fails because of such

differences, you should inspect CurrentErrorMessage for further details.

See also:

Calling stored procedures and executing SQL queries through Aimms

DATABASE PROCEDURES is discussed in Section 27.5 of the Language

Reference.

Chapter 17. Database Functions 754

LoadDatabaseStructure

The Aimms Read ...From Table ... and Write ...To Table ... statements

offer a very flexible way to connect to data tables stored in an ODBC

compliant database. The Aimms execution engine queries the structure of the

corresponding database tables in order to check whether the connection

between the table in the database and the Aimms identifiers can be set up in a

valid way, and, if so, how to handle the statements efficiently. Retrieving

structural information may cost a significant amount of time, depending on

the number of tables, the quality of the network and the quality of the ODBC

database driver implementation in providing this information. Although

Aimms already buffers this information for each table after first use,

retrieving this information anew each Aimms run might still be prohibitively

expensive in some cases. Therefore, Aimms offers intrinsic database functions

to empower the app developer with caching this information outside Aimms.

With the procedure LoadDatabaseStructure you can load the cached database

table structure information.

LoadDatabaseStructure(

Filename ! (input) a string expression

)

Arguments:

Datasource

A string containing the name of the file containing the database table

structure information.

Return value:

The procedure returns 1 if the database table structure information is

successfully loaded, or 0 otherwise.

See also:

The procedure SaveDatabaseStructure

Chapter 17. Database Functions 755

RollbackTransaction

By default, Aimms places a transaction around any single WRITE statement to a

database table. In this way, Aimms makes sure that the complete WRITE

statement can be rolled back in the event of a database error during the

execution of that WRITE statement. With the procedure RollbackTransaction

you can rollback (undo) all the changes to the database (through WRITE

statements or SQL queries) made since the last call to StartTransaction.

RollbackTransaction

Arguments:

None

Return value:

The procedure returns 1 if the transaction was rolled back successfully, or

0 otherwise.

See also:

The procedures StartTransaction, RollbackTransaction.

Chapter 17. Database Functions 756

SaveDatabaseStructure

With the procedure SaveDatabaseStructure you can save the database table

structure information such that this information is quickly retrieved in

subsequent Aimms sessions. Please note that you should first make sure that

you have connected to all datasources involved. Information for tables

contained in non-connected datasources is not stored. In order to connect to

a datasource, you should either run a read or write statement using one of its

tables, or open the mapping wizard of one of its database tables.

SaveDatabaseStructure(

Filename ! (input) a string expression

)

Arguments:

Filename

A string containing the name of a data source.

Return value:

The procedure returns 1 if the database table structure is succesfully

saved to file Filename, or 0 otherwise.

See also:

The procedure LoadDatabaseStructure.

Chapter 17. Database Functions 757

StartTransaction

By default, Aimms places a transaction around any single WRITE statement to a

database table. In this way, Aimms makes sure that the complete WRITE

statement can be rolled back in the event of a database error during the

execution of that WRITE statement. With the procedure StartTransaction you

can manually initiate a database transaction which can contain multiple READ,

WRITE statements and SQL queries.

StartTransaction(

IsolationLevel ! (optional) an element expression

)

Arguments:

IsolationLevel

Element value into the set AllIsolationLevels, indicating the isolation

level at which the transaction has to take place. If omitted, defaults to

’ReadCommitted’.

Return value:

The procedure returns 1 if the transaction was started successfully, or 0

otherwise.

Remarks:

You cannot call StartTransaction recursively, i.e. you must call

CommitTransaction or RollbackTransaction prior to the next call to

StartTransaction.

See also:

The procedures CommitTransaction and RollbackTransaction.

Chapter 17. Database Functions 758

TestDataSource

With the procedure TestDataSource you can test for the presence of a data

source on a host computer, before reading or writing to it. If you try to read

or write to a non-existing data source, Aimms will generate error messages

which may be confusing for your end users.

TestDataSource(

Datasource, ! (input) a string expression

interactive, ! (input/optional) an integer, default 1

timeout ! (input/optional) unit: seconds, default 30

)

Arguments:

Datasource

A string containing the name of a data source.

interactive

When non-zero: if additional (logon) information is required a

window is popped up. When zero: if additional (logon) information is

required, the procedure will return immediately with the value 0.

timeout

When the timeout is expired the procedure TestDataSource will

return with the value 0.

Return value:

The procedure returns 1 if the data source is present, or 0 otherwise. If

the result is 0, the pre-defined identifier CurrentErrorMessage will contain a

proper error message.

See also:

The procedures TestDatabaseTable and TestDatabaseColumn.

Chapter 17. Database Functions 759

TestDatabaseTable

With the procedure TestDatabaseTable you can check whether a given table

name exists in a specific data source.

TestDatabaseTable(

Datasource, ! (input) a string expression

Tablename ! (input) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

Tablename

A string containing the name of a table in Datasource.

Return value:

The procedure returns 1 if the database table is present in the given data

source, or 0 otherwise. If the result is 0, the pre-defined identifier

CurrentErrorMessage will contain a proper error message.

Remarks:

The Tablename argument of the procedure TestDatabaseTable is case

sensitive if the ODBC driver is case sensitive.

See also:

The procedures TestDataSource and TestDatabaseColumn.

Chapter 17. Database Functions 760

TestDatabaseColumn

With the procedure TestDatabaseColumn you can check whether a given column

is present in a database table on a specific datasource.

TestDatabaseColumn(

Datasource, ! (input) a string expression

TableName ! (input) a string expression

ColumnName ! (input) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

TableName

A string containing the name of a table in Datasource.

ColumnName

A string containing the name of a column in the TableName.

Return value:

The procedure returns 1 if the column name is present in the given

database table, or 0 otherwise. If the result is 0, the pre-defined identifier

CurrentErrorMessage will contain a proper error message.

Remarks:

The TableName and ColumnName arguments of the procedure

TestDatabaseColumn are case sensitive if the ODBC driver is case sensitive.

See also:

The procedures TestDataSource and TestDatabaseTable.

Chapter 17. Database Functions 761

GetDataSourceProperty

With the function GetDataSourceProperty you can retrieve some meta-data

about a datasource. This is useful, when you don’t know beforehand what

kind of datasource will be linked with your Aimms project. It allows you to

provide datasource-specific SQL Queries in your project, which you can then

call based upon what datasource is actually linked to your project. For

example, you can determine with this function that the actual datasource is

an Oracle database, and then execute some Oracle-specific SQL Queries.

GetDataSourceProperty(

Datasource, ! (input) a string expression

Property, ! (input) an element in the set

AllDataSourceProperties

)

Arguments:

Datasource

A string containing the name of a data source.

Property

An element parameter in the set AllDataSourceProperties.

Return value:

The function returns a string with the requested datasource property in it.

Remarks:

The actual string which is returned depends on the datasource used. As

an example of the datasource dependency of the function: retrieving the

property SQL DATA SOURCE NAME may return "null" for a MySQL ODBC

datasource, while it returns the actual name of your datasource when you

retrieve it for an Oracle database. This means that you should experiment

with the return values a bit, to make sure that you understand what values

to expect for your specific datasource(s).

Chapter 17. Database Functions 762

SQLNumberOfColumns

With the function SQLNumberOfColumns you can determine the number of

columns of a database table.

SQLNumberOfColumns(

Datasource, ! (input) a string expression

TableName, ! (input) a string expression

Owner ! (input/optional) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

TableName

A string containing the name of the database table for which the

number of columns must be determined.

Owner

A string containing the owner of the database table for which the

number of columns must be determined. If the datasource doesn’t

support the owner concept, but the owner argument is specified, an

error will be raised.

Return value:

The function returns the number of columns in the specified database

table. If the database table doesn’t exist, an error is raised.

See also:

The functions SQLNumberOfViews, SQLNumberOfTables and SQLColumnData.

Chapter 17. Database Functions 763

SQLNumberOfDrivers

With the function SQLNumberOfDrivers you can determine the number of

installed ODBC drivers on your system.

SQLNumberOfDrivers(

DatabaseInterface, ! (input) an element expression

)

Arguments:

DatabaseInterface

Element value into the set AllDatabaseInterfaces. Currently, this set

contains only the value ’ODBC’.

Return value:

The function returns the number of installed ODBC drivers on your

system (using ’ODBC’ as argument). In case none are installed, the value 0

is returned. In case of an error, -1 is returned.

Remarks:

This function should be used in combination with the function

SQLDriverName, to determine all ODBC drivers installed on your system.

See also:

The functions SQLDriverName and SQLCreateConnectionString.

Chapter 17. Database Functions 764

SQLNumberOfTables

With the function SQLNumberOfTables you can determine the number of tables

in a datasource.

SQLNumberOfTables(

Datasource, ! (input) a string expression

Owner ! (input/optional) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

owner

A string containing the owner for which the number of tables must be

determined. If the datasource doesn’t support the owner concept, but

the owner argument is specified, an error will be raised.

Return value:

The function returns the number of tables in the specified datasource. If

there are no tables for the specified datasource and owner, 0 is returned.

If an error occurs when determining the number of tables, -1 is returned

and an error message is displayed in the error window.

See also:

The functions SQLNumberOfViews, SQLNumberOfColumns and SQLTableName.

Chapter 17. Database Functions 765

SQLNumberOfViews

With the function SQLNumberOfViews you can determine the number of views in

a datasource.

SQLNumberOfViews(

Datasource, ! (input) a string expression

Owner ! (input/optional) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

Owner

A string containing the owner for which the number of views must be

determined. If the datasource doesn’t support the owner concept, but

the owner argument is specified, an error will be raised.

Return value:

The function returns the number of views in the specified datasource. If

there are no views for the specified datasource and owner, 0 is returned. If

an error occurs when determining the number of views, -1 is returned and

an error message is displayed in the error window.

See also:

The functions SQLNumberOfTables, SQLNumberOfColumns and SQLViewName.

Chapter 17. Database Functions 766

SQLColumnData

With the function SQLColumnData you can determine the characteristics of a

certain column of a database table.

SQLColumnData(

Datasource, ! (input) a string expression

TableName, ! (input) a string expression

ColumnNumber, ! (input) an integer expression

Owner, ! (input/optional) a string expression

ColumnCharacteristic ! (input/optional) an element in set AllData-

ColumnCharacteristics, with default

value ’Name’

)

Arguments:

Datasource

A string containing the name of a data source.

TableName

A string containing the name of the database table of the column for

which to retrieve a characteristic.

ColumnNumber

An integer containing the number of the column for which to retrieve

a characteristic. The maximum value of this argument can be

obtained by calling the function SQLNumberOfColumns prior to calling

this function. The minimum value of this argument is 1.

Owner

A string containing the owner of the database table. If the datasource

doesn’t support the owner concept, but the owner argument is

specified, an error will be raised.

ColumnCharacteristic

An element in the set AllDataColumnCharacteristics, which contains

all possible characteristics to obtain for a column.

Return value:

The function returns the specified characteristic, as a string value. This

means that also the numerical characteristics (’Width’, ’NumberOfDecimals’

and (possibly) ’DefaultValue’) are returned as string values. So, if you

want to use these results in their numeric form, please use the function

Val.

Remarks:

Typically, this function will be used in a construction like the following, to

ensure that the right ColumnNumber argument is passed:

Chapter 17. Database Functions 767

NumberOfColumns := SQLNumberOfColumns("MyDataSource", "MyTable");

ColCount := 1;

while ColCount <= NumberOfColumns do

for IndexDataColumnCharacteristics do

Characteristic := SQLColumnData(MyDataSource, "MyTable", ColCount, "",

IndexDataColumnCharacteristics);

! Do something with the characteristic

endfor;

ColCount += 1;

endwhile;

See also:

The functions SQLNumberOfColumns and Val.

Chapter 17. Database Functions 768

SQLDriverName

With the function SQLDriverName you can determine the name of a certain

ODBC driver on your system. This function is designed to be used in

conjunction with the SQLNumberOfDrivers function.

SQLDriverName(

DatabaseInterface, ! (input) an element expression

DriverNo, ! (input) an integer expression

)

Arguments:

DatabaseInterface

Element value into the set AllDatabaseInterfaces. Currently, this set

contains only the value ’ODBC’.

DriverNo

An integer containing the number of the ODBC driver for which you

want to retrieve the name. To determine the maximum value of this

argument, please use the function SQLNumberOfDrivers prior to calling

this function. The minimum value of this argument is 1.

Return value:

The function returns the name of the ODBC driver (specified by the

DatabaseInterface argument), with the number as specified through the

DriverNo argument. If you specify a number outside of the correct range,

Aimms will display an error message.

Remarks:

Typically, this function can best be used in a construction like the

following:

NumberOfDrivers := SQLNumberOfDrivers(’ODBC’);

while LoopCount <= NumberOfDrivers do

DriverName := SQLDriverName(’ODBC’, LoopCount);

! Do something with the retrieved table name here...

endwhile;

The retrieved name of an ODBC driver, can be used as argument in the

function SQLCreateConnectionString.

See also:

The functions SQLNumberOfDrivers and SQLCreateConnectionString.

Chapter 17. Database Functions 769

SQLTableName

With the function SQLTableName you can determine the name of a certain table

in a datasource. This function is designed to be used in conjunction with the

SQLNumberOfTables function.

SQLTableName(

Datasource, ! (input) a string expression

TableNo, ! (input) an integer expression

Owner ! (input/optional) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

TableNo

An integer containing the number of the table for which you want to

retrieve the name. To determine the maximum value of this

argument, please use the function SQLNumberOfTables prior to calling

this function. The minimum value of this argument is 1.

Owner

A string containing the owner of the table for which the name must

be determined. If the datasource doesn’t support the owner concept,

but the owner argument is specified, an error will be raised.

Return value:

The function returns the name of the table, with the number as specified

through the TableNo argument.

Remarks:

Typically, this function can best be used in a construction like the

following:

NumberOfTables := SQLNumberOfTables("MyDataSource");

while LoopCount <= NumberOfTables do

TableName := SQLTableName("MyDataSource", LoopCount);

! Do something with the retrieved table name here...

endwhile;

See also:

The functions SQLNumberOfTables and SQLViewName.

Chapter 17. Database Functions 770

SQLViewName

With the function SQLViewName you can determine the name of a certain view

in a datasource. This function is designed to be used in conjunction with the

SQLNumberOfViews function.

SQLViewName(

Datasource, ! (input) a string expression

TableNo, ! (input) an integer expression

Owner ! (input/optional) a string expression

)

Arguments:

Datasource

A string containing the name of a data source.

ViewNo

An integer containing the number of the view for which you want to

retrieve the name. To determine the maximum value of this

argument, please use the function SQLNumberOfViews prior to calling

this function. The minimum value of this argument is 1.

Owner

A string containing the owner of the view for which the name must be

determined. If the datasource doesn’t support the owner concept, but

the owner argument is specified, an error will be raised.

Return value:

The function returns the name of the view, with the number as specified

through the ViewNo argument.

Remarks:

Typically, this function can best be used in a construction like the

following:

NumberOfViews := SQLNumberOfViews("MyDataSource");

while LoopCount <= NumberOfViews do

ViewName := SQLViewName("MyDataSource", LoopCount);

! Do something with the retrieved view name here...

endwhile;

See also:

The functions SQLNumberOfViews and SQLTableName.

Chapter 17. Database Functions 771

SQLCreateConnectionString

The function SQLCreateConnectionString assists you in creating a connection

string, which can be used to specify the Data source attribute of database

tables, functions or procedures. Using a connection string to connect to a

data source, makes it possible to keep your database passwords hidden.

SQLCreateConnectionString(

DatabaseInterface, ! (input) an element expression

DriverName, ! (input) a string expression

[ServerName], ! (optional) a string expression

[DatabaseName], ! (optional) a string expression

[UserId], ! (optional) a string expression

[Password], ! (optional) a string expression

[AdditionalConnectionParameters] ! (optional) a string expression

)

Arguments:

DatabaseInterface

Element value into the set AllDatabaseInterfaces. Currently, this set

contains only the value ’ODBC’.

DriverName

A string containing the name of the ODBC driver to which you want to

connect using the resulting connection string. See the functions

SQLNumberOfDrivers and SQLDriverName on how to obtain the

driver/provider name.

ServerName (optional)

A string containing the name of the server on which the data source

to connect to is hosted.

DatabaseName (optional)

A string containing the name of the database to which you want to

connect.

UserId (optional)

A string containing the user id with which to login on the datasource.

Password

A string containing the password to use when logging in on the

datasource. The password will not be part of the resulting string, but

will be stored internally, making it possible to communicate by means

of the connectionstring without revealing the credentials.

AdditionalConnectionParameters (optional)

A string containing any additional connection parameters to be

passed to the data source using the resulting connection string. These

additional parameters should be specified in the form KEYWORD=VALUE,

and these keyword/value pairs must be separated by semi-colons.

Chapter 17. Database Functions 772

Different drivers/providers accept different keywords. Please refer to

the documentation of your ODBC driver for more information.

Return value:

The function returns a connection string, which can be used to connect to

a data source on your system.

Remarks:

The returned connection string can be used as the data source attribute of

database related identifiers in Aimms. Also, it can be used in database

related functions (e.g. SQLDirect) as the Datasource argument.

See also:

The functions SQLNumberOfDrivers and SQLDriverName.

Chapter 18

Spreadsheet Functions

Aimms supports the following functions for reading from and writing to Excel

and OpenOffice Calc workbooks:

� Spreadsheet::ColumnName

� Spreadsheet::ColumnNumber

� Spreadsheet::SetVisibility

� Spreadsheet::SetActiveSheet

� Spreadsheet::SetUpdateLinksBehavior

� Spreadsheet::SetOption

� Spreadsheet::AssignValue

� Spreadsheet::RetrieveValue

� Spreadsheet::AssignSet

� Spreadsheet::RetrieveSet

� Spreadsheet::AssignParameter

� Spreadsheet::RetrieveParameter

� Spreadsheet::AssignTable

� Spreadsheet::RetrieveTable

� Spreadsheet::ClearRange

� Spreadsheet::CopyRange

� Spreadsheet::AddNewSheet

� Spreadsheet::DeleteSheet

� Spreadsheet::GetAllSheets

� Spreadsheet::RunMacro

� Spreadsheet::CreateWorkbook

� Spreadsheet::SaveWorkbook

� Spreadsheet::CloseWorkbook

� Spreadsheet::Print

The functions operate on OpenOffice Calc workbooks, if the WorkbookName

argument ends in .ods. In all other cases, the functions operate on Excel

workbooks.

Chapter 18. Spreadsheet Functions 774

Spreadsheet::ColumnName

The function Spreadsheet::ColumnName returns the name of the Excel or

OpenOffice Calc column with the given number.

Spreadsheet::ColumnName(

ColumnNumber ! (input) scalar numerical expression

)

Arguments:

ColumnNumber

A scalar integer expression representing the column number for

which to determine the name.

Return value:

The function returns a string representing the column name

corresponding to the ColumnNumber. If it fails, Aimms issues an error

message and execution is halted.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelColumnName, which

has become deprecated as of Aimms 3.12.

See also:

The function Spreadsheet::ColumnNumber.

Chapter 18. Spreadsheet Functions 775

Spreadsheet::ColumnNumber

The function Spreadsheet::ColumnNumber returns the number of the Excel or

OpenOffice Calc column with the given name.

Spreadsheet::ColumnNumber(

ColumnName ! (input) scalar string expression

)

Arguments:

ColumnName

A scalar string expression representing the column name for which to

determine the number.

Return value:

The function returns an integer representing the column number

corresponding to the ColumnName. If it fails, Aimms issues an error

message and execution is halted.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelColumnNumber, which

has become deprecated as of Aimms 3.12.

See also:

The function Spreadsheet::ColumnName.

Chapter 18. Spreadsheet Functions 776

Spreadsheet::SetVisibility

The procedure Spreadsheet::SetVisibility turns the visibility mode of the

given Excel or OpenOffice Calc workbook on or off.

Spreadsheet::SetVisibility(

Workbook, ! (input) scalar string expression

Visibility ! (input) scalar element expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Visibility

A scalar element expression in the pre-defined Aimms set OnOff

specifying whether to show or hide the specified workbook.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the workbook is not yet open, it will be opened.

� Upto Aimms 3.11 this function was known as ExcelSetVisibility, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 777

Spreadsheet::SetActiveSheet

The procedure Spreadsheet::SetActiveSheet sets the active sheet for the given

Excel or OpenOffice Calc workbook.

Spreadsheet::SetActiveSheet(

Workbook, ! (input) scalar string expression

Name ! (input) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Name

A scalar string expression representing the sheet to be selected as the

active sheet.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling this procedure explicitly before other procedures, the

optional sheet argument can be omitted in those procedures.

� A call to another procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelSetActiveSheet,

which has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 778

Spreadsheet::SetUpdateLinksBehavior

This procedure specifies how Excel or OpenOffice Calc workbooks containing

links to other workbooks should be opened. In the Excel case, such links can

be either links to external workbooks or to remote workbooks. In the Calc

case, this distinction is not made. If you do not call this procedure before

using an Excel workbook containing links, you are prompted whether you

want the links to be updated or not. In the OpenOffice case, you will get the

default behavior as specified in the update setting∗, if no Calc dialogs are

required. This procedure is designed to give the Aimms user control over the

Excel and Calc behavior regarding links.

ExcelSetUpdateLinksBehavior(

UpdateLinksBehavior ! (input) scalar integer expression

)

Arguments:

UpdateLinksBehavior

A scalar expression that sets the behavior of Excel or Calc when a

workbook is opened. Possible values are:

� 0: (Excel) Excel prompts the user (the Excel default behavior).

� 1: (Excel) Do not update any links.

� 2: (Excel) Only update external links.

� 3: (Excel) Only update remote links

� 4: (Excel) Update both external and remote links

� 5: (Calc) Do not update any links.

� 6: (Calc) If the update setting in Calc∗ is ’Always’, all links are

updated. Otherwise, no links are updated (the Calc default

behavior).

� 7: (Calc) Always update the links.

Argument values 0 to 4 are for Excel workbooks, values 5 to 7 are for

OpenOffice Calc workbooks.
∗ This setting is called Update links when opening and can be found in

the Calc menu, under Tools - Options - OpenOffice.org Calc - General.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� When the procedure is called, the setting remains valid for all

consequent workbooks that will be opened, until the procedure is called

again with a different setting.

Chapter 18. Spreadsheet Functions 779

� In case you use both Excel and Calc workbooks with links in your Aimms

application, you should call this function twice: once with an argument

to control the Excel behavior, and once with an argument to control the

Calc behavior. The setting of the first call will be remembered when you

do the second call. For example: first call

Spreadsheet::SetUpdateLinksBehavior(1), to specify that Excel

workbooks should not update their links, and then call

Spreadsheet::SetUpdateLinksBehavior(7), to specify that Calc workbooks

should always update their links upon opening.

� Upto Aimms 3.11 this function was known as

ExcelSetUpdateLinksBehavior, which has become deprecated as of Aimms

3.12.

Chapter 18. Spreadsheet Functions 780

Spreadsheet::SetOption

The procedure Spreadsheet::SetOption sets a global option that has an effect

in all subsequent calls to the spreadsheet functions. Currently the following

options are supported:

� CalendarElementsAsStrings By default elements in an Aimms Calendar

are communicated to the spreadsheet in a special date format, which is

independent of the current time slot format in Aimms. If this option is

set to 1, the elements are communicated as a string, using the time slot

format of the calendar.

� WriteInfValueAsString By default a value of INF or -INF in Aimms is

passed to the spreadsheet as a huge numeric number (1e150 and -1e150

respectively). If you set this option to 1, these values are written as a

string ”INF” or ”-INF”. Please be aware that in this case the cell will not

have a numerical content which may cause problems in other code that

is using the spreadsheet.

Spreadsheet::SetOption(

Name, ! (input) scalar string expression

Value ! (input) scalar expression

)

Arguments:

Name

A scalar string representing the name of the option.

Value

A scalar expression representing the new value for the option.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Chapter 18. Spreadsheet Functions 781

Spreadsheet::AssignValue

The procedure Spreadsheet::AssignValue writes a value or formula from

Aimms to an Excel or OpenOffice Calc cell or range of cells.

Spreadsheet::AssignValue(

Workbook, ! (input) scalar string expression

Value, ! (input) scalar expression

Range, ! (input) scalar string expression

[Sheet] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Value

A scalar numerical, string, element-valued or unit-valued expression

containing the value to be written to the spreadsheet.

Range

A scalar string expression containing the range in the spreadsheet to

which the Value should be written.

Sheet

The sheet to which the Value should be written. Default is the active

sheet.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelAssignValue, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 782

Spreadsheet::RetrieveValue

The procedure Spreadsheet::RetrieveValue reads the value of an Excel or

OpenOffice Calc cell into a scalar Aimms parameter.

Spreadsheet::RetrieveValue(

Workbook, ! (input) scalar string expression

Parameter, ! (output) scalar identifier

Range, ! (input) scalar string expression

[Sheet] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Parameter

A scalar numerical parameter, string parameter, element parameter

or unit parameter to which the value from the Range will be written.

Range

A scalar string expression containing a reference to the cell in the

sheet from which the value will be read.

Sheet

The sheet from which the value should be read. Default is the active

sheet.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelRetrieveValue, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 783

Spreadsheet::AssignSet

The procedure Spreadsheet::AssignSet writes the elements of an Aimms set

into the given range of an Excel or OpenOffice Calc workbook.

Spreadsheet::AssignSet(

Workbook, ! (input) scalar string expression

Set, ! (input) set identifier

Range, ! (input) scalar string expression

[Sheet] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Set

The Aimms set to be written to the spreadsheet.

Range

A scalar string expression containing the range in the sheet to which

the Set should be written.

Sheet

The sheet to which the Set should be written. Default is the active

sheet.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelAssignSet, which has

become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 784

Spreadsheet::RetrieveSet

The procedure Spreadsheet::RetrieveSet fills an Aimms set based on the data

in the given range of an Excel or OpenOffice Calc workbook.

Spreadsheet::RetrieveSet(

Workbook, ! (input) scalar string expression

Set, ! (output) set identifier

Range, ! (input) scalar string expression

[Sheet], ! (optional) scalar string expression

[Mode] ! (optional) scalar element expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Set

The set to be filled.

Range

The range in the workbook based on which the Set must be filled.

Sheet

The sheet from which the data should be read. Default is the active

sheet.

Mode

Element in the pre-defined set MergeReplace. In replace mode, the

Aimms set is emptied before being filled. In merge mode, the new

elements are added to the existing set. By default, the set is filled in

replace mode.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelRetrieveSet, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 785

Spreadsheet::AssignParameter

The procedure Spreadsheet::AssignParameter writes data from the given

parameter into the range of the Excel or OpenOffice Calc workbook.

Spreadsheet::AssignParameter(

Workbook, ! (input) scalar string expression

Parameter, ! (input) identifier

Range, ! (input) scalar string expression

[Sheet], ! (optional) scalar string expression

[Sparse], ! (optional) scalar binary expression

[Transposed] ! (optional) scalar binary expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Parameter

The Aimms identifier to be written to the spreadsheet. This can be a

numerical parameter, an element parameter, a string parameter, a

unit parameter or a variable. The dimension of this identifier can be

0, 1, or 2.

Range

The range in the workbook into which the parameter must be written.

Sheet

The sheet to which the Value should be written. Default is the active

sheet.

Sparse

If this argument is 1 (its default value), the default values of the

parameter will be represented as empty cells in the sheet, instead of

the real default value.

Transposed

If this argument is 1, the parameter will be transposed before being

displayed. The argument does not have any effect on scalar and

one-dimensional data. The default value of this argument is 0.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Chapter 18. Spreadsheet Functions 786

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelAssignParameter,

which has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 787

Spreadsheet::RetrieveParameter

The procedure Spreadsheet::RetrieveParameter reads data from the given

range in the Excel or OpenOffice Calc workbook into the specified Aimms

parameter.

Spreadsheet::RetrieveParameter(

Workbook, ! (input) scalar string expression

Parameter, ! (output) identifier

Range, ! (input) scalar string expression

[Sheet], ! (optional) scalar string expression

[Transposed] ! (optional) scalar binary expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Parameter

The Aimms identifier to be filled with spreadsheet data. This can be a

numerical parameter, an element parameter, a string parameter, a

unit parameter or a variable. The dimension of the parameter can be

0, 1 or 2.

Range

The range in the workbook based on which the parameter must be

filled.

Sheet

The sheet in which the Range lies. Default is the active sheet.

Transposed

If this argument is 1, the parameter is read transposed from the

sheet. The argument does not have any effect on scalar and

one-dimensional data. The default value for this argument is 0.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

Chapter 18. Spreadsheet Functions 788

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelRetrieveParameter,

which has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 789

Spreadsheet::AssignTable

The procedure Spreadsheet::AssignTable writes tabular data to the specified

Excel or OpenOffice Calc workbook.

Spreadsheet::AssignTable(

Workbook, ! (input) scalar string expression

Parameter, ! (input) identifier

DataRange, ! (input) scalar string expression

[RowsRange], ! (optional) scalar string expression

[ColumnsRange], ! (optional) scalar string expression

[Sheet], ! (optional) scalar string expression

[Sparse], ! (optional) scalar binary expression

[RowMode], ! (optional) scalar integer expression

[ColumnMode] ! (optional) scalar integer expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Parameter

The Aimms parameter to be written to the spreadsheet. This can be a

numerical parameter, an element parameter, a string parameter, a

unit parameter or a variable. The identifier must have a dimension

greater than or equal to 1.

DataRange

The range in the workbook into which the Parameter must be written.

RowsRange

The range in the workbook into which the row labels must be written.

The row labels are the elements of the sets that are identified by the

first indices of Parameter. If the RowsRange is an m×n-matrix, then

the row labels are the elements of the sets of the first m indices of

Parameter.

ColumnsRange

The range in the workbook into which the column labels must be

written. The column labels are the elements of the sets that are

identified by the remaining indices of Parameter (the indices after

those that constitute the RowsRange).

Sheet

The sheet to which the Parameter should be written. Default is the

active sheet.

Sparse

If this argument is 1 (the default value), the default values of the

Chapter 18. Spreadsheet Functions 790

Parameter will be represented as empty cells in the sheet, instead of

the real default value.

RowMode

Possible values are:

� 0: SPARSE OUTPUT: Only those rows will be shown in the

workbook, for which there exists at least one non-default data

value. If no default data value exists for the row, neither the row

labels nor the row data are displayed.

� 1: DENSE OUTPUT: All rows (both the labels and the data) are

shown in the workbook, even if all data values for a particular

row are equal to the default value.

� 2: USER INPUT: The row labels for which the data must be

transferred to the workbook, must already be present in the

workbook. This way, they serve as input to

Spreadsheet::AssignTable.

� 3: NON EXISTING: Use this mode to specify that no row labels

must be printed, i.e. all indices should be represented by

column labels. In this case the RowsRange argument does not

need to be specified.

ColumnMode

Possible values are:

� 0: SPARSE OUTPUT: Only those columns will be shown in the

workbook, for which there exists at least one non-default data

value. If no default data value exists for the column, neither the

column labels nor the column data are displayed.

� 1: DENSE OUTPUT: All columns (both the labels and the data) are

shown in the workbook, even if all data values for a particular

column are equal to the default value.

� 2: USER INPUT: The column labels for which the data must be

transferred to the workbook, must already be present in the

workbook. This way, they serve as input to

Spreadsheet::AssignTable.

� 3: NON EXISTING: Use this mode to specify that no column labels

must be printed, i.e. all indices should be represented by row

labels. In this case the ColumnsRange argument does not need

to be specified.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

Chapter 18. Spreadsheet Functions 791

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelAssignTable, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 792

Spreadsheet::RetrieveTable

The procedure Spreadsheet::RetrieveTable reads tabular data from the

specified Excel or OpenOffice Calc workbook.

Spreadsheet::RetrieveTable(

Workbook, ! (input) scalar string expression

Parameter, ! (output) identifier

DataRange, ! (input) scalar string expression

[RowsRange], ! (optional) scalar string expression

[ColumnsRange], ! (optional) scalar string expression

[Sheet] ! (optional) scalar string expression

[AutomaticallyExtendSets] ! (optional) scalar binary expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Parameter

The Aimms parameter in which the data read from the spreadsheet

will be stored. This can be a numerical parameter, an element

parameter, a string parameter, a unit parameter or a variable. The

identifier must have a dimension greater than or equal to 1.

DataRange

The range in the workbook from which the data must be read.

RowsRange

The range in the workbook from which the row labels must be read.

The row labels will be added to the sets that are identified by the first

indices of Parameter. If the RowsRange is an m×n-matrix (m

columns, n rows), then the row labels are the elements of the sets of

the first m indices of Parameter.

ColumnsRange

The range in the workbook from which the column labels must be

read. The column labels will be added to the sets that are identified

by the remaining indices of Parameter (the indices after those that

constitute the RowsRange).

Sheet

The sheet to which the Parameter should be written. Default is the

active sheet.

AutomaticallyExtendSets

Indicates whether Aimms should automatically extend the domain set

of an identifier if necessary. If not, an error will be generated. The

default value of this argument is 0.

Chapter 18. Spreadsheet Functions 793

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelRetrieveTable, which

has become deprecated as of Aimms 3.12.

See also:

An example of the use of ExcelRetrieveTable is presented on the Aimms

blog post: Reading multi-dimensional Excel data with ExcelRetrieveTable

including a pictorial explanation of the use of spreadsheet ranges.

http://blog.aimms.com/2011/11/reading-multi-dimensional-excel-data-with-excelretrievetable/

Chapter 18. Spreadsheet Functions 794

Spreadsheet::ClearRange

The procedure Spreadsheet::ClearRange empties the specified range in the

specified sheet.

Spreadsheet::ClearRange(

Workbook, ! (input) scalar string expression

Range, ! (input) scalar string expression

[Sheet], ! (optional) scalar string expression

[IncludeCellFormatting] ! (optional) scalar binary expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Range

A scalar string expression containing a reference to the range in the

sheet that should be emptied.

Sheet

The sheet from which the value should be read. Default is the active

sheet. If the range is a uniquely named range, no active sheet needs

to be set, since named ranges already contain a reference to a sheet.

IncludeCellFormatting

When set to 1, the formatting of the cell (e.g. font size, color, ...) is

also cleared. If set to 0, only the value of the cell is cleared.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelClearRange, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 795

Spreadsheet::CopyRange

The procedure Spreadsheet::CopyRange copies the contents of a complete

Excel or OpenOffice Calc range to another Excel/Calc range.

Spreadsheet::CopyRange(

Workbook, ! (input) scalar string expression

SourceRange, ! (input) scalar string expression

DestinationRange, ! (input) scalar string expression

[SourceSheet], ! (optional) scalar string expression

[DestinationSheet] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

SourceRange

A scalar string expression containing a reference to the range in the

spreadsheet that should be copied from.

DestinationRange

A scalar string expression containing a reference to the range in the

spreadsheet that should be copied to.

SourceSheet

The sheet containing the SourceRange. Default is the active sheet. If

the source range is a uniquely named range, no active sheet needs to

be set, since named ranges already contain a reference to a sheet.

DestinationSheet

The sheet containing the DestinationRange. Default is the active

sheet. If the destination range is a uniquely named range, no active

sheet needs to be set, since named ranges already contain a reference

to a sheet.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet arguments can be omitted in

this procedure. The active sheet will then be used both for the source

and the destination sheet of Spreadsheet::CopyRange.

Chapter 18. Spreadsheet Functions 796

� In case that the active sheet was not set before the call to this function,

the active sheet is set to the SourceSheet argument, if supplied. If the

SourceSheet argument is not supplied, the active sheet is set to the

DestinationSheet argument, if supplied. Otherwise, the active sheet is

not changed.

� Upto Aimms 3.11 this function was known as ExcelCopyRange, which has

become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 797

Spreadsheet::AddNewSheet

The procedure Spreadsheet::AddNewSheet adds a new empty sheet to the

specified Excel or OpenOffice Calc workbook.

Spreadsheet::AddNewSheet(

Workbook, ! (input) scalar string expression

Name, ! (input) scalar string expression

[SetAsActive], ! (optional) scalar binary expression

[Hidden] ! (optional) scalar binary expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Name

The name to assign to the new sheet.

SetAsActive

If this parameter is 1, the sheet is set as the active sheet. The default

value of this argument is 1.

Hidden

If this parameter is 1, the sheet is created as a hidden sheet. The

default value of this argument is 0.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelAddNewSheet, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 798

Spreadsheet::DeleteSheet

The procedure Spreadsheet::DeleteSheet deletes the given sheet from the

specified Excel or OpenOffice Calc workbook.

Spreadsheet::DeleteSheet(

Workbook, ! (input) scalar string expression

Name ! (input) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Name

The name of the sheet to be deleted.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelDeleteSheet, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 799

Spreadsheet::GetAllSheets

The procedure Spreadsheet::GetAllSheets obtains the names of all sheets

currently present in the specified Excel or OpenOffice Calc workbook.

Spreadsheet::GetAllSheets(

Workbook, ! (input) scalar string expression

SheetNames ! (input) 1-dimensional string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Name

A 1-dimensional string parameter, which after successful execution

will contain all present sheet names of the supplied workbook. The

root set of the index should be a subset of Integers.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

None.

Chapter 18. Spreadsheet Functions 800

Spreadsheet::RunMacro

The procedure Spreadsheet::RunMacro executes an Excel or OpenOffice Calc

macro.

Spreadsheet::RunMacro(

Workbook, ! (input) scalar string expression

Name, ! (input) scalar string expression

[MacroArgument01], ! (optional) scalar expression

...

[MacroArgument30], ! (optional) scalar expression

[Sheet] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Name

The name of the macro to be executed. Please note that in the Excel

case you need to specify the fully qualified name here. If, for example,

you have a macro called ThisWorkbook.MyMacro, only specifying MyMacro

isn’t sufficient. For the full name of an Excel macro, please refer to

your Excel workbook and look under Tools - Macro - Macros.... Only in

case you have created a so-called Visual Basic Module in your Excel

workbook, you can just use the short name of your macro.

Furthermore, it’s also possible to call macro’s which are located in a

different workbook than the workbook it should be applied upon. In

such cases, use the WorkbookContainingMacro!MacroName format for the

name of the macro. Also, you have to make sure that the workbook

containing the macro is opened before the call to RunMacro, since

only macro’s in opened workbooks can be found by Excel.

For OpenOffice Calc macros, you’ll also need to specify the full path

of a macro, for example "TheLibrary.TheModule.TheMacroToCall".

Please note that Calc macros can be stored at either document scope,

or at application scope. In the former case, the macros are stored

within your document(i.e. .ods file), allowing you to distribute them

easily to other users. In the latter case, the macros are stored in the

Calc application on your machine, making it a bit harder to share

your macros with other users, but enabling you to create macros that

can be applied to all your workbooks.

By default, Aimms assumes that the Name argument specifies a macro

stored at document scope, since that is the more likely scenario for

Aimms use in combination with Calc. In case you want to call a macro

at application scope, the Name argument should start with "Global."

Chapter 18. Spreadsheet Functions 801

(case sensitive), for example

"Global.TheLibrary.TheDocument.TheMacroToCall".

Aimms does not support the calling of the OpenOffice standard

macros (those are the macros under the OpenOffice.org Macros branch

in the macro tree in OpenOffice).

MacroArgument01...MacroArgument30

A list of arguments to be passed to the macro. A maximum of 30

arguments is allowed. Only scalar arguments are supported. The

scalar values can be of any type (numerical parameter, string

parameter, element parameter, unit parameter, literal or variable).

Furthermore, only input arguments are allowed.

Sheet

The sheet on which the macro should be applied. Please note: in a

macro, it is possible to specify on which sheet certain actions should

be performed. Clearly, in that case the Sheet argument does not

influence this.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� Element parameters that are passed as macro argument are usually

passed to the workbook as strings, except when their range is a subset

of integers.

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelRunMacro, which has

become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 802

Spreadsheet::CreateWorkbook

The procedure Spreadsheet::CreateWorkbook creates a new Excel or OpenOffice

Calc workbook. In the Calc case, the workbook contains three empty sheets.

In the Excel case, it is dependant of an Excel setting how many sheets the

workbook contains. The first sheet is automatically set as the active sheet.

Spreadsheet::CreateWorkbook(

WorkbookName, ! (input) scalar string expression

[SheetName] ! (optional) scalar string expression

)

Arguments:

WorkbookName

The name under which the workbook will be known in Aimms. In later

calls to other procedures, WorkbookName has to be specified as the

Workbook argument. When the workbook should eventually be saved

in a particular path, then this path can be included in this argument.

If this argument ends in .ods, OpenOffice Calc is used. Otherwise,

Excel is used.

SheetName

The name of the first sheet of the new workbook. If this argument is

omitted, the sheet will be determined by the spreadsheet application

(”Sheet1” in the English version). This sheet will automatically be set

as the active sheet.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelCreateWorkbook,

which has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 803

Spreadsheet::SaveWorkbook

The procedure Spreadsheet::SaveWorkbook saves the specified Excel or

OpenOffice Calc workbook. The workbook is saved with the name under

which it is known in Aimms, unless the SaveAsName argument is specified.

Only when the SaveAsName argument is specified, or when dealing with a

workbook that has never been saved before (i.e. created by a call to

Spreadsheet::CreateWorkbook), and a workbook with the same name already

exists on disk, the user is prompted with the question whether or not to

overwrite the existing file.

Spreadsheet::SaveWorkbook(

Workbook, ! (input) scalar string expression

[SaveAsName] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

SaveAsName

The (new) name to be used for saving the workbook.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelSaveWorkbook, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 804

Spreadsheet::CloseWorkbook

The procedure Spreadsheet::CloseWorkbook closes the specified Excel or

OpenOffice Calc workbook. Internally, Aimms keeps the workbook open from

the moment that a procedure is applied on it for the first time. This is good

for performance. Nevertheless, the user can specify that he is finished with

the workbook and that the workbook can be closed. If a workbook is not

closed explicitly, and changes have been made to it, the user is asked whether

or not to save it just before closing the Aimms project.

Spreadsheet::CloseWorkbook(

Workbook, ! (input) scalar string expression

SaveBeforeClose ! (input) scalar binary expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

SaveBeforeClose

If this argument is 1, the workbook is saved before it is closed.

Return value:

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� Upto Aimms 3.11 this function was known as ExcelCloseWorkbook, which

has become deprecated as of Aimms 3.12.

Chapter 18. Spreadsheet Functions 805

Spreadsheet::Print

The procedure Spreadsheet::Print makes it possible to print an Excel or

OpenOffice Calc sheet from Aimms.

Spreadsheet::Print(

Workbook, ! (input) scalar string expression

Range, ! (input) scalar string expression

[Sheet], ! (optional) scalar string expression

[ShowPreview], ! (optional) scalar binary expression

[NumberOfCopies], ! (optional) scalar integer expression

[Collate], ! (optional) scalar binary expression

[ActivePrinter] ! (optional) scalar string expression

)

Arguments:

Workbook

A scalar string expression representing the Excel or Calc workbook. If

this argument ends in .ods, OpenOffice Calc is used. Otherwise, Excel

is used.

Range

The range to be printed.

Sheet

The sheet on which the range lies.

ShowPreview

If this argument is 1, Excel or Calc shows a print preview window

before printing. The visibility mode of the workbook should be ’On’ in

this case. The default value of this argument is 0. In the preview

window, you can decide whether to actually print or to cancel the

printing.

NumberOfCopies

The number of copies to print. The default value of this argument is

1.

Collate

If this argument is 1, and more than one copy of the sheet is printed,

the printed sheets are collated neatly. The default value of this

argument is 1.

ActivePrinter

The user can specify the name of the printer to be used for printing

the sheet. The default printer is used by default.

Return value:

Chapter 18. Spreadsheet Functions 806

The procedure returns 1 on success, or 0 otherwise. In case of an error the

pre-defined Aimms parameter CurrentErrorMessage contains a description

of what went wrong.

Remarks:

� By calling the procedure Spreadsheet::SetActiveSheet you can set the

active sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� Upto Aimms 3.11 this function was known as ExcelPrint, which has

become deprecated as of Aimms 3.12.

Chapter 19

XML Functions

Aimms supports the following functions for reading and writing XML files:

� GenerateXML

� ReadGeneratedXML

� ReadXML

� WriteXML

Chapter 19. XML Functions 808

GenerateXML

The procedure GenerateXML generates XML output data for a given set of

Aimms identifiers.

GenerateXML(

XMLFile, ! (input) scalar string expression

IdentifierSet, ! (input) set expression

Merge, ! (optional) 0 or 1

SchemaFile ! (optional) scalar string expression

)

Arguments:

XMLFile

Name of the file to which the generated XML must be written.

IdentifierSet

A subset of the predefined set AllIdentifiers, containing the set of

identifiers for which XML output must be generated.

Merge (optional)

Indicates whether or not the contents of the file can be merged within

another XML file.

SchemaFile (optional)

If this argument is specified, a schema corresponding to the

generated XML data will be written to the specified file name. A

namespace will be generated for this schema file, and added to the

xmlns attribute of the root element of the generated XML file.

Return value:

The procedure returns 1 on success. or 0 on failure.

Remarks:

Notice that the Merge attribute does not mean that the generated XML will

be appended to the specified XML file. The latter will always be

overwritten. If the Merge argument is non-zero, Aimms will omit the XML

header from the generated file, allowing you to merge its contents into

another XML document.

See also:

The procedures ReadGeneratedXML, ReadXML, WriteXML. Generating XML data

is discussed in full detail in Section 30.3 of the Language Reference.

Chapter 19. XML Functions 809

ReadGeneratedXML

The procedure ReadGeneratedXML reads the contents of an Aimms-generated

XML data file.

ReadGeneratedXML(

XMLFile, ! (input) scalar string expression

merge ! (optional) 0 or 1

)

Arguments:

XMLFile

Name of the Aimms-generated XML file to read.

merge (optional)

With this optional argument (default 0), you can choose whether you

want to merge the data included in the XML file with the existing data,

or overwrite any existing data (default)

Return value:

The procedure returns 1 if the XML file is read successfully, or 0 otherwise.

See also:

The procedures GenerateXML, ReadXML, WriteXML. Generating XML data is

discussed in full detail in Section 30.3 of the Language Reference.

Chapter 19. XML Functions 810

ReadXML

The procedure ReadXML you can read an XML data file according to a given

user-defined XML format.

ReadXML(

XMLFile, ! (input) scalar string expression

MappingFile, ! (input) scalar string expression

merge, ! (optional) 0 or 1

SchemaFile ! (optional) scalar string expression

)

Arguments:

XMLFile

The name of the file from which the XML data must be read

MappingFile

The name of the file containing the mapping between the

user-defined XML format and the identifiers in your model.

merge (optional)

With this optional argument (default 0), you can choose whether you

want to merge the data included in the XML file with the existing data,

or overwrite any existing data (default)

SchemaFile

If you specify the name of a schema file through this argument,

Aimms will validate the contents of the XML data file against this

schema prior to reading it into Aimms.

Return value:

The procedure returns 1 if successful, or 0 otherwise.

Remarks:

The namespace defined in the schema file (if specified) must match the

namespace specified in the xmlns attribute of the root element in the XML

data file.

See also:

The procedures GenerateXML, ReadGeneratedXML, WriteXML. Reading

user-defined XML data is discussed in full detail in Section 30.4 of the

Language Reference.

Chapter 19. XML Functions 811

WriteXML

With the procedure WriteXML you write an XML data file according to a given

user-defined XML format.

WriteXML(

XMLFile, ! (input) scalar string expression

MappingFile, ! (input) scalar string expression

Merge ! (optional) 0 or 1

)

Arguments:

XMLFile

The name of the file to which the XML data must be written

MappingFile

The name of the file containing the mapping between the

user-defined XML format and the identifiers in your model.

Merge (optional)

Indicates whether or not the contents of the file can be merged within

another XML file.

Return value:

The procedure returns 1 if successful, or 0 otherwise.

Remarks:

Notice that the merge attribute does not mean that the generated XML will

be appended to the specified XML file. The latter will always be

overwritten. If the merge argument is non-zero, Aimms will omit the XML

header from the generated file, allowing you to merge its contents into

another XML document.

See also:

The procedures GenerateXML, ReadGeneratedXML, ReadXML. Writing

user-defined XML data is discussed in full detail in Section 30.4 of the

Language Reference.

Part V

User Interface Related

Functions

Chapter 20

Dialog Functions

Aimms supports the following functions for simple interaction with the end

user.

� DialogAsk

� DialogError

� DialogGetColor

� DialogGetDate

� DialogGetElement

� DialogGetElementByData

� DialogGetElementByText

� DialogGetNumber

� DialogGetPassword

� DialogGetString

� DialogMessage

� DialogProgress

� StatusMessage

Chapter 20. Dialog Functions 814

DialogAsk

The procedure DialogAsk displays a small dialog box containing a message

and two or three buttons. Usually these buttons are an OK and Cancel, or

Yes, No and Cancel, but they can contain any text you want. The procedure

returns the number of the button that is pressed by the user.

DialogAsk(

message, ! (input) string expression

button1, ! (input) string expression

button2, ! (input) string expression

[button3] ! (optional) string expression

[title] ! (optional) title of dialog box

)

Arguments:

message

A scalar string expression containing the text you want to display in

the dialog box.

button1

A scalar string expression containing the text of the first button.

button2

A scalar string expression containing the text of the second button.

button3 (optional)

A scalar string expression containing the text of the third button. If

this argument is omitted then the dialog box will only show two

buttons.

title

A scalar string expression containing the text that you want to appear

in the title of the dialog box.

Return value:

The procedure returns the number of the button that is pressed: 1 for the

first button, 2 for the second button or 3 for the third button.

Remarks:

If the user presses the Esc key, or closes the dialog box via the [x] in the

top right corner, then this is interpreted as pressing the last button in the

dialog box (which is usually the Cancel button).

See also:

The procedures DialogMessage, DialogError.

Chapter 20. Dialog Functions 815

DialogError

The procedure DialogError displays a small dialog box containing a specified

error message and an OK button. The execution will be halted until the user

presses the OK button.

DialogError(

message, ! (input) string expression

[title] ! (optional) title of dialog box

)

Arguments:

message

A scalar string expression containing the text you want to display in

the dialog box.

title

A scalar string expression containing the text that you want to appear

in the title of the dialog box.

Remarks:

The procedures DialogMessage and DialogError only differ in the icon that

is displayed at the left side of the dialog box.

See also:

The procedures DialogMessage, DialogAsk, DialogProgress.

Chapter 20. Dialog Functions 816

DialogGetColor

The procedure DialogGetColor displays a standard Windows color selection

dialog box. The procedure returns the color (RGB values) selected by the user.

DialogGetColor(

r, ! (input/output) scalar numerical parameter

g, ! (input/output) scalar numerical parameter

b ! (input/output) scalar numerical parameter

)

Arguments:

r

A scalar numerical paramter containing the red value of the selected

color.

g

A scalar numerical paramter containing the green value of the

selected color.

b

A scalar numerical paramter containing the blue value of the selected

color.

Return value:

The procedure returns 1 if the user completed the color selection dialog

box successfully, or 0 otherwise.

Chapter 20. Dialog Functions 817

DialogGetDate

The procedure DialogGetDate displays a standard Windows date selection

dialog box. The procedure returns the date (in the specified format) selected

by the user.

DialogGetDate(

title, ! (input) string expression

format, ! (input) string expression

date, ! (input/output) scalar string parameter

[nr_rows,] ! (optional) integer expression

[nr_columns] ! (optional) integer expression

)

Arguments:

title

A scalar string expression containing the text you want to display in

the title of the dialog box.

format

A scalar string expression containing the date format of the date

argument.

date

A scalar string parameter in which the selected date is returned

according to the date format specified in format.

nr rows (optional)

A scalar integer expression in the range 1, . . . ,3 containing the

number of rows to be displayed in the date selectiond dialog box.

nr columns (optional)

A scalar integer expression in the range 1, . . . ,4 containing the

number of columns to be displayed in the date selectiond dialog box.

Return value:

The procedure returns 1 if the user completed the date selection dialog

box successfully, or 0 otherwise.

Remarks:

If the date argument contains a valid date according to the format

specified in date-format, Aimms will set the initial date in the date

selection dialog box equal to the specified date.

See also:

The date format specification components are discussed in full detail in

Section 33.7.1 of the Language Reference.

Chapter 20. Dialog Functions 818

DialogGetElementByData

The procedure DialogGetElementByData is an extension of the procedure

DialogGetElementByText. Instead of only showing a list box with only a single

string per element, this procedure allows you to show a list box with multiple

columns of text per element. The text that is displayed in each column is

specified via a 2-dimensional string parameter. The first dimension of this

parameter corresponds to the rows of the list box, the second dimension

corresponds to the column in the listbox.

DialogGetElementByData(

title, ! (input) string expression

reference, ! (input/output) scalar element parameter

element_data ! (input) 2-dimensional string parameter

)

Arguments:

title

A scalar string expression containing the text you want to display as

title of the dialog box.

reference

A scalar element parameter. When creating the dialog box, the range

set of this parameter is used to fill the list with elements, and the

current value of the element parameter will be initially selected. On

return, this parameter will refer to the selected element.

element data

A 2-dimensional string parameter. The first index in its domain

should matches the range set of the element parameter reference, the

second index defines the number of columns that are shown. Instead

of the element names, the dialog box will display multiple columns of

text derived from this parameter.

Return value:

The procedure returns 1 if the user has pressed the OK button, and 0 if he

has pressed the Cancel button.

See also:

The procedures DialogGetElement, DialogGetElementByText.

Chapter 20. Dialog Functions 819

DialogGetElement

The procedure DialogGetElement displays a dialog box in which the user can

select an element from a list of set elements.

DialogGetElement(

title, ! (input) string expression

reference ! (input/output) scalar element parameter

)

Arguments:

title

A scalar string expression containing the text you want to display as

title of the dialog box.

reference

A scalar element parameter. When creating the dialog box, the range

set of this parameter is used to fill the list with elements, and the

current value of the element parameter will be initially selected. On

return, this parameter will refer to the selected element.

Return value:

The procedure returns 1 if the user has pressed the OK button, and 0 if he

has pressed the Cancel button.

See also:

The procedures DialogGetElementByText, DialogGetElementByData,

DialogGetNumber.

Chapter 20. Dialog Functions 820

DialogGetElementByText

The procedure DialogGetElementByText displays a dialog box in which the user

can select an element from a set. However, other than DialogGetElement, this

procedure does not show a list of element names but a list of strings, which

are given as a separate argument to the procedure.

DialogGetElementText(

message, ! (input) string expression

reference, ! (input/output) scalar element parameter

element_text ! (input) 1-dimensional string parameter

)

Arguments:

message

A scalar string expression containing the text you want to display as

title of the dialog box.

reference

A scalar element parameter. When creating the dialog box, the range

set of this parameter is used to fill the list with elements, and the

current value of the element parameter will be initially selected. On

return, this parameter will refer to the selected element.

element text

A 1-dimensional string parameter, with a domain that matches the

range set of the element parameter reference. Instead of the element

names, the dialog box will display the corresponding strings of this

parameter.

Return value:

The procedure returns 1 if the user has pressed the OK button, and 0 if he

has pressed the Cancel button.

See also:

The procedures DialogGetElement, DialogGetElementByData.

Chapter 20. Dialog Functions 821

DialogGetNumber

The procedure DialogGetNumber displays a small dialog box in which the user

can enter a single numerical value. The dialog box remains on the screen (and

thus halts the execution) until the user presses either the OK or the Cancel

button.

DialogGetNumber(

message, ! (input) string expression

reference, ! (input/output) scalar numerical identifier

[decimals,] ! (optional) integer

[title] ! (optional) string expression

)

Arguments:

message

A scalar string expression containing the text you want to display in

front of the edit field.

reference

A scalar identifier. When creating the dialog box, its value is used to

fill the edit field. After the user presses the OK button, the edited

value is returned through this argument.

decimals

A integer expression to indicate the number of decimals that is

displayed initially.

title

A scalar string expression containing the text that you want to appear

in the title of the dialog box.

Return value:

The procedure returns 1 if the user has pressed the OK button, and 0 if he

has pressed the Cancel button.

See also:

The procedures DialogGetString, DialogGetElement.

Chapter 20. Dialog Functions 822

DialogGetPassword

The procedure DialogGetPassword displays a small dialog box in which the

user can enter a password string. In the dialog box the string is presented by

a sequence of asterisks. The dialog box remains on the screen (and thus halts

the execution) until the user presses either the OK or the Cancel button.

DialogGetPassword(

message, ! (input) string expression

password, ! (input/output) scalar string parameter

[title] ! (optional) string expression

)

Arguments:

message

A scalar string expression containing the text you want to display in

front of the edit field.

password

A scalar string valued identifier containing the password. When

creating the dialog box, its value is used to fill the edit field. After the

user presses the OK button, the edited password string is returned

through this argument.

title

A scalar string expression containing the text that you want to appear

in the title of the dialog box.

Return value:

The procedure returns 1 if the user has pressed the OK button, and 0 if he

has pressed the Cancel button.

See also:

The procedure DialogGetString.

Chapter 20. Dialog Functions 823

DialogGetString

The procedure DialogGetString displays a small dialog in which the user can

enter a text string. The dialog remains on the screen (and thus halts the

execution) until the user presses either the OK or the Cancel button.

DialogGetString(

message, ! (input) string expression

reference, ! (input/output) scalar string parameter

[title] ! (optional) string expression

)

Arguments:

message

A scalar string expression containing the text you want to display in

front of the edit field.

reference

A scalar string valued identifier. When creating the dialog, its value is

used to fill the edit field. After the user presses the OK button, the

edited string is returned through this argument.

title

A scalar string expression containing the text that you want to appear

in the title of the dialog box.

Return value:

The procedure returns 1 if the user has pressed the OK button, and 0 if he

has pressed the Cancel button.

See also:

The procedures DialogGetNumber, DialogGetPassword, DialogGetElement.

Chapter 20. Dialog Functions 824

DialogMessage

The procedure DialogMessage displays a small dialog box containing a

specified informational message and an OK button. The execution will be

halted until the user presses the OK button.

DialogMessage(

message, ! (input) string expression

[title] ! (optional) string expression

)

Arguments:

message

A scalar string expression containing the text you want to display in

the dialog box.

title

A scalar string expression containing the text that you want to appear

in the title of the dialog box.

Remarks:

The procedures DialogMessage and DialogError only differ in the icon that

is displayed at the left side of the dialog box

See also:

The procedures DialogError, DialogAsk.

Chapter 20. Dialog Functions 825

DialogProgress

The procedure DialogProgress displays a small dialog box containing a

specified message and a progress bar that can indicate how much of a specific

task has already been processed. This dialog box will not halt the execution,

and you can call the procedure sequentially during a timely task to change

either the displayed message or the length of the progress bar.

DialogProgress(

message, ! (input) string expression

[percentage] ! (optional) integer expression

)

Arguments:

message

A scalar string expression containing the text you want to display in

the dialog box.

percentage (optional)

A scalar value between 0 and 100. It is used to set the length of the

progress bar at the bottom of the dialog box. If this argument is

omitted then the progress bar is not displayed.

Remarks:

The progress dialog box does not adjust the length of the progress bar

itself, so you must do it yourself by sequentially calling the procedure

with an increasing percentage. The progress dialog box is automatically

removed from the screen if the execution terminates. If you want to

remove the dialog box yourself, then you should call DialogProgress with

an empty message string: DialogProgress("").

See also:

The procedures DialogMessage, DialogError, DialogAsk.

Chapter 20. Dialog Functions 826

StatusMessage

With the procedure StatusMessage you can display a short message in the

status bar at the bottom of the Aimms window.

StatusMessage(

message ! (input) string expression

)

Arguments:

message

A scalar string expression containing the text you want to display in

the status bar.

Remarks:

If you have set the status bar to be hidden (via the project options), then

the message will not be visible to the user.

See also:

The procedures DialogMessage, DialogProgress.

Chapter 21

Page Functions

Aimms supports the following functions for opening, closing, and

manipulating the pages in the interface:

� PageClose

� PageCopyTableToClipboard

� PageCopyTableToExcel

� PageGetActive

� PageGetAll

� PageGetChild

� PageGetFocus

� PageGetNext

� PageGetNextInTreeWalk

� PageGetParent

� PageGetPrevious

� PageGetTitle

� PageGetUsedIdentifiers

� PageOpen

� PageOpenSingle

� PageRefreshAll

� PageSetCursor

� PageSetFocus

� PivotTableDeleteState

� PivotTableReloadState

� PivotTableSaveState

� PrintEndReport

� PrintPage

� PrintPageCount

� PrintStartReport

� PrinterGetCurrentName

� PrinterSetupDialog

� ShowMessageWindow

� ShowProgressWindow

Chapter 21. Page Functions 828

PageClose

With the procedure PageClose you can close a page that is currently open.

PageClose(

page ! (optional) string expression

)

Arguments:

page (optional)

A string expression representing the name of the page that you want

to close. This name is the unique name as it appears in the Page

Manager tree. If you omit this argument, then PageClose closes the

currently active page.

Return value:

The procedure returns 1 if the page is closed successfully, or a 0

otherwise.

Remarks:

The active page can be obtained by PageGetActive.

See also:

The procedures PageOpen, PageGetActive, and PageOpenSingle.

Chapter 21. Page Functions 829

PageCopyTableToClipboard

With the procedure PageCopyTableToClipboard you can copy (part of) a specific

table on a specific page to the clipboard, so that you subsequently can paste it

in any other application.

PageCopyTableToClipboard(

pageName, ! (input) scalar string expression

tag, ! (input) scalar string expression

includeHeaders, ! (input) scalar numerical expression

selectionOnly ! (input) scalar numerical expression

)

Arguments:

pageName

A string expression representing the name of the page containing the

table.

tag

A string expression representing the tag name of the table for which

you want to copy the current displayed data. This can be a Composite

Table, a Pivot Table or an standard Table object.

includeHeaders

A scalar numerical expression to control whether or not the headers

should be copied as well. If includeHeaders is not equal to 0 then the

headers are included.

selectionOnly

A scalar numerical expression to control whether the entire table or

only the currently selected cells should be copied. If selectionOnly is

not equal to 0 then only the currently selected cells (with or without

the corresponding headers, based on the value of includeHeaders) are

copied.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0 and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Remarks:

You can specify a unique tag name for each page object via the object

properties.

See also:

The procedure PageCopyTableToExcel.

Chapter 21. Page Functions 830

PageCopyTableToExcel

With the procedure PageCopyTableToExcel you can copy (part of) a specific

table on a specific page directly to a range in Excel.

PageCopyTableToExcel(

pageName, ! (input) scalar string expression

tag, ! (input) scalar string expression

includeHeaders, ! (input) scalar numerical expression

selectionOnly, ! (input) scalar numerical expression

ExcelWorkbook, ! (input) scalar string expression

Range, ! (input) scalar string expression

[Sheet] ! (optional) scalar string expression

)

Arguments:

pageName

A string expression representing the name of the page containing the

table.

tag

A string expression representing the tag name of the table for which

you want to copy the current displayed data. This can be a Composite

Table, a Pivot Table or an standard Table object.

includeHeaders

A scalar numerical expression to control whether or not the headers

should be copied as well. If includeHeaders is not equal to 0 then the

headers are included.

selectionOnly

A scalar numerical expression to control whether the entire table or

only the currently selected cells should be copied. If selectionOnly is

not equal to 0 then only the currently selected cells (with or without

the corresponding headers, based on the value of includeHeaders) are

copied.

ExcelWorkbook

A scalar string expression representing the Excel workbook.

Range

A scalar string expression containing the (named) range in the Excel

sheet to which the table should be copied.

Sheet

The sheet to which the table should be copied. Default is the active

sheet.

Return value:

Chapter 21. Page Functions 831

The procedure returns 1 on success. If it fails, then it returns 0 and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Remarks:

� By calling the procedure ExcelSetActiveSheet you can set the active

sheet, after which the optional sheet argument can be omitted in

procedures like this one.

� A call to this procedure with a specified sheet argument does not

change the active sheet, except when the workbook does not have an

active sheet yet.

� When the dimensions of the specified range do no match the

dimensions of the table on the clipboard, then the standard Excel rules

for pasting are applied. That is:

– if the range is only one column wide, then the range will

automatically be expanded horizontally to match the number of

columns on the clipboard,

– else if the number of columns in the range is smaller than the

number of columns on the clipboard then only the first columns

that fit will be copied,

– else if the number of columns in the range is larger than the

number of columns on the clipboard, the range is made smaller.

A similar algorithm is used for the number of rows. So if you want to

make sure that the entire contents of the copied table is pasted in Excel,

you can best specify a range of exactly one cell.

� You can specify a unique tag name for each page object via the object

properties.

See also:

The procedure PageCopyTableToClipboard.

Chapter 21. Page Functions 832

PageGetActive

With the procedure PageGetActive you can retrieve the name of the currently

active page.

PageGetActive(

page ! (output) scalar string identifier

)

Arguments:

page

A string identifier to hold the name of the page that is currently

active. If the same page name is used in more than one (library)

project, then the prefix of the library project (or :: in case of the

main project) will be prepended.

Return value:

The procedure returns 1 on success, or 0 if there is no currently active

page.

See also:

The procedures PageGetFocus and PageClose.

Chapter 21. Page Functions 833

PageGetAll

With the procedure PageGetAll you can retrieve the names of all pages and/or

templates in your project

PageGetAll(

page_set, ! (output) an (empty) root set

IncludePages, ! (optional, default 1) scalar expression

IncludeTemplates, ! (optional, default 1) scalar expression

ExcludeHidden, ! (optional, default 0) scalar expression

ExcludePrintables ! (optional, default 0) scalar expression

)

Arguments:

page set

A root set, that on return will contain the names of all the requested

pages.

IncludePages

A scalar numerical expression to indicate whether the returned set

should contain the names of pages in your project.

IncludeTemplates

A scalar numerical expression to indicate whether the returned set

should contain the names of templates in your project.

ExcludeHidden

A scalar numerical expression to indicate whether hidden pages

should be part of the returned set. If ExcludeHidden is set to 1 then

the returned set will not contain any page that is currenlty hidden.

ExcludePrintables

A scalar numerical expression to indicate whether print pages or

print templates should be part of the returned set. Print

pages/templates are those pages/templates that are especially

created for printing (i.e. in the Template Manager they are placed as

children of a root print template). If ExcludePrintables is set to 1 then

the returned set will not contain any printable page or template.

Return value:

The procedure returns 1 on success, and 0 on failure.

See also:

The procedures PageGetNext, PageGetPrevious, PageGetChild, PageGetParent,

PageGetNextInTreeWalk.

Chapter 21. Page Functions 834

PageGetChild

The procedure PageGetChild retrieves the name of the first child page for a

specific page in the Page Manager tree.

PageGetChild(

page, ! (input) scalar string expression

childpage, ! (output) scalar string identifier

IncludeHiddenPages ! (optional) scalar numerical expression

)

Arguments:

page

A string expression containing the name of a (parent) page in the Page

Manager tree.

childpage

A scalar string identifier to hold the name of the first child page

beneath the given parent page (if any).

IncludeHiddenPages

A scalar numerical expression to indicate whether hidden pages

should be taken into account. If IncludeHiddenPages is set to 1 then

the resulting child page may be a page that is currently hidden,

otherwise these hidden pages are skipped. The default is 0.

Return value:

The procedure returns 1 on success, or 0 if the given page name does not

exist or if the page does not have any child pages.

See also:

The procedures PageGetParent, PageGetNext, PageGetPrevious,

PageGetNextInTreeWalk, PageGetAll.

Chapter 21. Page Functions 835

PageGetFocus

With the procedure PageGetFocus you can retrieve the name of the currently

active page.

PageGetFocus(

page, ! (output) scalar string identifier

tag, ! (output) scalar string identifier

[fullPathTag] ! (optional) 0 or 1

)

Arguments:

page

A string identifier to hold the name of the currently active page. If the

same page name is used in more than one (library) project, then the

prefix of the library project (or :: in case of the main project) will be

prepended.

tag

A string identifier to hold the tag name of the object that currently

has the keyboard input focus.

fullPathTag (optional)

If this value is set to 0, then returned tag will be the simple tag name

of the object that has focus. If this value is set to 1 (the default), then

the returned tag name will also contain the tags of Tabbed or Indexed

Page objects in which the object with focus is contained. See the

remarks below.

Return value:

The procedure returns 1 on success, or 0 if there is no currently active

page or if no object has the input focus.

Remarks:

You can specify a unique tag name for each page object via the object

properties. If no tag name has been given explicitly, then the type of

object is returned (“Table”, “Bar Chart”, etc.)

If an object with tag “X” is displayed in a tabbed page object with tag “T”,

then the full path tag name will be “T::X”.

If an object with tag “X” is displayed in an indexed page object with tag

“IP” on a row and column that corresponds with elements “rowi” and

“colj”, then the full path tag name will be “IP(’rowi’,’colj’)::X”.

See also:

The procedures PageSetFocus, PageGetActive.

Chapter 21. Page Functions 836

PageGetNext

The procedure PageGetNext retrieves the name of the next page for a specific

page in the Page Manager tree. The next page is the page that has the same

parent page, and is positioned directly below the given page.

PageGetNext(

page, ! (input) scalar string expression

nextpage, ! (output) scalar string identifier

IncludeHiddenPages ! (optional) scalar numerical expression

)

Arguments:

page

A string expression containing the name of a (child) page in the Page

Manager tree.

nextpage

A scalar string identifier to hold the name of the next page of the

given page (if it exists).

IncludeHiddenPages

A scalar numerical expression to indicate whether hidden pages

should be taken into account. If IncludeHiddenPages is set to 1 then

the resulting page may be a page that is currently hidden, otherwise

these hidden pages are skipped. The default is 0.

Return value:

The procedure returns 1 on success, or 0 if the given page name does not

exist or if the page does not have a next page.

See also:

The procedures PageGetPrevious, PageGetChild, PageGetParent,

PageGetNextInTreeWalk, PageGetAll.

Chapter 21. Page Functions 837

PageGetNextInTreeWalk

The procedure PageGetNextInTreeWalk retrieves the name of the next page for

a specific page in the Page Manager tree by traversing the tree in a depth-first

manner: This procedure will try to find the next page of a page first by

searching for child nodes of the selected page. If the page has no child nodes,

it will look for a next page on the same level. If there also isn’t a next page in

the same level, it will try to find a next page for the parent nodes. This

procedure includes hidden pages and ignores separators.

PageGetNextInTreeWalk(

page, ! (input) scalar string expression

nextpage, ! (output) scalar string identifier

IncludeHiddenPages ! (optional) scalar numerical expression

)

Arguments:

page

A string expression containing the name of a (child) page in the Page

Manager tree.

nextpage

A scalar string identifier to hold the name of the next page of the

given page (if it exists).

IncludeHiddenPages

A scalar numerical expression to indicate whether hidden pages

should be taken into account. If IncludeHiddenPages is set to 1 then

the resulting parent page may be a page that is currently hidden,

otherwise these hidden pages are skipped. The default is 0.

Return value:

The procedure returns 1 on success, or 0 if the given page name does not

exist or if the page does not have a next page.

See also:

The procedures PageGetNext, PageGetPrevious, PageGetChild, PageGetParent,

PageGetAll.

Chapter 21. Page Functions 838

PageGetParent

The procedure PageGetParent retrieves the name of the parent page for a

specific page in the Page Manager tree.

PageGetParent(

page, ! (input) scalar string expression

parentpage, ! (output) scalar string identifier

IncludeHiddenPages ! (optional) scalar numerical expression

)

Arguments:

page

A string expression containing the name of a (child) page in the Page

Manager tree.

parentpage

A scalar string identifier to hold the name of the parent page of the

given page (if it exists).

IncludeHiddenPages

A scalar numerical expression to indicate whether hidden pages

should be taken into account. If IncludeHiddenPages is set to 1 then

the resulting parent page may be a page that is currently hidden,

otherwise these hidden pages are skipped. The default is 0.

Return value:

The procedure returns 1 on success, or 0 if the given page name does not

exist or if the page does not have a parent page.

See also:

The procedures PageGetChild, PageGetNext, PageGetPrevious,

PageGetNextInTreeWalk, PageGetAll.

Chapter 21. Page Functions 839

PageGetPrevious

The procedure PageGetPrevious retrieves the name of the previous page for a

specific page in the Page Manager tree. The previous page is the page that has

the same parent page, and is positioned directly above the given page.

PageGetPrevious(

page, ! (input) scalar string expression

previouspage, ! (output) scalar string identifier

IncludeHiddenPages ! (optional) scalar numerical expression

)

Arguments:

page

A string expression containing the name of a (child) page in the Page

Manager tree.

previouspage

A scalar string identifier to hold the name of the previous page of the

given page (if it exists).

IncludeHiddenPages

A scalar numerical expression to indicate whether hidden pages

should be taken into account. If IncludeHiddenPages is set to 1 then

the resulting page may be a page that is currently hidden, otherwise

these hidden pages are skipped. The default is 0.

Return value:

The procedure returns 1 on success, or 0 if the given page name does not

exist or if the page does not have a previous page.

See also:

The procedures PageGetNext, PageGetChild, PageGetParent,

PageGetNextInTreeWalk, PageGetAll.

Chapter 21. Page Functions 840

PageGetTitle

The procedure PageGetTitle retrieves the title of a specific page in the Page

Manager tree.

PageGetTitle(

pageName, ! (input) scalar string expression

pageTitle ! (output) scalar string identifier

)

Arguments:

pageName

A string expression containing the name of a page in the Page

Manager tree.

pageTitle

A scalar string identifier to hold the title of the given page.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Chapter 21. Page Functions 841

PageGetUsedIdentifiers

The procedure PageGetUsedIdentifiers returns a subset of AllIdentifiers

containing all identifiers used on a specified page.

PageGetUsedIdentifiers(

page, ! (input) scalar string expression

identifier_set ! (output) subset of all identifiers

)

Arguments:

page

A string expression containing the name of a page in the Page

Manager tree.

identifier set

A subset of all identifers containing all the identifiers used in the

page.

Return value:

The procedure returns 1 on success, or 0 if the given page name does not

exist.

See also:

The procedure IdentifierGetUsedInformation.

Chapter 21. Page Functions 842

PageOpen

With the procedure PageOpen you can open any page that is defined in the

Page Manager. If the page is already open, then the procedure will make this

page the active page. The PageOpen procedure does not halt the execution,

unless the page to open is defined as a dialog page. In the latter case, the

execution is halted until the user closes the page.

PageOpen(

page ! (input) string expression

)

Arguments:

page

A string expression representing the name of the page that you want

to open. This name is the unique name as it appears in the Page

Manager tree.

Return value:

The procedure returns 1 if the page is opened successfully. If the

procedure fails to open the page it returns 0, and the pre-defined

parameter CurrentErrorMessage will contain a proper error message.

See also:

The procedures PageOpenSingle, PageClose.

Chapter 21. Page Functions 843

PageOpenSingle

The procedure PageOpenSingle is similar to PageOpen, except that after

successfull opening the page PageOpenSingle makes sure that all other

currently opened pages are closed.

PageOpenSingle(

page ! (input) string expression

)

Arguments:

page

A string expression representing the name of the page that you want

to open. This name is the unique name as it appears in the Page

Manager tree.

Return value:

The procedure returns 1 if the page is opened successfully. If the

procedure fails to open the page it returns 0, and the pre-defined

parameter CurrentErrorMessage will contain a proper error message.

See also:

The procedures PageOpen, PageClose.

Chapter 21. Page Functions 844

PageRefreshAll

Normally, the data on all open pages is refreshed automatically each time

Aimms has finished executing a procedure. Via a call to PageRefreshAll you

can refresh the data on all pages at any time during a procedure run (for

example to show intermediate results).

PageRefreshAll

Arguments:

None

Remarks:

� Pages that you open from within a procedure will always show the data

that is available at that moment, so it is not necessary to call

PageRefreshAll for a newly opened page.

� At the end of an button action, Aimms will automatically refresh all

pages.

See also:

The procedure PageOpen.

Chapter 21. Page Functions 845

PageSetCursor

With the procedure PageSetCursor you have maximum control over where you

want to set the current keyboard input focus. Similar to PageSetFocus you can

specify which page object should get the focus, but additionally you can

specify the data element that should be highlighted within the focus object.

PageSetCursor(

page ! (input) scalar string expression

tag, ! (input) scalar string expression

scalar_reference, ! (input) scalar identifier

)

Arguments:

page

A string expression representing the name of the page in which you

want to set the input focus.

tag

A string expression representing the tag name of the object that

should get the keyboard input focus.

scalar reference

A scalar data element that matches the element that you want to

highlight within the object.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0 and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Examples:

If you are displaying a variable Transport in a table with tag

”TransportTable” on page ”Results”, then you can set the focus and cursor

to a specific cell in this table using the following procedure call:

PageSetCursor("Results", "TransportTable", Transport(’Amsterdam’,’Rotterdam’));

Remarks:

You can specify a unique tag name for each page object via the object

properties.

See also:

The procedure PageSetFocus.

Chapter 21. Page Functions 846

PageSetFocus

With the procedure PageSetFocus you can set the keyboard input focus to a

specific object within a specific page. If the page is not open, then the

procedure will first try to open the page.

PageSetFocus(

page, ! (input) scalar string expression

tag ! (input) scalar string expression

)

Arguments:

page

A string expression representing the name of the page in which you

want to set the input focus.

tag

A string expression representing the tag name of the object that

should get the keyboard input focus.

Return value:

The procedure returns 1 on success. If it fails to set the focus to the

specified object, then the return value is 0 and CurrentErrorMessage will

contain a proper error message.

Remarks:

You can specify a unique tag name for each page object via the object

properties.

See also:

The procedures PageSetCursor, PageGetFocus.

Chapter 21. Page Functions 847

PivotTableDeleteState

With the procedure PivotTableDeleteState you can delete a specific state in

either the Developer or End User state file.

PivotTableDeleteState(

statename, ! (input) scalar string expression

statesource ! (input) scalar string expression

)

Arguments:

statename

A string expression representing the name of the state to be deleted.

statesource

A string expression representing the type of state to be deleted.

Possible values are:

� DeveloperState: Delete the specified state from the developer

state file.

� UserState: Delete the specified state from the user state file.

� Both: Delete the state from both the developer and user state file

Return value:

The procedure returns 1 on success. If it fails to delete the specified state,

then the return value is 0 and CurrentErrorMessage will contain a proper

error message.

Remarks:

� When running in End User mode, you cannot delete states from the

developer state file.

See also:

� The Pivot Table example that comes with the Aimms installation

includes a library that uses this new function. It includes a right-mouse

menu that can be assigned to a Pivot Table, after which the user can

save, load, or delete states for that Pivot Table. You can include this

library in your own project as well.

� The functions PivotTableReloadState, PivotTableSaveState.

Chapter 21. Page Functions 848

PivotTableReloadState

With the procedure PivotTableReloadState you can reload the state of a

specific pivot table from either the developer or user state file.

PivotTableReloadState(

page, ! (input) scalar string expression

tag, ! (input) scalar string expression

statesource ! (input) scalar string expression

)

Arguments:

page

A string expression representing the name of the page that contains

the pivot table.

tag

A string expression representing the tag that identifies the pivot table.

statesource

A string expression representing the type of state to be reloaded.

Possible values are:

� DeveloperState: Reload the pivot table with a state that is

present in the developer state file.

� UserState: Reload the pivot table with a state that is present in

the user state file.

� None: Reload the pivot table as if no state was available.

Return value:

The procedure returns 1 on success. If it fails to reload the state for the

specified object, then the return value is 0 and CurrentErrorMessage will

contain a proper error message.

Remarks:

� You can specify a unique tag name for each page object on the Misc tab

of the object properties dialog box.

� The name of the state is specified by the Specific State Name property

on the General tab of the pivot table properties dialog box.

� This procedure will only reload the state when the Save Layout/State -

By Developer property (or Save Layout/State - By End User when

running in end-user mode) on the general tab of the pivot table

properties dialog box, has been set to a value other than No.

See also:

� The Pivot Table example that comes with the Aimms installation

includes a library that uses this new function. It includes a right-mouse

Chapter 21. Page Functions 849

menu that can be assigned to a Pivot Table, after which the user can

save, load, or delete states for that Pivot Table. You can include this

library in your own project as well.

� The functions PivotTableSaveState, PivotTableDeleteState.

Chapter 21. Page Functions 850

PivotTableSaveState

With the procedure PivotTableSaveState you can save the state of a specific

pivot table to either the developer or user state file.

PivotTableSaveState(

page, ! (input) scalar string expression

tag, ! (input) scalar string expression

statesource ! (input) scalar string expression

)

Arguments:

page

A string expression representing the name of the page that contains

the pivot table.

tag

A string expression representing the tag that identifies the pivot table.

statesource

A string expression representing the type of state to be saved.

Possible values are:

� DeveloperState: Save the specified state to the developer state

file.

� UserState: Save the specified state to the user state file.

Return value:

The procedure returns 1 on success. If it fails to save the state for the

specified object, then the return value is 0 and CurrentErrorMessage will

contain a proper error message.

Remarks:

� When running in end-user mode, it is not possible to save a developer

state.

� You can specify a unique tag name for each page object on the Misc tab

of the object properties dialog box.

� The name of the state is specified by the Specific State Name property

on the General tab of the pivot table properties dialog box.

� This procedure will only save the state when the Save Layout/State - By

Developer property (or Save Layout/State - By End User when running

in end-user mode) on the general tab of the pivot table properties

dialog box, has been set to a value other than No.

See also:

� The Pivot Table example that comes with the Aimms installation

includes a library that uses this new function. It includes a right-mouse

Chapter 21. Page Functions 851

menu that can be assigned to a Pivot Table, after which the user can

save, load, or delete states for that Pivot Table. You can include this

library in your own project as well.

� The functions PivotTableDeleteState, PivotTableReloadState.

Chapter 21. Page Functions 852

PrintEndReport

With the procedure PageEndReport you finish the printing of a report that was

started via a call to PrintStartReport.

PrintEndReport

Arguments:

None

Return value:

The procedure returns 1 on success, or 0, if there was no current report.

See also:

The procedures PrintStartReport, PrintPage.

Chapter 21. Page Functions 853

PrintPage

With the procedure PrintPage you can print a single print page. If the page

contains a data object for which the available data does not fit onto a single

printed sheet, Aimms will print as many sheets as needed.

PrintPage(

page, ! (input) scalar string expression

[filename,] ! (optional) scalar string expression

[from_pagenr,] ! (optional) integer

[to_pagenr,] ! (optional) integer

[UseDefaultBitmapPrintSettings] ! (optional) integer

)

Arguments:

page

A string expression representing the name of the page that you want

to print. This name is the unique name as it appears in the Page

Manager tree.

filename (optional)

If this file name is specified, then Aimms will print to the specific file

and not directly to the printer. If this argument is omitted, then

Aimms will print according to the settings of the currently selected

printer.

from pagenr (optional)

If the objects on the page result in multiple printed sheets, then with

this argument you can specify the first sheet to print. If omitted, then

printing will start at the first sheet (from pagenr = 1).

to pagenr (optional)

If the objects on the page result in multiple printed sheets, then with

this argument you can specify the last sheet to print. If omitted, then

printing continues until the last sheet.

UseDefaultBitmapPrintSettings (optional)

When printing a non-print page, the page is printed by creating an

exact bitmap copy of the page as it appears on the screen. By default

(if the argument equals 0), a dialog will appear in which you can

specify which scale should be applied such that it fits on one or more

sheets. By settings this argument to 1, this dialog box will be skipped

and the bitmap print will use the standard settings of the dialog box.

If the page to print is designed as a print page, then this argument is

ignored.

Return value:

The procedure returns the actual number of pages printed if the print

page is printed successfully. If the procedure fails to print the page it

Chapter 21. Page Functions 854

returns 0, and the pre-defined parameter CurrentErrorMessage will contain

a proper error message.

See also:

The procedures PrintPageCount, PrintStartReport.

Chapter 21. Page Functions 855

PrintPageCount

The procedure PrintPageCount will return how many sheets of paper are

needed to print a single print page in the interface.

PrintPageCount(

page ! (input) scalar string expression

)

Arguments:

page

A string expression representing the name of the page that you want

to print. This name is the unique name as it appears in the Page

Manager tree.

Return value:

The procedure returns the number of sheets needed, or 0 if the page

cannot be printed.

See also:

The procedure PrintPage.

Chapter 21. Page Functions 856

PrintStartReport

With the procedure PrintStartReport you start printing a report that consists

of the printing of multiple pages (using the procedure PrintPage). The

advantage of printing in the form of a report is that all print request until

PrintEndReport arrive at the printer as a single print job, and that the pages

are numbered correctly.

PrintStartReport(

title, ! (input) scalar string expression

[filename] ! (optional) scalar string expression

)

Arguments:

title

A string expression representing the title of the report. This title is

used in the communication to the printer as the name of the print job.

filename (optional)

If this file name is specified, then Aimms will print to the specific file

and not directly to the printer. If this argument is omitted, then

Aimms will print according to the settings of the currently selected

printer.

Return value:

The procedure returns 1 on success. If the procedure fails, then the

pre-defined parameter CurrentErrorMessage will contain a proper error

message.

Remarks:

A successful call to PrintStartReport must be followed by a call to

PrintEndReport, otherwise nothing is printed, and your printer may hang.

See also:

The procedures PrintEndReport, PrintPage.

Chapter 21. Page Functions 857

PrinterGetCurrentName

With the procedure PrinterGetCurrentName you can retrieve the name of the

currently selected printer.

PrinterGetCurrentName(

printerName ! (ouput) scalar string parameter

)

Arguments:

printerName

On return this string parameter will contain the name of the currently

selected printer.

Return value:

The procedure returns 1 if it did retrieve a printer name successfully. If it

return 0, something is wrong with the printer setup and printerName will

be empty.

Examples:

You can use the procedure PrinterGetCurrentName to create a PDF preview

mode for the pages that you want to print:

PrinterGetCurrentName(currentPrinter);

if FindString(currentPrinter,"PDF") then

PrintStartReport("Report", "output.pdf");

PrintPage("MyPrintPage");

PrintEndReport;

! if there is a PDF viewer installed (like AcrobatReader), you can now open the document with it:

OpenDocument("output.pdf");

endif;

Remarks:

To change the current printer, you can use the menu item File - Print

Setup or make a call to the procedure PrinterSetupDialog.

See also:

The procedures PrinterSetupDialog.

Chapter 21. Page Functions 858

PrinterSetupDialog

With the procedure PrinterSetupDialog you can open the standard printer

setup dialog. This same dialog is also available via the menu command File -

Print Setup.

PrinterSetupDialog

Arguments:

None

Return value:

If the setup dialog is cancelled, the procedure PrinterSetupDialog returns

0. Otherwise it will return 1.

Examples:

You can use the procedure PrinterSetupDialog to make sure that a user

selects a PDF printer:

isPDFPrinter := 0;

Repeat

PrinterGetCurrentName(currentPrinter);

if FindString(currentPrinter,"PDF") then

isPDFPrinter := 1;

break;

endif;

DialogMessage("Please select a PDF printer.");

break when PrinterSetupDialog() = 0;

EndRepeat;

See also:

The procedures PrinterGetCurrentName.

Chapter 21. Page Functions 859

ShowMessageWindow

With the procedure ShowMessageWindow you programmatically open or close

the Aimms message window.

ShowMessageWindow(

[do_show] ! (optional) scalar expression

)

Arguments:

do show (optional)

A scalar 0-1 expression, indicating whether the message window

should be opened (value is 1) or should be closed (value is 0). The

default is 1.

See also:

The procedure ShowProgressWindow.

Chapter 21. Page Functions 860

ShowProgressWindow

With the procedure ShowProgressWindow you programmatically open or close

the Aimms progress window.

ShowProgressWindow(

[do_show] ! (optional) scalar expression

)

Arguments:

do show (optional)

A scalar 0-1 expression, indicating whether the progress window

should be opened (value is 1) or should be closed (value is 0). The

default is 1.

See also:

The procedure ShowMessageWindow.

Chapter 22

User colors

� UserColorAdd

� UserColorDelete

� UserColorGetRGB

� UserColorModify

Chapter 22. User colors 862

UserColorAdd

With the procedure UserColorAdd you can programmatically add a new color

to the set of user colors.

UserColorAdd(

color_name, ! (input) scalar string expression

red, ! (input) scalar numerical expression

green, ! (input) scalar numerical expression

blue ! (input) scalar numerical expression

)

Arguments:

color name

A string expression holding the name of the user color to add.

red

An integer value in the range 0 . . .255 indicating the red component

in the RGB value of the color.

green

An integer value in the range 0 . . .255 indicating the green component

in the RGB value of the color.

blue

An integer value in the range 0 . . .255 indicating the blue component

in the RGB value of the color.

Return value:

The procedure returns 1 if the color could be added successfully, or 0 if

the color already exists.

Remarks:

Only project colors, i.e. colors added through the Tools-User Colors

dialog box, are persistent. User colors that are added to a project using

the procedure UserColorAdd do not persist, and, therefore, have to be

added during the initialization of every project session.

See also:

UserColorDelete, UserColorGetRGB, UserColorModify. User colors are

discussed in full detail in Section 11.4 of the User’s Guide.

Chapter 22. User colors 863

UserColorDelete

With the procedure UserColorDelete you can programmatically delete a color

from the set of user colors.

UserColorDelete(

color_name ! (input) scalar string expression

)

Arguments:

color name

A string expression holding the name of the user color to delete.

Return value:

The procedure returns 1 if the color could be deleted successfully, or 0 if

the color does not exist, or is contained in the fixed set of project colors.

Remarks:

You can only delete user colors that have been added using the procedure

UserColorAdd. Colors added through the Tools-User Colors dialog box are

fixed and cannot be deleted or modified.

See also:

UserColorAdd, UserColorGetRGB, UserColorModify. User colors are discussed

in full detail in Section 11.4 of the User’s Guide.

Chapter 22. User colors 864

UserColorGetRGB

With the procedure UserColorGetRGB you can programmatically obtain the RGB

values of a color in the set of user colors.

UserColorGetRGB(

color_name, ! (input) scalar string expression

red, ! (output) scalar numerical parameter

green, ! (output) scalar numerical parameter

blue ! (output) scalar numerical parameter

)

Arguments:

color name

A string expression holding the name of the user color to query.

red

An scalar parameter that, on return, holds the red component in the

RGB value of the color.

green

An scalar parameter that, on return, holds the green component in

the RGB value of the color.

blue

An scalar parameter that, on return, holds the blue component in the

RGB value of the color.

Return value:

The procedure returns 1 if the color exists in the set of user colors, or 0 if

the color does not exist.

See also:

UserColorAdd, UserColorDelete, UserColorModify. User colors are discussed

in full detail in Section 11.4 of the User’s Guide.

Chapter 22. User colors 865

UserColorModify

With the procedure UserColorModify you can programmatically modify an

existing color in the set of user colors.

UserColorModify(

color_name, ! (input) scalar string expression

red, ! (input) scalar numerical expression

green, ! (input) scalar numerical expression

blue ! (input) scalar numerical expression

)

Arguments:

color name

A string expression holding the name of the user color to modify.

red

An integer value in the range 0 . . .255 indicating the red component

in the RGB value of the color.

green

An integer value in the range 0 . . .255 indicating the green component

in the RGB value of the color.

blue

An integer value in the range 0 . . .255 indicating the blue component

in the RGB value of the color.

Return value:

The procedure returns 1 if the color could be modified successfully, and 0

if the color does not exist, or is contained in the fixed set of project colors.

Remarks:

You can only modify user colors that have been added using the

procedure UserColorAdd. Colors added through the Tools-User Colors

dialog box are fixed and cannot be deleted or modified.

See also:

UserColorAdd, UserColorDelete, UserColorGetRGB. User colors are discussed

in full detail in Section 11.4 of the User’s Guide.

Part VI

Development Support

Chapter 23

Profiler and Debugger

� DebuggerBreakPoint

� ProfilerStart

� ProfilerPause

� ProfilerContinue

� ProfilerRestart

� ProfilerCollectAllData

Chapter 23. Profiler and Debugger 868

DebuggerBreakPoint

The procedure DebuggerBreakPoint breaks execution and activates the

debugger when needed.

DebuggerBreakPoint(

[only_if_active] ! (optional, default 0) scalar binary expression

)

Arguments:

only if active

When this argument equals 1, execution is only stopped when the

debugger is active. If this argument equals 0 the execution is always

stopped and the debugger is activated if necessary.

Remarks:

� The debugger and profiler are exclusive. When the profiler is active, this

procedure has no effect.

� This procedure has no effect in end-user mode because the debugger is

not available in end-user mode.

Chapter 23. Profiler and Debugger 869

ProfilerStart

The procedure ProfilerStart starts measuring the execution time of

statements and definitions.

ProfilerStart

Remarks:

When the option profiler store data has been set to On profiling

information is stored in the predefined identifier ProfilerData.

See also:

The procedures ProfilerPause, ProfilerContinue and ProfilerRestart and

the predefined identifier ProfilerData.

Chapter 23. Profiler and Debugger 870

ProfilerPause

The procedure ProfilerPause temporarily disables measuring the execution

time of statements and definitions.

ProfilerPause

Remarks:

� This procedure is the programmatic counterpart of the Profiler - Pause

menu command.

� This procedure only has effect when the profiler has been activated.

See also:

The procedure ProfilerContinue and ProfilerRestart.

Chapter 23. Profiler and Debugger 871

ProfilerContinue

The procedure ProfilerContinue continues measuring the execution time of

statements and definitions.

ProfilerContinue

Remarks:

� This procedure is the programmatic counterpart of the Profiler -

Continue menu command.

� This procedure only has effect when the profiler has been activated.

See also:

The procedure ProfilerPause and ProfilerRestart.

Chapter 23. Profiler and Debugger 872

ProfilerRestart

The procedure ProfilerRestart clears the execution time measurement data

of all statements and definitions.

ProfilerRestart

Remarks:

� This procedure is the programmatic counterpart of the Profiler -

Restart menu command.

� This procedure only has effect when the profiler has been activated.

See also:

The procedure ProfilerContinue and ProfilerPause.

Chapter 23. Profiler and Debugger 873

ProfilerCollectAllData

With the procedure ProfilerCollectAllData you can retrieve the current

results of the profiler into a parameter in your model. This procedure is

especially usefull when you want to investigate timings of a model that runs

server-side, without the IDE. Data will be retrieved for procedures and

functions, and for parameter and sets that have a definition.

ProfilerCollectAllData(

ProfilerData, ! (output) a 3-dimensional identifier

GrossTimeThreshold, ! (optional) scalar numerical parameter

NetTimeThreshold ! (optional) scalar numerical parameter

)

Arguments:

ProfilerData

A three dimensional identifier where the indices represent (1) the

identifiers, (2) the line numbers and (3) the specific profiler value. The

first index should be an index in (a subset of) the predeclared set

AllIdentifiers, only for identifiers in this set the profiling data will be

retrieved. The second index should be an index in a subset of

Integers. The third index should be an index in (a subset of) the

predeclared set AllProfilerTypes.

GrossTimeThreshold

An optional value, in seconds, which filters out all the profiler

measurements where the gross time is smaller.

NetTimeThreshold

An optional value, in seconds, which filters out all the profiler

measurements where the net time is smaller.

Remarks:

The procedure will only produce results when the profiler is currently

active and some execution has already taken place.

The subset of integers that is used for the line number will automatically

be extended with all the line numbers that have actual measurements. So

this set may be left empty when calling the procedure.

For a procedure or function the timings of each individual statement is

retrieved and stored using the corresponding line number. Besides that,

the total timings of the procedure or function is stored as an entry with

line number 0.

Example:

With these declarations

Set Lines {

Chapter 23. Profiler and Debugger 874

Index: line;

Subset of: Integers;

}

Parameter Results {

IndexDomain: (IndexIdentifiers,line,IndexProfilerValues);

}

the procedure call

ProfilerCollectAllData(Results, GrossTimeThreshold: 0.5);

fills the parameter Results with all profiler measurements for which the

gross time is larger than 0.5 seconds.

See also:

The procedure ProfilerStart.

Chapter 24

Application Information

Aimms supports the following to help model development

� IdentifierGetUsedInformation

� IdentifierMemory

� IdentifierMemoryStatistics

� MemoryInUse

� MemoryStatistics

� ListExpressionSubstitutions

� ShowHelpTopic

Chapter 24. Application Information 876

IdentifierGetUsedInformation

With the procedure IdentifierGetUsedInformation you can obtain information

on whether an identifier in the model is still referenced in either a page, a

user menu or a case type/data category.

IdentifierGetUsedInformation(

identifier ! (input) element parameter

isUsedInPages, ! (output) scalar numerical identifier

isUsedInMenus, ! (output) scalar numerical identifier

isUsedInDataCategories ! (output) scalar numerical identifier

)

Arguments:

identifier

The identifier, given as element in the set AllIdentifiers, whose

usage info you want to retrieve. Please note that local identifiers

(declared inside procedures or functions) are not taken into account

by this function.

isUsedInPages

On return this value is set to 1 if the identifier is referenced in either

a page, template or print page. It is set to 0 otherwise.

isUsedInMenus

On return this value is set to 1 if the identifier is referenced in a menu

item or submenu of a user menu. It is set to 0 otherwise.

isUsedInDataCategories

On return this value is set to 1 if the identifier is referenced in either

a data category or case type. It is set to 0 otherwise.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

The function only indicates whether the identifier is used in either of the

three GUI areas. To figure out in which specific page, menu or data

category the identifier is used you can use the drag-and-find feature of the

IDE: if you drag an identifier from the Model Explorer, holding down both

the Control and Shift key, and drop it on either the Page Manager,

Template Manager, Menu Builder or Data Management Setup tree, all items

that reference the identifier will be highlighted.

See also:

The procedure PageGetUsedIdentifiers.

Chapter 24. Application Information 877

IdentifierMemory

With the function IdentifierMemory you can determine the total amount of

memory occupied by the identifier.

IdentifierMemory(

Identifier, ! (input) scalar element parameter

IncludePermutations ! (optional, default 1) scalar binary expression

)

Arguments:

Identifier

An element expression in the set AllIdentifiers specifying the

identifier for which the amount of occupied memory should be

determined.

IncludePermutations

An 0-1 value indicating whether the amount of memory occupied by

permutations of the identifier should also be included in the total

memory determination.

Return value:

The function reports the sum of the memory occupied by the identifier, its

suffixes and the associated hidden identifiers (that are introduced as

temporary identifiers by the Aimms compiler/execution engine. The unit

of measurement for this function is bytes.

Remarks:

The return value of this function differs from the value reported in the

‘Memory Usage’ column of the Identifier Cardinalities dialog box because

in the Identifier Cardinalities dialog box the value for hidden identifiers

and suffixes are reported separately.

Chapter 24. Application Information 878

IdentifierMemoryStatistics

With the procedure IdentifierMemoryStatistics you can obtain a report

containing the statistics collected by Aimms’ memory manager for a single or

multiple high dimensional identifiers.

IdentifierMemoryStatistics(

IdentSet, ! (input) a set of identifiers

OutputFileName, ! (input) scalar string expression

AppendMode, ! (optional, default 0) scalar numerical expression

MarkerText ! (optional) scalar string expression

ShowLeaksOnly ! (optional) scalar expression

ShowTotals ! (optional) scalar expression

ShowSinceLastDump ! (optional) scalar expression

ShowMemPeak ! (optional) scalar expression

ShowSmallBlockUsage ! (optional) scalar expression

doAggregate ! (optional, default 0) scalar expression

)

Arguments:

IdentSet

A subset of AllIdentifiers whose memory statistics are to be

reported.

OutputFileName

A string expression holding the name of the file to which the

statistics must be written.

AppendMode

An 0-1 value indicating whether the file must be overwritten or

whether the statistics must be appended to an existing file.

MarkerText

A string printed at the top of the memory statistics report.

ShowLeaksOnly

A 0-1 value that is only used internally by AIMMS. The value specified

doesn’t influence the memory statistics report.

ShowTotals

A 0-1 value indicating whether the report should include detailed

information about the total memory use in Aimms’ own memory

management system until the moment of calling

IdentifierMemoryStatistics.

ShowSinceLastDump

A 0-1 value indicating whether the report should include basic and

detailed information about the memory use in Aimms’ own memory

management system since the previous call to

IdentifierMemoryStatistics.

Chapter 24. Application Information 879

ShowMemPeak

A 0-1 value indicating whether the report should include detailed

information about the memory use in Aimms’ own memory

management system, when the memory consumption was at its peak

level prior to calling IdentifierMemoryStatistics.

ShowSmallBlockUsage

A 0-1 value indicating whether the detailed information about the

MemoryStatistics memory use in Aimms’ own memory management

system is included at all in the memory statistics report. Setting this

value to 0 results in a report with only the most basic statistical

information about the memory use.

doAggregate

A 0-1 value (default 0) indicating whether a single aggregated report

is to be presented or multiple individual reports.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The procedure prints a report of the statistics collected by Aimms’

memory manager since the last call to IdentifierMemoryStatistics.

� Aimms will only collect memory statistics if the option

memory statistics is on.

Chapter 24. Application Information 880

ListExpressionSubstitutions

With the procedure ListExpressionSubstitutions, the expressions substituted

are printed to the listing file.

ListExpressionSubstitutions()

Return value:

The procedure returns 1 on success, or 0 otherwise.

Example:

With the definition:

Parameter Conn3 {

IndexDomain : (l1,l4);

Definition : {

1 | sum((l2,l3) | d(l1,l2) <= md and

d(l2,l3) <= md and

d(l3,l4) <= md

,1)

}

}

The procedure ListExpressionSubstitutions will print to the listing file:

1: D(l1,l2) <= md has card 0, and is used 1 times

2: D(l2,l3) <= md has card 0, and is used 1 times

3: D(l3,l4) <= md has card 0, and is used 1 times

The card is the number of elements in the cache, here 0; when running

this example, the definition of Conn3 was not evaluated, and the

procedure ListExpressionSubstitutions does not force the evaluation of

the caches either.

Chapter 24. Application Information 881

MemoryInUse

With the function MemoryInUse you can obtain the current amount of memory

in use as it is reported by the operating system.

MemoryInUse()

Return value:

This function returns the amount of memory in use in [Mb].

Remarks:

See also the functions MemoryStatistics, IdentifierMemory,

GMP::Instance::GetMemoryUsed

Chapter 24. Application Information 882

MemoryStatistics

With the procedure MemoryStatistics you can obtain a report containing the

statistics collected by Aimms’ memory manager.

MemoryStatistics(

OutputFileName, ! (input) scalar string expression

AppendMode, ! (optional, default 0) scalar numerical expression

MarkerText, ! (optional, default empty) scalar string expression

ShowLeaksOnly, ! (optional, default 0) scalar numerical expression

ShowTotals, ! (optional, default 1) scalar numerical expression

ShowSinceLastDump, ! (optional, default 1) scalar numerical expression

ShowMemPeak, ! (optional, default 0) scalar numerical expression

ShowSmallBlockUsage, ! (optional, default 0) scalar numerical expression

GlobalOnly ! (optional, default 0) scalar numerical expression

)

Arguments:

OutputFileName

A string expression holding the name of the file to which the

statistics must be written color to modify.

AppendMode

An 0-1 value indicating whether the file must be overwritten or

whether the statistics must be appended to an existing file.

MarkerText

A string printed at the top of the memory statistics report.

ShowLeaksOnly

A 0-1 value that is only used internally by AIMMS. The value specified

doesn’t influence the memory statistics report.

ShowTotals

A 0-1 value indicating whether the report should include detailed

information about the total memory use in AIMMS’ own memory

management system until the moment of calling MemoryStatistics.

ShowSinceLastDump

A 0-1 value indicating whether the report should include basic and

detailed information about the memory use in AIMMS’ own memory

management system since the previous call to MemoryStatistics.

ShowMemPeak

A 0-1 value indicating whether the report should include detailed

information about the memory use in AIMMS’ own memory

management system, when the memory consumption was at its peak

level prior to calling MemoryStatistics.

ShowSmallBlockUsage

A 0-1 value indicating whether the detailed information about the

Chapter 24. Application Information 883

memory use in AIMMS’ own memory management system is included

at all in the memory statistics report. Setting this value to 0 results in

a report with only the most basic statistical information about the

memory use.

GlobalOnly

A 0-1 value indicating whether only memory used by the global

memory manager (i.e. the ’main’ memory manager of AIMMS, as

opposed to seperate memory manager for individual

higher-dimensional identifiers) is reported in the memory statistics

file.

Return value:

The procedure prints a report of the statistics collected by Aimms’

memory manager since the last call to MemoryStatistics.

Remarks:

Aimms will only collect memory statistics if the option memory statistics

is on.

Chapter 24. Application Information 884

ShowHelpTopic

With the procedure ShowHelpTopic you can jump to a specific help topic in a

help file.

ShowHelpTopic(

topic, ! (input) scalar string

[helpfile] ! (optional) scalar string

)

Arguments:

topic

A string representing the help topic to jump to.

helpfile (optional)

A string representing the help file to open. If not specified, then

Aimms will use the help file that is specified in the project options.

Remarks:

Aimms supports the following help file formats: WinHelp or WinHelp2000

(*.hlp), compiled HTML Help (*.chm), and Acrobat Reader (*.pdf).

Part VII

System Interaction

Chapter 25

Error Handling Functions

Aimms supports the following functions for error handling:

� errh::Adapt

� errh::Attribute

� errh::Category

� errh::Code

� errh::Column

� errh::CreationTime

� errh::Filename

� errh::InsideCategory

� errh::IsMarkedAsHandled

� errh::Line

� errh::MarkAsHandled

� errh::Message

� errh::Multiplicity

� errh::Node

� errh::NumberOfLocations

� errh::Severity

Chapter 25. Error Handling Functions 887

errh::Adapt

The procedure errh::Adapt adapts an error with the specified information.

errh::Adapt(

err, ! (input) an element

severity, ! (optional input) an element

message, ! (optional input) a string

category, ! (optional input) an element

code ! (optional input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

severity

An element in the set errh::AllErrorSeverities.

message

A string describing the problem and possibly suggestions for

repairing the problem.

category

An element in the set errh::AllErrorCategories, indicating the

problem category to which the error belongs.

code

An element with root set errh::ErrorCodes. The element will be added

to the set errh::ErrorCodes if needed.

Return value:

Returns 1 if adapting the error is successful, 0 otherwise. In the latter case

additional error(s) have been raised.

Remarks:

When err does not reference an error in the set errh::PendingErrors an

additional error will be raised.

If the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Severity, errh::Message, errh::Category and

errh::Code.

Chapter 25. Error Handling Functions 888

errh::Attribute

The function errh::Attribute returns the identifier or node in which the error

occurred.

errh::Attribute(

err, ! (input) an element

loc ! (optional input) an integer, default 1.

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

loc

An integer in the range { 1 .. errh::NumberOfLocations(err) }.

Return value:

Returns an element in AllAttributeNames if the information is available

and the empty element otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Node, errh::Line and errh::NumberOfLocations.

Chapter 25. Error Handling Functions 889

errh::Category

The function errh::Category returns the error category to which the error

belongs.

errh::Category(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns an element in errh::AllErrorCategories if the information is

available and the empty element otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The function errh::Code, errh::InsideCategory.

Chapter 25. Error Handling Functions 890

errh::Code

The function errh::Code returns the identification code of the format string.

errh::Code(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns an element in errh::ErrorCodes if the information is available and

the empty element otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The function errh::Category and the procedure errh::Adapt. The

predeclared identifier errh::PendingErrors.

Chapter 25. Error Handling Functions 891

errh::Column

The function errh::Column returns the column number within the line in the

file in which the error occured during reading from file.

errh::Column(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns a column number if the information is available and 0 otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Line and errh::Filename.

Chapter 25. Error Handling Functions 892

errh::CreationTime

The function errh::CreationTime returns the creation time of the error.

errh::CreationTime(

err, ! (input) an element

fmt ! (optional) a format string.

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

fmt

A string that holds the date and time format used in the returned

string. Valid format strings are described in Section 33.7. When this

argument is not given, or if fmt is not a valid string format, the full

reference date format “%c%y-%m-%d %H:%M:%S” will be used.

Return value:

Returns the creation time of the error as a string.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The function CurrentToString.

Chapter 25. Error Handling Functions 893

errh::Filename

The function errh::Filename returns the file in which the error occurred

during reading from file

errh::Filename(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns a string containing the filename in which the error occurred, if

that error occurred during reading from file and the empty string

otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Line and errh::Column.

Chapter 25. Error Handling Functions 894

errh::InsideCategory

The function errh::InsideCategory returns 1 if the error is inside the given

category.

errh::InsideCategory(

err, ! (input) an element

cat ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

cat

An element in the set errh::AllErrorCategories referencing an error.

Return value:

Returns 1 if err in inside the category cat and 0 otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Code and errh::Category.

Chapter 25. Error Handling Functions 895

errh::IsMarkedAsHandled

The function errh::IsMarkedAsHandled returns 1 if the error is marked as

handled and 0 otherwise.

errh::IsMarkedAsHandled(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns 1 if the error is marked as handled and 0 otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The function errh::MarkAsHandled.

Chapter 25. Error Handling Functions 896

errh::Line

The function errh::Line returns the line number in the file or attribute in

which the error occured.

errh::Line(

err, ! (input) an element

loc ! (optional input) an integer, default 1.

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

loc

An integer in the range { 1 .. errh::NumberOfLocations(err) }.

Return value:

Returns a line number if the information is available and 0 otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The function errh::Column, errh::Filename, errh::Attribute, errh::Node

and errh::NumberOfLocations.

Chapter 25. Error Handling Functions 897

errh::Message

The function errh::Message returns a description of the error.

errh::Message(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns a string if the information is available and the empty string

otherwise.

Remarks:

When err does not reference an element in errh::PendingErrorsor when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The procedure errh::Adapt.

Chapter 25. Error Handling Functions 898

errh::MarkAsHandled

The procedure errh::MarkAsHandled marks or unmarks an error as handled.

errh::MarkAsHandled(

err, ! (input) an element

actually ! (optional input), default 1.

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

actually

When 1, the error err is marked as handled, when 0, the mark is

cleared.

Return value:

Returns a line number if the information is available and 0 otherwise.

Remarks:

When err doesn’t reference an element in errh::PendingErrors or when the

current filter is the filter To Global Collector an additional error will be

raised.

See also:

The function errh::IsMarkedAsHandled.

Chapter 25. Error Handling Functions 899

errh::Multiplicity

The function errh::Multiplicity returns the number of occurrences of this

error.

errh::Multiplicity(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns the number of occurrences of this error.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Code, errh::Category, errh::Message and

errh::Severity.

Chapter 25. Error Handling Functions 900

errh::Node

The function errh::Node returns the identifier or node in which the error

occurred.

errh::Node(

err, ! (input) an element

loc ! (optional input) an integer, default 1.

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

loc

An integer in the range { 1 .. errh::NumberOfLocations(err) }.

Return value:

Returns an element in AllSymbols if the information is available and the

empty element otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The functions errh::Attribute, errh::Line and errh::NumberOfLocations.

Chapter 25. Error Handling Functions 901

errh::NumberOfLocations

The function errh::NumberOfLocations returns the number of locations stored

to which this error is relevant. The relevant locations are file (if any) that is

being read, and the procedures currently active.

errh::NumberOfLocations(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns the number locations for which this error is relevant.

Remarks:

When err doesn’t reference an element in errh::PendingErrors or when the

current filter is the filter To Global Collector an additional error will be

raised.

See also:

The functions errh::Node, errh::Attribute and errh::Line.

Chapter 25. Error Handling Functions 902

errh::Severity

The function errh::Severity returns the severity of the error.

errh::Severity(

err ! (input) an element

)

Arguments:

err

An element in the set errh::PendingErrors referencing an error.

Return value:

Returns an element in errh::AllErrorSeverities if the information is

available and the empty element otherwise.

Remarks:

When err does not reference an element in errh::PendingErrors or when

the current filter is the filter To Global Collector an additional error will

be raised.

See also:

The procedures errh::Adapt and errh::MarkAsHandled.

Chapter 26

Option manipulation

� OptionGetDefaultString

� OptionGetKeywords

� OptionGetString

� OptionGetValue

� OptionSetString

� OptionSetValue

Chapter 26. Option manipulation 904

OptionGetDefaultString

With the procedure OptionGetDefaultString you can obtain the string

representation of the current value of an Aimms option, as displayed in the

Aimms Options dialog box.

OptionGetDefaultString(

OptionName, ! (input) scalar string expression

DefaultString ! (output) scalar string parameter

)

Arguments:

OptionName

A string expression holding the name of the option.

DefaultString

A scalar string parameter that, on return, contains the string

representation of the default value of the option.

Return value:

The procedure returns 1 if the option exists, or 0 if the name refers to a

non-existent option.

See also:

OptionGetValue, OptionGetKeywords, OptionGetString.

Chapter 26. Option manipulation 905

OptionGetKeywords

With the procedure OptionGetKeywords you can obtain set of string keywords,

as displayed in the Aimms Options dialog box, that correspond to the

numerical (integer) values of an option.

OptionGetKeywords(

OptionName, ! (input) scalar string expression

Keywords ! (output) a 1-dimensional string parameter

)

Arguments:

OptionName

A string expression holding the name of the option.

Keywords

A 1-dimensional string parameter that, on return, contains the

keywords corresponding to the set of possible (integer) option values.

Return value:

The procedure returns 1 if the option exists, and 0 if the OptionName

refers to a non-existent option or if the domain set of the 1-dimensional

string parameter is too small.

Remarks:

The domain set of the 1-dimensional parameter passed as the Keywords

argument must have sufficient elements to hold the string keywords of

the (integer) option values from the lower bound up to and including the

upper bound.

See also:

OptionGetValue, OptionGetString, OptionSetString.

Chapter 26. Option manipulation 906

OptionGetString

With the procedure OptionGetString you can obtain the string representation

of the current value of an Aimms option, as displayed in the Aimms Options

dialog box.

OptionGetString(

OptionName, ! (input) scalar string expression

CurrentString ! (output) scalar string parameter

)

Arguments:

OptionName

A string expression holding the name of the option.

CurrentString

A scalar string parameter that, on return, contains the string

representation of the current value of the option.

Return value:

The procedure returns 1 if the option exists, or 0 if the name refers to a

non-existent option.

Remarks:

Options for which strings are displayed in the Aimms Options dialog box,

are represented by numerical (integer) values internally. To obtain the

numerical option value, or to obtain the mapping between numerical

option values and the corresponding string keywords, you can use the

procedures OptionGetValue and OptionGetKeywords.

See also:

OptionGetValue, OptionGetKeywords, OptionSetString.

Chapter 26. Option manipulation 907

OptionGetValue

With the procedure OptionGetValue you can obtain the current value of an

Aimms option, as well as its lower and upper bound and default value.

OptionGetValue(

OptionName, ! (input) scalar string expression

Lower, ! (output) scalar numerical parameter

Current, ! (output) scalar numerical parameter

Default, ! (output) scalar numerical parameter

Upper ! (output) scalar numerical parameter

)

Arguments:

OptionName

A string expression holding the name of the option.

Lower

A scalar parameter that, on return, contains the lower bound of the

possible option values.

current

A scalar parameter that, on return, contains the current (numerical)

value of the option.

Default

A scalar parameter that, on return, contains the default (numerical)

value of the option.

Upper

A scalar parameter that, on return, contains the upper bound of the

possible option values.

Return value:

The procedure returns 1 if the option exists, or 0 if the name refers to a

non-existent option or to an option that does not take a number as value.

Remarks:

� Options for which strings are displayed in the Aimms Options dialog

box, are also represented by numerical (integer) values. To obtain the

corresponding option keywords, you can use the procedures

OptionGetString and OptionGetKeywords.

� You can modify option values programmatically using the OPTION

statement (see also Section 8.5 of the Language Reference), or using the

procedures OptionSetValue and OptionSetString.

See also:

OptionGetString, OptionGetKeywords, OptionSetValue, OptionSetString.

Chapter 26. Option manipulation 908

OptionSetString

With the procedure OptionSetString you can set the value of a string-valued

Aimms option. You must use the values as displayed in the Aimms Options

dialog box.

OptionSetString(

OptionName, ! (input) scalar string expressionN

NewString ! (input) scalar string expression

)

Arguments:

OptionName

A string expression holding the name of the option.

NewString

A scalar string expression representing the string representation of

the value to be assigned to the option.

Return value:

The procedure returns 1 if the value can be assigned to the option, or 0 if

the name refers to a non-existent option, or the value to a non-existent

option value.

Remarks:

Options for which strings are displayed in the Aimms Options dialog box,

are represented by numerical (integer) values internally. To obtain the

numerical option value, or to obtain the mapping between numerical

option values and the corresponding string keywords, you can use the

procedures OptionGetValue and OptionGetKeywords.

See also:

OptionSetValue, OptionGetValue, OptionGetKeywords.

Chapter 26. Option manipulation 909

OptionSetValue

With the procedure OptionSetValue you can set the value of a numeric Aimms

option. The value assigned to the option must be contained in the option

range displayed in the Aimms Options dialog box.

OptionSetValue(

OptionName, ! (input) scalar string expression

NewValue ! (input) scalar numeric expression

)

Arguments:

OptionName

A string expression holding the name of the option.

NewValue

A scalar numeric expression representing the new value to be

assigned to the option.

Return value:

The procedure returns 1 if the option exists and the value can be assigned

to the option, or 0 otherwise.

Remarks:

� Options for which strings are displayed in the Aimms Options dialog

box, are also represented by numerical (integer) values. To obtain the

corresponding option keywords, you can use the procedures

OptionGetString and OptionGetKeywords.

� You can also modify option values using the OPTION statement (see also

Section 8.5 of the Language Reference).

See also:

OptionGetString, OptionGetKeywords, OptionSetString.

Chapter 27

Licensing Functions

Aimms supports the following licensing functions:

� LicenseExpirationDate

� LicenseMaintenanceExpirationDate

� LicenseNumber

� LicenseStartDate

� LicenseType

� ProjectDeveloperMode

� SecurityGetGroups

� SecurityGetUsers

� SolverGetControl

� SolverReleaseControl

Chapter 27. Licensing Functions 911

LicenseExpirationDate

The procedure LicenseExpirationDate returns the expiration date of the

current Aimms license.

LicenseExpirationDate(

date ! (output) a scalar string parameter

)

Arguments:

date

A scalar string parameter that, on return, contains the expiration date

of the current Aimms license.

Return value:

The procedure returns 1 on success, and 0 on failure.

Remarks:

The date returned by the procedure has the standard date format

"YYYY-MM-DD", or holds the text "No expiration date" if the current Aimms

license has no expiration date.

See also:

The procedures LicenseStartDate, LicenseMaintenanceExpirationDate.

Chapter 27. Licensing Functions 912

LicenseMaintenanceExpirationDate

The procedure LicenseMaintenanceExpirationDate returns the maintenance

expiration date of the current Aimms license.

LicenseMaintenanceExpirationDate(

date ! (output) a scalar string parameter

)

Arguments:

date

A scalar string parameter that, on return, contains the maintenance

expiration date of the current Aimms license.

Return value:

The procedure returns 1 on success, and 0 on failure.

Remarks:

The date returned by the procedure has the standard date format

"YYYY-MM-DD", or holds the text "No maintenance expiration date" if the

current Aimms license has no maintenance expiration date.

See also:

The procedures LicenseStartDate, LicenseExpirationDate.

Chapter 27. Licensing Functions 913

LicenseNumber

The procedure LicenseNumber returns the license number of the current

Aimms license.

LicenseNumber(

license ! (output) a scalar string parameter

)

Arguments:

license

A scalar string parameter that, on return, contains the current license

number.

Return value:

The procedure returns 1 on success, and 0 on failure.

Remarks:

The procedure will return the license number as a string of the form

“015.090.010.007” if you are using an Aimms 3 license, or as a string of the

form “1234.56” if you are using an Aimms 2 license.

See also:

The procedure LicenseType.

Chapter 27. Licensing Functions 914

LicenseStartDate

The procedure LicenseStartDate returns the start date of the current Aimms

license.

LicenseStartDate(

date ! (output) a scalar string parameter

)

Arguments:

date

A scalar string parameter that, on return, contains the start date of

the current Aimms license.

Return value:

The procedure returns 1 on success, and 0 on failure.

Remarks:

The date returned by the procedure has the standard date format

"YYYY-MM-DD", or holds the text "No start date" if the current Aimms

license has no start date.

See also:

The procedures LicenseExpirationDate, LicenseMaintenanceExpirationDate.

Chapter 27. Licensing Functions 915

LicenseType

The procedure LicenseType returns the type and size of the current Aimms

license.

LicenseType(

type, ! (output) a scalar string parameter

size ! (output) a scalar string parameter

)

Arguments:

type

A scalar string parameter that, on return, contains the type of the

current license.

size

A scalar string parameter that, on return, contains the size of the

current license.

Return value:

The procedure returns 1 on success, and 0 on failure.

Remarks:

Upon success, the type argument contains the license type description

(e.g. "Economy") and the size argument contains a description of the license

size (e.g. "Large").

See also:

The procedure LicenseNumber.

Chapter 27. Licensing Functions 916

ProjectDeveloperMode

The function ProjectDeveloperMode indicates whether a project is opened in

developer or end-user mode.

ProjectDeveloperMode

Arguments:

None

Return value:

The function returns 1 if the project is opened in developer mode, or 0 if

the project is opened in end-user mode.

Chapter 27. Licensing Functions 917

SecurityGetGroups

With the procedure SecurityGetGroups you can fill a set with group names

from the user database that is linked to the project.

SecurityGetGroups(

group_set ! (output) an (empty) root set

)

Arguments:

group set

A root set, that on return will contain elements that represent all

group names from the user database.

Return value:

The procedure returns 1 on success, and 0 on failure.

See also:

The procedure SecurityGetUsers.

Chapter 27. Licensing Functions 918

SecurityGetUsers

With the procedure SecurityGetUsers you can fill a set with user names from

the user database that is linked to the project. You can filter which users are

included in the set based upon their group or authorization level.

SecurityGetUsers(

user_set, ! (output) an (empty) root set

[group,] ! (optional) scalar string

[level] ! (optional) element of the set AllAuthorizationLevels

)

Arguments:

user set

A root set, that on return will contain elements that represent the

user names from the user database.

group (optional)

A string representing a group name from the user database. If

specified, then only the users that belong to this group are returned.

level (optional)

An element of the set AllAuthorizationLevels. If specified, then only

the users that have the specified authorization level are returned.

Return value:

The procedure returns 1 on success, and 0 on failure.

See also:

The procedure SecurityGetGroups.

Chapter 27. Licensing Functions 919

SolverGetControl

A single use local license allows you to run two concurrent Aimms sessions.

At any time, however, only one of these sessions can make use of a solver.

Prior to executing a SOLVE statement, Aimms will determine whether the solver

is already locked by another session. If this is the case, Aimms will abort the

SOLVE statement with a runtime error. If the solver is not locked, Aimms locks

the solver for the duration of SOLVE statement by default. With the procedure

SolverGetControl you can programmatically lock the solver for a prolonged

period of time, for instance, during an algorithm requiring multiple solves.

SolverGetControl

Arguments:

None

Return value:

The procedure returns 1 if the solver was successfully locked, or 0

otherwise.

Remarks:

� Aimms also supports multi-session local licenses that allow you to run

multiple concurrent solves, and twice that number of concurrent Aimms

sessions.

� This procedure has no effect if you are connecting to an Aimms network

license server. In that case every session requires a separate floating

network license.

See also:

The procedure SolverReleaseControl.

Chapter 27. Licensing Functions 920

SolverReleaseControl

A single use local license allows you to run two concurrent Aimms sessions.

At any time, however, only one of these sessions can make use of a solver.

Prior to executing a SOLVE statement, Aimms will determine whether the solver

is already locked by another session. If this is the case, Aimms will abort the

SOLVE statement with a runtime error. If the solver is not locked, Aimms locks

the solver for the duration of SOLVE statement by default. With the procedure

SolverReleaseControl you can unlock a solver previously locked by a call to

the procedure SolverGetControl.

SolverReleaseControl

Arguments:

None

Return value:

The procedure returns 1 if successful, or 0 if the solver was not currently

locked by this session.

Remarks:

� Aimms also supports multi-session local licenses that allow you to run

multiple concurrent solves, and twice that number of concurrent Aimms

sessions.

� This procedure has no effect if you are connecting to an Aimms network

license server. In that case every session requires a separate floating

network license.

See also:

The procedure SolverGetControl.

Chapter 28

Environment Functions

Aimms supports the following system setting functions, which give access to,

or allow modification of, various system settings:

� AimmsRevisionString

� EnvironmentGetString

� EnvironmentSetString

� GeoFindCoordinates

� TestInternetConnection

Chapter 28. Environment Functions 922

AimmsRevisionString

The procedure AimmsRevisionString returns the revision number of the

current Aimms executable.

AimmsRevisionString(

Version ! (output) a scalar string parameter

NumberOfFields ! (optional) a scalar numerical expression)

Arguments:

Version

A scalar string parameter that, on return, contains the current

revision number.

NumberOfFields

A scalar integer expression indicating the number of fields displayed

in the revision string.

Return value:

The procedure returns 1 on success, and 0 on failure.

Remarks:

The revision string returned by the procedure has the format “x.y.b.r”

where x represents the major Aimms version number (e.g. 3), y represents

the minor Aimms version number (e.g. 0), where b represents the build

number (e.g. 476) of the current executable, and where r represents the

internal revision number.

Chapter 28. Environment Functions 923

EnvironmentGetString

With the procedure EnvironmentGetString you can obtain the string

representation of an environment setting, either set by the process calling

Aimms or by Aimms itself.

EnvironmentGetString(

Key, ! (input) scalar string expression

Value ! (output) scalar string parameter

)

Arguments:

Key

A string expression holding the name of the environment variable.

Value

A scalar string parameter that, on return, contains the string

representation of the current value of the environment variable.

Return value:

The procedure returns 1 if the variable Key is available, and 0 otherwise.

Remarks:

� The environment variables defined by Aimms itself are: AIMMSROOT,

AIMMSBIN, AIMMSSOLVERS , AIMMSCFG, AIMMSHELP, AIMMSDOC, AIMMSUSERDLL,

AIMMSLOG, AIMMSPROJECT, AIMMSMODULES, and AIMMSTUTORIAL.

� Examples of environment variables available on a Windows system are

COMPUTERNAME, OS, PATH, TEMP, TMP, and USERNAME. Entering the MSDOS

command set on an MSDOS prompt will present you with the set of

available environment variables on a Windows system. Via the control

panel tool system and then going to Advanced system settings - Advanced

tab - Environment variables button, you can manipulate the set of

environment variables.

� On Linux systems a distinction is made between the variables kept to a

process itself, and those exported to the environment of all its child

processes. In a bash shell you can obtain the collection of variables set

via the bash set command, and the subset of all exported environment

variables via the bash env command. In order to make a variable

available to the environment, you will have to explicitly place it in the

environment, via an export command. In several system wide bash

scripts, /etc/bashrc, or user startup bash scripts, ˜/.bashrc, export

commands such as:

export HOSTNAME

export OSTYPE

Chapter 28. Environment Functions 924

can be found in order to make these useful environment variables

available to all processes executed.

See also:

EnvironmentSetString.

Chapter 28. Environment Functions 925

EnvironmentSetString

With the function EnvironmentSetString you can set environment variables.

EnvironmentSetString(

Key, ! (input) scalar string expression

Value ! (input) scalar string parameter

)

Arguments:

Key

A string expression holding the name of the environment variable.

Value

A scalar string parameter that contains the string representation of

the value of you want to assign to the environment variable.

Return value:

The function returns 1 upon success, or 0 otherwise.

Remarks:

� With EnvironmentSetString you can change the value for existing

environment variables as well as create new environment variables.

� Note that the function EnvironmentSetString will only change the values

of variables in the environment associated with the Aimms process.

See also:

EnvironmentGetString.

Chapter 28. Environment Functions 926

GeoFindCoordinates

The procedure GeoFindCoordinates can be used to find the latitude/longitude

coordinates for a given address. The procedure uses the free OpenStreetMap

(OSM) geocoding service. You are advised to carefully read the OSM geocoder

usage policy before using this procedure in your application.

GeoFindCoordinates(

address, ! (input) scalar string expression

latitude, ! (output) scalar numerical parameter

longitude, ! (output) scalar numerical parameter

email, ! (optional) scalar string parameter

url ! (optional) scalar string parameter

)

Arguments:

address

A string representing the address for which the latitude and

longitude coordinates have to be found.

latitude

A scalar numerical parameter that will contain the latitude coordinate

of the specified address upon success.

longitude

A scalar numerical parameter that will contain the longitude

coordinate of the specified address upon success.

email

An optional string representing the email address that the OSM

organization will use to contact you in the event of problems (as

mentioned in their usage policy).

url

An optional string representing the url of an alternative (e.g. your

own) OSM geocoder server. If not specified, the public OSM geocoder

server is being used.

Return value:

The procedure returns 1 on success, and 0 if the specified address could

not be found. On failure, the pre-defined identifier CurrentErrorMessage

will contain a proper error message.

http://www.openstreetmap.org
http://wiki.openstreetmap.org/wiki/Nominatim#Usage_Policy
http://wiki.openstreetmap.org/wiki/Nominatim#Usage_Policy

Chapter 28. Environment Functions 927

Examples:

The following calls to the procedure GeoFindCoordinates return valid

latitude and longitude coordinates

GeoFindCoordinates("Netherlands", Latitude, Longitude, "me@mycompany.com");

GeoFindCoordinates("Haarlem, Netherlands", Latitude, Longitude);

GeoFindCoordinates("2034 Haarlem, Netherlands", Latitude, Longitude);

GeoFindCoordinates("Schipholweg, Haarlem, Netherlands", Latitude, Longitude);

GeoFindCoordinates("US", Latitude, Longitude);

GeoFindCoordinates("Kirkland, WA, US", Latitude, Longitude);

GeoFindCoordinates("Lake Washington Boulevard NE, Kirkland, US", Latitude, Longitude);

GeoFindCoordinates("5400 Carillon Point, Kirkland, US", Latitude, Longitude);

GeoFindCoordinates("Singapore", Latitude, Longitude);

GeoFindCoordinates("Chulia Street, Singapore", Latitude, Longitude);

GeoFindCoordinates("Shanghai, China", Latitude, Longitude);

GeoFindCoordinates("Middle Huaihai Road, Shanghai, China", Latitude, Longitude);

assumed that Latitude and Longitude are declared as numerical

parameters in your model.

Remarks:

� With the introduction of Aimms 3.9.5 and Aimms 3.10 PR, this procedure

has been disabled because Microsoft discontinued support to the

Virtual Earth geocoder service that was used to locate the address. In

Aimms 3.11 FR2, the GeoFindCoordinates procedure was enabled again

by using the OSM geocoding service instead.

� ‘One of the hard things about geocoding is parsing addresses into

something intelligible’ (see the OpenStreetMap wiki for details on

address formats). As a result, you may need to slightly play around with

the address format in order for the geocoder to correctly parse your

address.

� To discourage ‘bulk geocoding’ (see the OSM usage policy for more

details), Aimms inserts a small delay in case the time between two

consecutive geocoding requests is smaller than a second.

http://wiki.openstreetmap.org/wiki/Nominatim
http://wiki.openstreetmap.org/wiki/Geocoding
http://wiki.openstreetmap.org/wiki/Nominatim#Usage_Policy

Chapter 28. Environment Functions 928

TestInternetConnection

With the procedure TestInternetConnection you can verify whether an internet

connection to a given URL is possible.

TestInternetConnection(

url ! (input) scalar string expression

)

Arguments:

url

A string representing the address of the internet site Aimms will try

to reach.

Return value:

The procedure returns 1 on success, and 0 if Aimms could not establish a

connection to the specified address (by pinging). On failure, the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Remarks:

This procedure will only check whether the host as specified in the url can

be reached, not whether a certain service is running nor whether a certain

internet page exists.

Chapter 29

Invoking actions

� Delay

� Execute

� ExitAimms

� OpenDocument

� ScheduleAt

� SessionArgument

Chapter 29. Invoking actions 930

Delay

With the procedure Delay you can block the execution of your model for the

indicated delay time. You can use this procedure, for instance, when you want

to display intermediate results on a page using the procedure PageRefreshAll.

Delay(

delaytime ! (input) scalar expression

)

Arguments:

delaytime

The number of seconds that the execution should be blocked.

See also:

The procedure PageRefreshAll.

Chapter 29. Invoking actions 931

Execute

With the Execute procedure you can start another application.

Execute(

executable, ! (input) scalar string expression

[commandline,] ! (optional) scalar string expression

[workdir,] ! (optional) scalar string expression

[wait,] ! (optional) 0 or 1

[minimized] ! (optional) 0 or 1

)

Arguments:

executable

A string representing the name of the program that you want to

execute. When running on Linux and the program is located in the

Aimmsproject folder, this string must start with a ’/.’ (without the

single quotes).

commandline (optional)

A string representing the arguments that you want to pass to the

program.

workdir (optional)

A string representing the directory where the program should start

in. If omitted, then the current project directory is used. Please note

that this argument does not specify the folder where the executable is

located. Rather, it specifies the folder that the executable should use

as its working folder.

wait (optional)

This argument indicates whether or not Aimms will wait for the

program to finish. The default value is 0 (not wait).

minimized (optional)

This argument indicates whether or not the program should run in a

minimized state. The default is 0 (not minimized).

Remarks:

As a general rule, you should not wait for interactive windowed

applications. Waiting for the termination of a program is necessary when

the program does some form of external data processing which is

required for the execution of your model.

See also:

The procedure OpenDocument.

Chapter 29. Invoking actions 932

ExitAimms

With the procedure ExitAimms you can exit the current Aimms session from

within a procedure.

ExitAimms(

[interactive] ! (optional) 0 or 1

)

Arguments:

interactive (optional)

This optional argument is still present for compatibility, but does no

longer have any effect. You should use MainTermination to specify

whether or not Aimms should display a confirmation dialog box

before closing the current project.

Remarks:

The procedure does not immediately exit Aimms, but it will try to exit as

soon as the execution of the current procedure has finished. If existing,

the logoff procedure and the procedure MainTermination will be executed

as normal.

Please note that calling the pre-definded function ExitAimms() from within

WebUI (for example, as part of an action behind a button widget) is

currently not supported and will result in an error. In fact, calling

ExitAimms() only works for the main AIMMS thread itself and not for any

of the other AIMMS contexts (of which WebUI is just one example). Exiting

only from the underlying AIMMS session itself is not deemed as a proper

behavior for an application with Web-based User Interface.

Chapter 29. Invoking actions 933

OpenDocument

The procedure OpenDocument uses the current association of Windows to open

documents, run programs, etc. Its procedureality is similar to that of the Run

command in the Start Menu of Windows. You can use it, for instance, to

display an HTML file using the default web browser, open a Word document,

or initiate an e-mail session.

OpenDocument(

document ! (input) string expression

)

Arguments:

document

A string expression representing the document or program you want

to open.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Examples:

OpenDocument("http://www.aimms.com");

OpenDocument("mailto:info@aimms.com");

OpenDocument("anyfile.doc");

OpenDocument("c:\\windows");

See also:

The procedure Execute.

Chapter 29. Invoking actions 934

ScheduleAt

With the procedure ScheduleAt you schedule a specific procedure to be run at

a specified moment in time.

ScheduleAt(

starttime, ! (input) scalar string expression

procedure ! (input) element of the set AllProcedures

)

Arguments:

starttime

A string representing the time at which you want to start the

execution of the specified procedure. This time must be respresent

using Aimms’ standard time format: ”YYYY-MM-DD hh:mm:ss”.

procedure

An element in the set AllProcedures. This procedure cannot have any

arguments.

Return value:

The procedure returns 1 on success, and 0 if Aimms could not schedule

the procedure at the specified start time. On failure, the pre-defined

identifier CurrentErrorMessage will contain a proper error message.

Remarks:

If at the specified start time Aimms is busy running some other task, then

the procedure will start as soon as Aimms has finished this task. If you

want to run a procedure at regular intervals, then you can re-schedule the

procedure from within the scheduled procedure itself.

Chapter 29. Invoking actions 935

SessionArgument

With the procedure SessionArgument you can retrieve the string value of any

user defined command line argument, that was specified during startup of

Aimms.

SessionArgument(

argno, ! (input) integer number

argument ! (output) string valued parameter

)

Arguments:

argno

An integer greater or equal to 1, representing the argument that you

want retrieve. If the argument does not exist, then the procedure

returns 0.

argument

A string valued parameter, to hold the string of the requested

command line argument.

Return value:

The procedure returns 1 on success, and 0 if the request argument

number does not exist.

Remarks:

When you open an Aimms project from the command line, Aimms allows

you to add an arbitrary number of additional arguments directly after the

project name. The procedure SessionArgument gives you access to these

arguments. You can use these arguments, for instance, to specify a

varying data source name from which you want to read data into your

model, or run your project in different modes.

Chapter 30

File and Directory Functions

Aimms supports the following functions for accessing disk files and

directories:

� DirectoryCopy

� DirectoryCreate

� DirectoryDelete

� DirectoryExists

� DirectoryGetCurrent

� DirectoryGetFiles

� DirectoryGetSubdirectories

� DirectoryMove

� DirectorySelect

� FileAppend

� FileCopy

� FileDelete

� FileEdit

� FileExists

� FileGetSize

� FileMove

� FilePrint

� FileRead

� FileSelect

� FileSelectNew

� FileTime

� FileTouch

� FileView

Chapter 30. File and Directory Functions 937

DirectoryCopy

The procedure DirectoryCopy copies one or more directories to a new or other

directory.

DirectoryCopy(

source, ! (input) scalar string expression

destination, ! (input) scalar string expression

[confirm] ! (optional) 0 or 1

)

Arguments:

source

A scalar string expression representing the directories(s) you want to

copy. The string may contain wild-card characters such as ‘*’ and ‘?’,

allowing you to copy a whole group of directories at once.

destination

A scalar string expression representing the destination directory.

confirm (optional)

An integer value that indicates whether you want to let the user

confirm any copy operation that would overwrite existing files. If this

argument is omitted, then the default behavior is that files are

overwritten without any notice.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Remarks:

If the destination name does not exist, Aimms will create a directory with

the specified name with the same contents as the source directory. If the

destination directory does already exists as a directory, Aimms will copy

the contents of the source directory into a directory with the same name

as the source directory contained in the destination directory.

See also:

The procedures DirectoryMove, FileCopy, DirectoryExists.

Chapter 30. File and Directory Functions 938

DirectoryCreate

The procedure DirectoryCreate creates a new directory on your disk.

DirectoryCreate(

directoryname ! (input) scalar string expression

)

Arguments:

directoryname

A scalar string expression representing the new directory name. If the

name does not contain a full path, then the it is assumed to be

relative to the current project directory.

Return value:

The procedure returns 1 if the directory is created successfully. If it fails,

then it returns 0, and the pre-defined identifier CurrentErrorMessage will

contain a proper error message.

Remarks:

If the new directory path contains references to non-existing directories,

then the procedure tries to create each of these directories.

See also:

The procedures DirectoryExists, DirectoryDelete.

Chapter 30. File and Directory Functions 939

DirectoryDelete

The procedure DirectoryDelete deletes a directory from your disk. If this

directory contains files, then these files are deleted as well.

DirectoryDelete(

directory, ! (input) scalar string expression

[delete_readonly_files] ! (optional, default 0) scalar expression

)

Arguments:

directory

A scalar string expression representing the directory you want to

delete.

delete readonly files

A scalar expression indicating whether read-only files must be deleted

without further notice (value ≠ 0), or whether the procedure should

fail on read-only files (value 0).

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

See also:

The procedures DirectoryExists, FileDelete.

Chapter 30. File and Directory Functions 940

DirectoryExists

With the procedure DirectoryExists you can check whether a specific

directory name currently exists.

DirectoryExists(

directoryname ! (input) scalar string expression

)

Arguments:

directoryname

A scalar string expression representing a valid directory name. The

file name may contain a partial path relative to the project directory,

or a full path.

Return value:

The procedure returns 1 if the given directory name exists, or 0 otherwise.

Remarks:

Note that if you want use some static directory name in your model, then

you have to specify two slashes behind each directory, as in

"c:\\windows\\temp".

See also:

The procedure DirectoryDelete.

Chapter 30. File and Directory Functions 941

DirectoryGetCurrent

The procedure DirectoryGetCurrent retrieves the full path of the current

project directory.

DirectoryGetCurrent(

directoryname ! (output) scalar string parameter

)

Arguments:

directory

A scalar string parameter, that on return will contain the path of the

current project directory. The string is always terminated by a

directory slash \.

Return value:

The procedure returns 1.

See also:

The procedure DirectorySelect.

Chapter 30. File and Directory Functions 942

DirectoryGetFiles

The procedure DirectoryGetFiles creates a list of filenames present in a

directory.

DirectoryGetFiles(

directory, ! (input) scalar string expression

filter, ! (input) scalar string expression

filenames, ! (output) a one-dimensional string parameter

recursive, ! (optional) default 0

attributeFilter ! (optional) default: empty set

)

Arguments:

directory

A scalar string expression representing the directory you want to

search. The empty string is interpreted as the current directory.

filter

The pattern file names should match. The empty string is interpreted

as all files.

filenames

A one-dimensional string parameter indexed over a subset of the

predeclared set Integers. This parameter will be filled with the names

of the files matching the pattern as specified in the first argument.

recursive

An optional scalar expression. When zero the procedure

DirectoryGetFiles doesn’t work recursively; it scans only the

directory specified, not its subdirectories. When non-zero, these

subdirectories will also be searched.

attributeFilter

files that have one of the specified attributes will not be included in

the result. This argument is a subset of AllFileAttributes.

Return value:

The procedure returns the number of files found on success, which may

be 0. If it fails, then it returns -1, and the pre-defined identifier

CurrentErrorMessage will contain a proper error message.

Example:

Using the declarations

Set FileNumbers {

SubsetOf : Integers;

Index : fn;

}

Chapter 30. File and Directory Functions 943

StringParameter FileNames {

IndexDomain : (fn);

}

the statements

DirectoryGetFiles("log", "*.err", Filenames);

display Filenames ;

will result in

FileNames := data { 1 : "aimms.err" } ;

to be printed in the listing file.

Remarks:

� The directory argument can specify either a relative or an absolute

folder path.

� Devices, hidden files, system files, hidden subdirectories and system

subdirectories are not searched. On Linux systems, files and

subdirectories that start with a ’.’ are considered hidden files and are

not returned in the result.

See also:

� The procedure DirectoryGetSubdirectories to find the names of the

subdirectories in a particular directory.

� The procedures DirectoryGetCurrent and DirectorySelect to obtain the

current directory and to select a particular directory.

Chapter 30. File and Directory Functions 944

DirectoryGetSubdirectories

The procedure DirectoryGetSubdirectories creates a list of subdirectory

names present in a directory.

DirectoryGetSubdirectories(

directory, ! (input) scalar string expression

filter, ! (input) scalar string expression

subdirectorynames, ! (output) a one-dimensional string parameter

recursive, ! (optional) default 0

attributeFilter ! (optional) default: empty set

)

Arguments:

directory

A scalar string expression representing the directory you want to

search. The empty string is interpreted as the current directory.

filter

The pattern file names should match. The empty string is interpreted

as all files.

subdirectorynames

A one-dimensional string parameter indexed over a subset of the

predeclared set Integers. This parameter will be filled with the names

of the folders matching the pattern as specified in the first argument.

recursive

An optional scalar expression. When zero the procedure

DirectoryGetSubdirectories doesn’t work recursively; it scans only the

directory specified, not its subdirectories. When non-zero, these

subdirectories will also be searched.

attributeFilter

files that have one of the specified attributes will not be included in

the result. This argument is a subset of AllFileAttributes.

Return value:

The procedure returns the number of subdirectories found on success,

which may be 0. If it fails, then it returns -1, and the pre-defined identifier

CurrentErrorMessage will contain a proper error message.

Example:

Using the declarations

Set FolderNumbers {

SubsetOf : Integers;

Index : fn;

}

Chapter 30. File and Directory Functions 945

StringParameter FolderNames {

IndexDomain : (fn);

}

the statements

DirectoryGetSubdirectories("", "*.*", FolderNames,

recursive: 1, attributeFilter: { ’Executable’});

display FolderNames ;

will result in

FolderNames := data { 1 : "backup", 2 : "log" } ;

to be printed in the listing file.

Remarks:

� The directory argument can specify either a relative or an absolute

folder path.

� Hidden and system files and subdirectories are not searched, nor are

devices. On Linux systems, files and subdirectories that start with a ’.’

are considered hidden files and are not searched. The names ”.” and ”..”

are never included in the result.

See also:

� The procedure DirectoryGetFiles to find the names of the files in a

particular directory.

� The procedures DirectoryGetCurrent and DirectorySelect to obtain the

current directory and to select a particular directory.

Chapter 30. File and Directory Functions 946

DirectoryMove

The procedure DirectoryMove moves one or more directories to either a new

name (a rename) or to another directory.

DirectoryMove(

source, ! (input) scalar string expression

destination, ! (input) scalar string expression

confirm ! (optional) 0 or 1

)

Arguments:

source

A scalar string expression representing the file(s) you want to move.

The string may contain wild-card characters such as ‘*’ and ‘?’,

allowing you to move a whole group of directories at once.

destination

A scalar string expression representing the destination directory.

confirm (optional)

An integer value that indicates whether or not you want to let the

user confirm any move operation that would overwrite existing files.

If this argument is omitted, then the default behavior is that files are

overwritten without any notice.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Remarks:

If the destination name does not exist, Aimms will move the source

directory to the specified position. If the destination directory does

already exists as a directory, Aimms will move the source directory into

the (existing) destination directory, retaining the original name of the

source directory.

See also:

The procedures DirectoryCopy, FileMove, DirectoryExists.

Chapter 30. File and Directory Functions 947

DirectorySelect

With the procedure DirectorySelect you can let the user select an existing

directory using Windows’ standard directory selection dialog box.

DirectorySelect(

directoryname, ! (input/output) scalar string parameter

[directory,] ! (optional input) scalar string expression

[title] ! (optional input) scalar string expression

)

Arguments:

directoryname

A scalar string parameter. On return this parameter will represent the

selected directory name. If the selected directory is a sub directory

below the current project directory, then the directory name will be

presented using a relative path. In other cases the directory name is

presented using a full path specification. In both cases, the returned

directory string is terminated by a \ character.

directory (optional)

A scalar string representing an existing directory. The dialog box will

initially select this directory. If omitted, then the current project

directory will be used.

title (optional)

A scalar string that is used as the title of the selection dialog box. If

this argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user did select a directory. If some error

occurs or if the user presses the Cancel button, then the procedure

returns 0.

Remarks:

If DirectorySelect returns 0, then the first argument may not contain a

valid directory path. So you must always check the return value, and, if it

is 0, either abort the current procedure or continue with some default

directory name.

See also:

The procedures FileSelect, DirectoryGetCurrent.

Chapter 30. File and Directory Functions 948

FileAppend

The procedure FileAppend appends the contents of one file to the end of

another file. Both files must be text files.

FileAppend(

filename, ! (input) scalar string expression

appendname ! (input) scalar string expression

)

Arguments:

filename

A scalar string expression representing the file name to which you

want to append the contents of the second file.

appendname

A scalar string expression representing the file name that you want to

append.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

Remarks:

� If the first file (the file to which you append) does not exist, then this file

will be created. The contents of the appended file will always start on a

new line in the resulting file.

� When appending files with different character encodings, the result is

unpredictable.

See also:

The procedures FileCopy, FileExists.

Chapter 30. File and Directory Functions 949

FileCopy

The procedure FileCopy copies one or more files to a new name or to another

directory.

FileCopy(

source, ! (input) scalar string expression

destination, ! (input) scalar string expression

[confirm] ! (optional) 0 or 1

)

Arguments:

source

A scalar string expression representing the file(s) you want to copy.

The string may contain wild-card characters such as ‘*’ and ‘?’,

allowing you to copy a whole group of files at once.

destination

A scalar string expression representing the destination file name or

destination directory.

confirm (optional)

An integer value that indicates whether or not you want to let the

user confirm any copy operation that would overwrite existing files. If

this argument is omitted, then the default behavior is that files are

overwritten without any notice.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

See also:

The procedures FileMove, DirectoryCopy, FileExists.

Chapter 30. File and Directory Functions 950

FileDelete

The procedure FileDelete deletes one or more files from your disk.

FileDelete(

filename, ! (input) scalar string expression

[delete_readonly_files] ! (optional, default 0) scalar expression

)

Arguments:

filename

A scalar string expression representing the file(s) you want to delete.

The string may contain wild-card characters such as ‘*’ and ‘?’,

allowing you to delete a whole group of files at once.

delete readonly files

A scalar expression indicating whether read-only files must be deleted

without further notice (value ≠ 0), or whether the procedure should

fail on a read-only file (value 0).

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

See also:

The procedures FileExists, DirectoryDelete.

Chapter 30. File and Directory Functions 951

FileEdit

The procedure FileEdit opens a specific file in the internal Aimms text file

editor. Optionally, you can set the cursor on a specific piece of text within the

file.

FileEdit(

filename, ! (input) scalar string expression

find, ! (optional) scalar string expression

encoding ! (optional) scalar element expression

)

Arguments:

filename

A scalar string expression representing the file name that you want to

edit.

find (optional)

A scalar string expression that is used to position the cursor over a

specific piece of text in the file. If this argument is omitted (or if the

specified text cannot be found), then the cursor will be positioned at

the top of the file.

encoding (optional)

A scalar element expression that results in an element of

AllCharacterEncodings. If this argument is not specified, the value of

the option default input character encoding is used.

Return value:

The procedure returns 1 on success, and 0 if it could not open the file in

the editor.

Remarks:

If you want to use another external text editor to edit a specific file, then

you can use the procedure Execute.

See also:

The procedures FileView, Execute.

Chapter 30. File and Directory Functions 952

FileExists

With the procedure FileExists you can check whether a specific file name

currently exists.

FileExists(

filename ! (input) scalar string expression

)

Arguments:

filename

A scalar string expression representing a valid file name. The file

name may contain a partial path relative to the project directory, or a

full path.

Return value:

The procedure returns 1 if the given file name exists, and 0 otherwise.

Remarks:

Note that if you want use some static file name in your model, then you

have to specify two slashes behind each directory, as in

"c:\\windows\\temp\\filename.dat"

See also:

The procedure FileDelete

Chapter 30. File and Directory Functions 953

FileGetSize

The procedure FileGetSize retrieves the size on disk of an existing file.

FileGetSize(

filename, ! (input) scalar string expression

fileSize ! (output) scalar numerical identifier

)

Arguments:

filename

A scalar string expression representing an existing file name.

fileSize

A scalar identifier to hold the size of the file, or -1 if the size could

not be retrieved.

Return value:

The procedure returns 1 on success. If it failed to retrieve the file size,

then it returns 0 and the pre-defined identifier CurrentErrorMessage will

contain a proper error message.

See also:

The procedure FileExists.

Chapter 30. File and Directory Functions 954

FileMove

The procedure FileMove moves one or more files to either a new name (a

rename) or to another directory.

FileMove(

source, ! (input) scalar string expression

destination, ! (input) scalar string expression

[confirm] ! (optional) 0 or 1

)

Arguments:

source

A scalar string expression representing the file(s) you want to move.

The string may contain wild-card characters such as ‘*’ and ‘?’,

allowing you to move a whole group of files at once.

destination

A scalar string expression representing the destination file name or

destination directory.

confirm (optional)

An integer value that indicates whether or not you want to let the

user confirm any move operation that would overwrite existing files.

If this argument is omitted, then the default behavior is that files are

overwritten without any notice.

Return value:

The procedure returns 1 on success. If it fails, then it returns 0, and the

pre-defined identifier CurrentErrorMessage will contain a proper error

message.

See also:

The procedures FileCopy, DirectoryMove, FileExists.

Chapter 30. File and Directory Functions 955

FilePrint

The procedure FilePrint prints a specific text file using the currently selected

printer.

FilePrint(

filename, ! (input) scalar string expression

encoding ! (optional) scalar element expression

)

Arguments:

filename

A scalar string expression representing the text file that you want to

print.

encoding (optional)

A scalar element expression that results in an element of

AllCharacterEncodings. If this argument is not specified, the value of

the option default input character encoding is used.

Return value:

The procedure returns 1 on success, and 0 if it could not print the file.

Remarks:

The file is printed using the paper and font settings that are specified in

the Text Printing dialog box, which is accessible from the Settings menu.

See also:

The procedure FileEdit.

Chapter 30. File and Directory Functions 956

FileRead

With the procedure FileRead you can read the contents of a file into a string

parameter.

FileRead(

filename, ! (input) scalar string expression

encoding ! (optional) scalar element expression

)

Arguments:

filename

A scalar string expression representing a valid file name. The file

name may contain a partial path relative to the project directory, or a

full path.

encoding (optional)

A scalar element expression that results in an element of

AllCharacterEncodings. If this argument is not specified, the value of

the option default input character encoding is used.

Return value:

The procedure returns a string containing the contents of the file.

Remarks:

� This procedure will not automatically reread a file when its contents has

changed. It is therefore better to use it in a procedure than in a

parameter definition.

� In case the file does not exist, no error message will be returned and the

result will be the empty string. In case there is any doubt the file exists

it is advised to first check using the procedure FileExists.

See also:

The procedure FileExists.

Chapter 30. File and Directory Functions 957

FileSelect

With the procedure FileSelect you can let the user select an existing file

name using Windows’ standard file selection dialog box. Usually you use this

procedure to select some input file (i.e. a file for reading), because other than

FileSelectNew, this procedure only allows the user to select existing files.

FileSelect(

filename, ! (input/output) scalar string identifier

[directory,] ! (optional) scalar string expression

[extension,] ! (optional) scalar string expression

[title] ! (optional) scalar string expression

)

Arguments:

filename

A scalar string identifier holding the file name that the user selected.

If on entry this strings represents a valid file name, then this file

name is used to initialize the dialog box.

directory (optional)

A scalar string representing an existing directory. The dialog box will

initially only show the files that are located in this directory. If this

argument is omitted, then the current project directory will be used.

extension (optional)

A scalar string representing a file extension. The dialog box will

initially only show those files that match this extension. If this

argument is omitted, then all files are shown.

title (optional)

A scalar string that is used as the title of the selection dialog box. If

this argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user actually has selected a file. If some

error occurs or if the user presses the Cancel button, the procedure

returns 0.

Remarks:

If FileSelect returns 0, then the first argument may not contain a valid file

name. So you must always check the return value, and, if it is 0, either

abort the current procedure or continue with some default file name.

See also:

The procedure FileSelectNew.

Chapter 30. File and Directory Functions 958

FileSelectNew

With the procedure FileSelectNew the user can select a new (or existing) file

using Windows’ file selection dialog box. Usually it is used to select an output

file (i.e. for writing), because other than FileSelect, this procedure allows you

to specify new file names. If an existing file name is selected, a warning will

be displayed. The procedure does not create any files on disk or make any

changes to existing files. It only returns the file name selected by the user.

FileSelectNew(

filename, ! (input/output) scalar string identifier

[directory,] ! (optional) scalar string expression

[extension,] ! (optional) scalar string expression

[title] ! (optional) scalar string expression

)

Arguments:

filename

A scalar string identifier holding the file name that the user specified.

If on entry this strings represents a valid file name, then this file

name is used to initialize the dialog box.

directory (optional)

A scalar string representing an existing directory. The dialog box will

initially only show the files that are located in this directory. If this

argument is omitted, then the current project directory will be used.

extension (optional)

A scalar string representing a file extension. The dialog box will

initially only show those files that match this extension. If this

argument is omitted, then all files are shown.

title (optional)

A scalar string that is used as the title of the selection dialog box. If

this argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user actually has selected a file. If some

error occurs or if the user presses the Cancel button, the procedure

returns 0.

Remarks:

If FileSelectNew returns 0, then the first argument may not contain a valid

file name. So you must always check the return value, and, if it is 0, either

abort the current procedure or continue with some default file name.

Chapter 30. File and Directory Functions 959

See also:

The procedure FileSelect.

Chapter 30. File and Directory Functions 960

FileTime

The procedure FileTime retrieves the last modification time of an existing file.

FileTime(

filename, ! (input) scalar string expression

file_time ! (output) scalar string identifier

)

Arguments:

filename

A scalar string expression representing an existing file name.

file time

A scalar string identifier to hold the file modification time of the

specified file. This time is represented using Aimms’ standard date

and time format: ”YYYY-MM-DD hh:mm:ss”

Return value:

The procedure returns 1 on success. If it failed to retrieve the file time,

then it returns 0 and the pre-defined identifier CurrentErrorMessage will

contain a proper error message.

See also:

The procedure FileExists.

Chapter 30. File and Directory Functions 961

FileTouch

The procedure FileTouch changes the modification time of a file.

FileTouch(

filename, ! (input) scalar string expression

[newtime] ! (optional) scalar string expression

)

Arguments:

filename

A scalar string expression representing an existing file name.

newtime

This time is represented using Aimms’ standard date and time format:

”YYYY-MM-DD hh:mm:ss”. If omitted the modification time of the file

is set to the current time.

Return value:

The procedure returns 1 on success. If it failed to set the file time, then it

returns 0 and the pre-defined identifier CurrentErrorMessage will contain a

proper error message.

Chapter 30. File and Directory Functions 962

FileView

The procedure FileView opens a specific file in the internal Aimms text file

viewer. Optionally, you can highlight a specific piece of text within the file.

FileView(

filename, ! (input) scalar string expression

find, ! (optional) scalar string expression

encoding ! (optional) scalar element expression

)

Arguments:

filename

A scalar string expression representing the file name that you want to

edit.

find (optional)

A scalar string expression that is used to position the cursor over a

specific piece of text in the file. If this argument is omitted (or if the

specified text cannot be found), then the cursor will be positioned at

the top of the file.

encoding (optional)

A scalar element expression that results in an element of

AllCharacterEncodings. If this argument is not specified, the value of

the option default input character encoding is used.

Return value:

The procedure returns 1 on success, and 0 if it could not open the file in

the viewer.

Remarks:

If you want to use another external text editor to view a specific file, then

you can use the procedure Execute.

See also:

The procedures FileEdit, Execute.

Part VIII

Predefined Identifiers

Chapter 31

System Settings Related Identifiers

The following collection of predefined identifiers contains system-related

information. The contents of these identifiers typically corresponds to data

entered in system dialog boxes, such as the Solver Configuration dialog box,

the User Colors dialog box and the User and Authorization Level Setup

dialog boxes.

� AllAuthorizationLevels

� AllAvailableCharacterEncodings

� ASCIICharacterEncodings

� ASCIIUnicodeCharacterEncodings

� UnicodeCharacterEncodings

� AllCharacterEncodings

� AllColors

� AllIntrinsics

� AllKeywords

� AllOptions

� AllPredeclaredIdentifiers

� AllSolvers

� AllSymbols

� ProfilerData

� CurrentAuthorizationLevel

� CurrentGroup

� CurrentSolver

� CurrentUser

� AllAimmsStringConstantElements

� AimmsStringConstants

Chapter 31. System Settings Related Identifiers 965

AllAuthorizationLevels

The predefined set AllAuthorizationLevels contains the names of all

authorization levels associated with an Aimms project.

Set AllAuthorizationLevels {

Index : IndexAuthorizationLevels;

}

Definition:

The contents of the set AllAuthorizationLevels is the collection of all

authorization levels defined for a particular project through the

Authorization Level Setup dialog box.

Updatability:

The contents of the set can only be modified through the Authorization

Level Setup dialog box.

Remarks:

The set AllAuthorizationLevels is typically used in the index domains of

parameters used in the model and graphical end-user interface to define

accessibility rights for groups of users with the same authorization level.

By referring to the data slice determined by the value of element

parameter CurrentAuthorizationLevel, Aimms will use the accessibility

rights associated with the authorization level of the current user.

The use of authorization levels in Aimms directly is deprecated, as user

authentication and authorization during deployment is now arranged via

Aimms PRO (cf. Section 19.2).

Chapter 31. System Settings Related Identifiers 966

AllAvailableCharacterEncodings

The predefined set AllAvailableCharacterEncodings contains the names of all

character encodings available during the current Aimms session.

Set AllAvailableCharacterEncodings {

SubsetOf : AllCharacterEncodings;

Index : IndexAvailableCharacterEncodings;

}

Definition:

The contents of the set AllAvailableCharacterEncodings is the collection of

all character encodings available during the current Aimms session.

Updatability:

The contents of the set can not be modified and is determined at Aimms

startup.

See also:

� Paragraph Text files in the preliminaries of the language reference 18.

� The encoding attribute of files, see 496.

� The set of all character encodings known to Aimms:

AllCharacterEncodings.

Chapter 31. System Settings Related Identifiers 967

ASCIICharacterEncodings

The predefined set ASCIICharacterEncodings contains the names of ASCII

character encodings. Here an ASCII character encoding is an encoding

whereby code point 33 thru 126 are the same as the US-ASCII encoding.

Set ASCIICharacterEncodings {

SubsetOf : AllCharacterEncodings;

Index : IndexAvailableCharacterEncodings;

}

Definition:

The contents of the set ASCIICharacterEncodings is the collection of ASCII

character encodings.

Updatability:

The contents of the set can not be modified and is determined at Aimms

startup.

See also:

� Paragraph Text files in the preliminaries of the language reference 18.

� The encoding attribute of files, see 496.

� The set of all character encodings known to Aimms:

AllCharacterEncodings.

Chapter 31. System Settings Related Identifiers 968

ASCIIUnicodeCharacterEncodings

The predefined set ASCIIUnicodeCharacterEncodings is the union of

ASCIICharacterEncodings and UnicodeCharacterEncodings.

Set ASCIIUnicodeCharacterEncodings {

SubsetOf : AllCharacterEncodings;

Index : IndexAvailableCharacterEncodings;

}

Definition:

The contents of the set ASCIIUnicodeCharacterEncodings is the union of

ASCIICharacterEncodings and UnicodeCharacterEncodings.

Updatability:

The contents of the set can not be modified and is determined at Aimms

startup.

See also:

� Paragraph Text files in the preliminaries of the language reference 18.

� The encoding attribute of files, see 496.

� The set of all character encodings known to Aimms:

AllCharacterEncodings.

Chapter 31. System Settings Related Identifiers 969

UnicodeCharacterEncodings

The predefined set UnicodeCharacterEncodings contains the names of Unicode

character encodings.

Set UnicodeCharacterEncodings {

SubsetOf : AllCharacterEncodings;

Index : IndexAvailableCharacterEncodings;

}

Definition:

The contents of the set UnicodeCharacterEncodings is the collection of

Unicode character encodings.

Updatability:

The contents of the set can not be modified and is determined at Aimms

startup.

See also:

� Paragraph Text files in the preliminaries of the language reference 18.

� The encoding attribute of files, see 496.

� The set of all character encodings known to Aimms:

AllCharacterEncodings.

Chapter 31. System Settings Related Identifiers 970

AllCharacterEncodings

The predefined set AllCharacterEncodings contains the names of all character

encodings known to Aimms.

Set AllCharacterEncodings {

Index : IndexCharacterEncodings;

}

Definition:

The contents of the set AllCharacterEncodings is the collection of all

character encodings known to Aimms.

Updatability:

The contents of the set can not be modified; it has the following fixed

contents:

AllCharacterEncodings := data

{ ASMO-708 , ! Arabic

BIG5 , ! Chinese used in Taiwan, Hong Kong, and

! Macau for Traditional Chinese characters.

CP737 , ! Greek

CP875 , ! EBCDIC Greek Modern

CP932 , ! Windows SHift JIS, Japan

CP949 , ! Windows Korean

EUC-CN , ! Extended Unix Code, simplified Chinese

EUC-JP , ! Extended Unix Code, Japanese

GB2312 , ! Chinese national standard

GB18030 , ! Chinese national standard

IBM037 , ! EBCDIC with Latin-1

IBM273 , ! EBCDIC German

IBM277 , ! EBCDIC Danish

IBM278 , ! EBCDIC Finnish

IBM280 , ! EBCDIC Italian

IBM284 , ! EBCDIC Spanish

IBM285 , ! EBCDIC British

IBM290 , ! EBCDIC Japanese

IBM297 , ! EBCDIC French

IBM420 , ! EBCDIC Arabic

IBM423 , ! EBCDIC Greek

IBM424 , ! EBCDIC Hebrew

IBM437 , ! EBCDIC Latin-1 (PC)

IBM500 , ! EBCDIC Latin-1 International

IBM775 , ! EBCDIC Polish

IBM850 , ! IBM ASCII Latin 1

IBM852 , ! IBM ASCII Latin 2

IBM855 , ! IBM ASCII Cyrillic

IBM857 , ! IBM ASCII Turkish

IBM860 , ! IBM DOS Portuguese

IBM861 , ! IBM DOS Icelandic

Chapter 31. System Settings Related Identifiers 971

IBM862 , ! IBM DOS Hebrew

IBM863 , ! IBM DOS French Canadian

IBM864 , ! IBM DOS Arabic

IBM865 , ! IBM DOS Nordic

IBM866 , ! IBM DOS Cyrillic

IBM869 , ! IBM DOS Greek

IBM870 , ! IBM EBCDIC Latin 2

IBM871 , ! IBM EBCDIC Iceland

IBM880 , ! IBM EBCDIC Cyrillic Russian

IBM905 , ! IBM EBCDIC Turkish

IBM1026 , ! IBM EBCDIC Turkish Latin 5

ISO-2022-KR , ! ISO 2022 Korean

ISO-8859-1 , ! ASCII based Latin-1 (West European)

ISO-8859-2 , ! ASCII based Latin-2 (East European)

ISO-8859-3 , ! ASCII based Latin-3 (South European)

ISO-8859-4 , ! ASCII based Latin-4 (North European)

ISO-8859-5 , ! ASCII based Latin/Cyrillic

ISO-8859-6 , ! ASCII based Latin/Arabic

ISO-8859-7 , ! ASCII based Latin/Greek

ISO-8859-9 , ! ASCII based Latin-5 Turkish

ISO-8859-13 , ! ASCII based Latin-7 Baltic Rim

ISO-8859-15 , ! ASCII based Latin-9 Western European

JOHAB , ! Korean

KOI8-R , ! Cyrillic 8 bit Russian

KOI8-U , ! Cyrillic 8 bit Ukrainian

US-ASCII , ! 7 bit ASCII

UTF-16BE , ! Unicode 2 byte, Big endian

UTF-16LE , ! Unicode 2 byte, Little endian

UTF-32BE , ! Unicode 4 byte, Big endian

UTF-32LE , ! Unicode 4 byte, Little endian

UTF8 , ! Unicode multi-byte and preferred!

WINDOWS-874 , ! ASCII Windows Thai

WINDOWS-1250 , ! ASCII Windows Latin Central European

WINDOWS-1251 , ! ASCII Windows Cyrillic

WINDOWS-1252 , ! ASCII Windows Latin Wetern European

WINDOWS-1253 , ! ASCII Windows Greek

WINDOWS-1254 , ! ASCII Windows Turkish

WINDOWS-1255 , ! ASCII Windows Hebrew

WINDOWS-1256 , ! ASCII Windows Arabic

WINDOWS-1257 , ! ASCII Windows Latin Baltic

WINDOWS-1258 } ! ASCII Windows Vietnamese

Remarks:

Not all character encodings enumerated above may be available on your

system. The subset of available character encodings is

AllAvailableCharacterEncodings.

The set AllCharacterEncodings is the range for the options:

� aim input character encoding used for reading and writing of model text

files,

Chapter 31. System Settings Related Identifiers 972

� ascii case character encoding used for reading cases created by the

ASCII flavor of Aimms 3.13 and older,

� default input character encoding used during a read from file

statement,

� default output character encoding used during a write to file and put

statements, and

� external string character encoding used for communicating strings to

external DLLs.

See also:

� Paragraph Text files in the preliminaries of the Language Reference 18.

� The encoding attribute of files, see page 496 of the Language Reference.

� The set of character encodings available to the current Aimms session:

AllAvailableCharacterEncodings.

Chapter 31. System Settings Related Identifiers 973

AllColors

The predefined set AllColors contains the names of all users colors

associated with an Aimms project.

Set AllColors {

Index : IndexColors;

}

Definition:

The contents of the set AllColors is the collection of all user colors

defined for a particular project through the User Colors dialog box.

Updatability:

The contents of the set can only be modified through the User Colors

dialog box, or programmatically through the functions UserColorAdd and

UserColorDelete.

Remarks:

The set AllColors is typically used to allow programmatic assignment of

colors to data displayed in the graphical end-user interface in a

data-driven manner.

See also:

The use of user colors is explained in full detail in Section 11.4 of the

User’s Guide.

Chapter 31. System Settings Related Identifiers 974

AllIntrinsics

The predefined set AllIntrinsics contains the names of all standard Aimms

functions and operators.

Set AllIntrinsics {

SubsetOf : AllSymbols;

Index : IndexIntrinsics;

}

Definition:

The contents of the set AllIntrinsics is the collection of all standard

functions and operators.

Updatability:

The contents of the set cannot be modified.

See also:

The set AllSymbols.

Chapter 31. System Settings Related Identifiers 975

AllKeywords

The predefined set AllKeywords contains the names of all keywords in Aimms.

Set AllKeywords {

SubsetOf : AllSymbols;

Index : IndexKeywords;

}

Definition:

The contents of the set AllKeywords is the collection of all keywords.

Updatability:

The contents of the set cannot be modified.

See also:

The set AllSymbols.

Chapter 31. System Settings Related Identifiers 976

AllOptions

The predefined set AllOptions contains the names of all options available in

Aimms.

Set AllOptions {

Index : IndexOptions;

}

Definition:

The contents of the set AllOptions is the collection of all options available

in Aimms from the language and through the Options dialog box.

Updatability:

The contents of the set can only be modified through the Solver

Configuration dialog box. By adding or removing solvers the

corresponding solver options will be added or removed in the set

AllOptions.

Remarks:

In the set AllOptions, the solver specific options are prefixed by the solver

name and version.

See also:

Options in Aimms is described in detail in Section 20.1 of the User’s Guide.

Chapter 31. System Settings Related Identifiers 977

AllPredeclaredIdentifiers

The predefined set AllPredeclaredIdentifiers contains the names of all

predeclared identifiers in Aimms.

Set AllPredeclaredIdentifiers {

SubsetOf : AllSymbols;

Index : IndexPredeclaredIdentifiers;

}

Definition:

The contents of the set AllPredeclaredIdentifiers is the collection of all

predeclared identifier names.

Updatability:

The contents of the set cannot be modified.

See also:

The set AllSymbols.

Chapter 31. System Settings Related Identifiers 978

AllSolvers

The predefined set AllSolvers contains the names of all types of solvers

associated with the Aimms system installed on a particular computer.

Set AllSolvers {

Index : IndexSolvers;

}

Definition:

The contents of the set AllSolvers is the collection of all types of solvers

linked to a particular Aimms system through the Solver Configuration

dialog box.

Updatability:

The contents of the set can only be modified through the Solver

Configuration dialog box.

Remarks:

The set AllSolvers can be used in applications to test whether one or more

solvers are available, as illustrated in the Aimms example Economic

Exchange Equilibrium.

See also:

� Solver configuration is discussed in full detail in Section 20.3 of the

User’s Guide.

� The parameter CurrentSolver.

� The functions GMP::Instance::CreateSolverSession and

GMP::Instance::GetSolver

Chapter 31. System Settings Related Identifiers 979

AllSymbols

The predefined set AllSymbols contains the names of identifiers, predeclared

identifiers, keywords, and intrinsics.

Set AllSymbols {

Index : IndexSymbols;

Definition : {

AllPredeclaredIdentifiers + AllIdentifiers +

AllKeywords + AllIntrinsics

}

}

Definition:

The contents of the set AllSymbols is the collection of all identifiers,

predeclared identifiers, keywords, and intrinsics.

Updatability:

The contents of the set can only be modified by adding or deleting

identifiers in the Model Explorer.

See also:

The sets AllIdentifiers, AllPredeclaredIdentifiers, AllKeywords, and

AllIntrinsics.

Chapter 31. System Settings Related Identifiers 980

ProfilerData

The predefined parameter ProfilerData can be used by Aimms to store

profiling information about the execution of procedures and the updating of

definitions.

Parameter ProfilerData {

IndexDomain : (IndexIdentifiers, IndexprofilerTypes);

}

Remarks:

� Profiling information is only stored in the parameter ProfilerData if the

profiler has been activated and if the option profiler store data has

been set to On.

� The number of reported hits is an postive integer and all reported

profiling times are measured in seconds.

See also:

The function ProfilerStart and the predefined identifier AllProfilerTypes.

Chapter 31. System Settings Related Identifiers 981

CurrentAuthorizationLevel

The predefined element parameter CurrentAuthorizationLevel refers to the

authorization level assigned to the user currently logged on to an Aimms

project.

ElementParameter CurrentAuthorizationLevel {

Range : AllAuthorizationLevels;

}

Definition:

The contents of the element parameter CurrentAuthorizationLevel is the

authorization level assigned to the user currently logged on to a project,

as assigned by the User Administrator in the User Setup dialog box.

Updatability:

The contents of CurrentAuthorizationLevel can only be modified by

logging on to the project as another user through the

File-Authorization-User menu, or by directly modifying the authorization

level through the File-Authorization-Level menu.

Remarks:

The element parameter CurrentAuthorizationLevel is typically used refer

to the slice of model-defined data that defines access rights to various

parts of the model or end-user interface of a model. By referring to the

data slice determined by the value of element parameter

CurrentAuthorizationLevel, Aimms will use the accessibility rights

associated with the authorization level of the current logged on user.

The use of authorization levels in Aimms directly is deprecated, as user

authentication and authorization during deployment is now arranged via

Aimms PRO (cf. Section 19.2).

See also:

The set AllAuthorizationLevels.

Chapter 31. System Settings Related Identifiers 982

CurrentGroup

The predefined string parameter CurrentGroup contains the name of the user

group associated with the user currently logged on to an Aimms project.

StringParameter CurrentGroup;

Definition:

The contents of the string parameter CurrentGroup is the name of the user

group associated with the user currently logged on to a project. User

groups are defined by the User Administrator in the User Setup dialog

box.

Updatability:

The contents of CurrentGroup can only be modified by logging on to the

project as another user through the File-Authorization-User menu, or

directly through the File-Authorization-Group menu.

Remarks:

The string parameter CurrentGroup only contains data when the project

has been linked to a user database.

The use of User Groups in Aimms directly is deprecated, as user

authentication and authorization during deployment is now arranged via

Aimms PRO (cf. Section 19.2).

See also:

The function SecurityGetGroups.

Chapter 31. System Settings Related Identifiers 983

CurrentSolver

The predefined element parameter CurrentSolver contains, for every

mathematical programming type, the name of the solver that Aimms will

currently use to solve models of that type.

ElementParameter CurrentSolver {

IndexDomain : IndexMathematicalProgrammingTypes;

Range : AllSolvers;

}

Definition:

The contents of the element parameter CurrentSolver are, for all types of

mathematical programs, the names of the currently active solver for

solving mathematical programs of each type, as set through the Solver

Configuration dialog box.

Updatability:

The value of CurrentSolver can also be modified programmatically from

within an Aimms model, and then determines the solver that will be used

to solve subsequent problems of the specified type. Modifying the values

of CurrentSolver will, however, not modify the (default) settings in the

Solver Configuration dialog box, that will be loaded at startup.

See also:

� The sets AllMathematicalProgrammingTypes and AllSolvers.

� Solver configuration is discussed in full detail in Section 20.3 of the

User’s Guide.

Chapter 31. System Settings Related Identifiers 984

CurrentUser

The predefined string parameter CurrentUser contains the name of the user

currently logged on to an Aimms project.

StringParameter CurrentUser;

Definition:

The contents of the string parameter CurrentUser is the name of the user

currently logged on to a project. Project users are defined by the User

Administrator in the User Setup dialog box.

Updatability:

The contents of CurrentUser can only be modified by logging on to the

project as another user through the File-Authorization-User menu.

Remarks:

The string parameter CurrentUser only contains data when the project has

been linked to a user database.

The use of User Groups in Aimms directly is deprecated, as user

authentication and authorization during deployment is now arranged via

Aimms PRO (cf. Section 19.2).

See also:

The function SecurityGetUsers.

Chapter 31. System Settings Related Identifiers 985

AllAimmsStringConstantElements

The predefined set AllAimmsStringConstantElements contains the elements for

which the predeclared string parameter AimmsStringConstants has a value.

Set AllAimmsStringConstantElements {

Index : IndexAimmsStringConstantElements;

}

Definition:

This set is fixed to { Platform, Architecture, Flavor }.

Chapter 31. System Settings Related Identifiers 986

AimmsStringConstants

The predefined string parameter AimmsStringConstants contains the

constituents that determine the running version of Aimms. It is used to

determine which installation of Aimms is running.

StringParameter AimmsStringConstants {

IndexDomain : (IndexAimmsStringConstantElements);

}

This string parameter contains the following elements:

� Platform Aimms supports the platform "Windows", and the platform

"Linux".

� Architecture The architecture for 32 bit systems is known as "x86", and

the architecture for 64 bit systems is known as "x64".

� Flavor Aimms comes only in a single flavor: "utf8". Up to Aimms 3.13,

Aimms came in the single byte per character flavor, abbreviated to "asc",

and it came in the two byte per character flavor, abbreviated to "uni".

For the Linux platform only the asc flavor was available.

Example:

StringParameter myDllName {

Definition : {

AimmsStringConstants(’Architecture’) + "\\" +

AimmsStringConstants(’Flavor’) + "\\" +

"myDll.dll"

}

}

A possible outcome of myDllName is x86\asc\myDll.dll.

See also:

The function EnvironmentGetString and the predeclared set

AllAimmsStringConstantElements.

Chapter 32

Language Related Identifiers

The following collection of predefined identifiers define various sets

containing similar keywords from the Aimms language. These sets are mostly

used for the specification of accurate prototypes of intrinsic Aimms functions.

� AggregationTypes

� AllAttributeNames

� AllBasicValues

� AllCaseComparisonModes

� AllColumnTypes

� AllDataColumnCharacteristics

� AllDifferencingModes

� AllExecutionStatuses

� AllGMPExtensions

� AllIdentifierTypes

� AllIsolationLevels

� AllFileAttributes

� AllMathematicalProgrammingTypes

� AllMatrixManipulationDirections

� AllMatrixManipulationProgrammingTypes

� AllProfilerTypes

� AllRowTypes

� AllConstraintProgrammingRowTypes

� AllMathematicalProgrammingRowTypes

� AllSolutionStates

� AllSolverInterrupts

� AllStochasticGenerationModes

� AllSuffixNames

� AllValueKeywords

� AllViolationTypes

� ContinueAbort

� DiskWindowVoid

� Integers

� MaximizingMinimizing

� MergeReplace

� OnOff

� TimeSlotCharacteristics

Chapter 32. Language Related Identifiers 988

� YesNo

Chapter 32. Language Related Identifiers 989

AggregationTypes

The predefined set AggregationTypes contains the collection of all possible

aggregation types supported by the Aggregate and DisAggregate functions.

Set AggregationTypes {

Index : IndexAggregationTypes;

Definition : {

data { summation, average,

maximum, minimum,

interpolation }

}

}

Definition:

The set AggregationTypes contains the collection of all possible

aggregation types supported by the Aggregate and DisAggregate functions.

Updatability:

The contents of the set cannot be modified.

Remarks:

ELement parameters into AggregationTypes can be used as the type

argument of the Aggregate and DisAggregate functions.

See also:

The functions Aggregate and DisAggregate. Time-dependent aggregation

and disaggregation is discussed in full detail in Section 33.5 of the

Language Reference.

Chapter 32. Language Related Identifiers 990

AllAttributeNames

The predefined set AllAttributeNames contains the names of all possible

identifier attributes.

Set AllAttributeNames {

Index : IndexAttributeNames;

}

Definition:

The predefined set AllAttributeNames contains the names of all possible

identifier attributes.

Updatability:

The contents of the set cannot be modified.

See also:

� The sets AllIdentifierTypes, and AllSuffixNames.

� Model edit functions, see Section 35.6 of the Language Reference.

� The functions me::AllowedAttribute and IdentifierAttributes.

Chapter 32. Language Related Identifiers 991

AllBasicValues

The predefined set AllBasicValues contains the names of all basic values

available in Aimms.

Set AllBasicValues {

Index : IndexBasicValues;

Definition : data { NonBasic, Basic, SuperBasic };

}

Definition:

The set AllBasicValues contains the names of all basic values in Aimms.

Updatability:

The contents of the set cannot be modified.

Chapter 32. Language Related Identifiers 992

AllCaseComparisonModes

The predefined set AllCaseComparisonModes contains the collection of all

possible modes supported by the CaseCompareIdentifier function.

Set AllCaseComparisonModes {

Index : IndexCaseComparisonModes;

Definition : {

data { min, max, sum

average, count }

}

}

Definition:

The predefined set AllCaseComparisonModes contains the collection of all

possible modes supported by the CaseCompareIdentifier function.

Updatability:

The contents of the set cannot be modified.

Remarks:

Element parameters into AllCaseComparisonModes can be used as the mode

argument of the CaseCompareIdentifier function.

See also:

The function CaseCompareIdentifier.

Chapter 32. Language Related Identifiers 993

AllColumnTypes

The predefined set AllColumnTypes contains the names of all column types

available in the matrix manipulation library of Aimms.

Set AllColumnTypes {

Index : IndexColumnTypes;

Definition : data { integer, continuous };

}

Definition:

The set AllColumnTypes contains the names of all column types available in

the matrix manipulation library of Aimms.

Updatability:

The contents of the set cannot be modified.

Remarks:

ELement parameters into AllColumnTypes can be used as the type argument

of the GMP::Column::SetType function.

See also:

The function GMP::Column::SetType. Matrix manipulation is discussed in

more detail in Chapter 16 of the Language Reference.

Chapter 32. Language Related Identifiers 994

AllDataColumnCharacteristics

The predefined set AllDataColumnCharacteristics contains all possible column

properties, which can be queried using the function SQLColumnData.

Set AllDataColumnCharacteristics {

Index : IndexDataColumnCharacteristics;

Definition : {

data { Name, DataType, Width,

NumberOfDecimals, IsPrimaryKey,

Nullable, DefaultValue, Remark }

}

}

Definition:

The set AllDataColumnCharacteristics contains all possible column

properties, which can be queried using the function SQLColumnData. They

are:

� Name : The name of the column.

� DataType : The data type of the column.

� Width : The column width.

� NumberOfDecimals : The number of decimals of the column. Only

applicable for numeric columns.

� IsPrimaryKey : Specfies whether the column is part of the primary key

for the database table. Returns "Yes" or "No".

� Nullable : Specifies whether the column is nullable or not. Returns "Yes"

or "No".

� DefaultValue : The default value of the column.

� Remark : The remark associated with the column.

Updatability:

The contents of the set cannot be modified.

See also:

The function SQLColumnData.

Chapter 32. Language Related Identifiers 995

AllDataSourceProperties

The predefined set AllDataSourceProperties contains all datasource

properties, which can be queried using the function GetDataSourceProperty.

Set AllDataSourceProperties {

Index : IndexDataSourceProperties;

Definition :

data { SQL_DATA_SOURCE_NAME, SQL_DATA_SOURCE_READ_ONLY,

SQL_DBMS_NAME, SQL_DBMS_VER, SQL_DRIVER_NAME,

SQL_DM_VER, SQL_DRIVER_VER, SQL_KEYWORDS,

SQL_SERVER_NAME }

}

}

Definition:

The set AllDataSourceProperties contains all datasource properties, which

can be queried using the function GetDataSourceProperty. They are:

� SQL DATA SOURCE NAME : The name of the datasource.

� SQL DATA SOURCE READ ONLY : The read-only status of the datasource.

Returns "Yes" or "No".

� SQL DBMS NAME : The name of the database system (e.g., returns "Oracle"

for an Oracle database).

� SQL DBMS VER : The version of the database system.

� SQL DRIVER NAME : The actual DLL of the ODBC driver for the datasource.

� SQL DM VER : The version of the ODBC driver manager.

� SQL DRIVER VER : The version of the ODBC driver for the datasource.

� SQL KEYWORDS : A comma-separated list of all reserved keywords of the

datasource.

� SQL SERVER NAME : The datasource-specific server name.

Updatability:

The contents of the set cannot be modified.

See also:

The function GetDataSourceProperty.

Chapter 32. Language Related Identifiers 996

AllDifferencingModes

The predefined set AllDifferencingModes contains the collection of all possible

differencing modes supported by the CaseCreateDifferenceFile function.

Set AllDifferencingModes {

Index : IndexDifferencingModes;

Definition : {

data { blockReplacement, elementReplacement,

elementAddition, elementMultiplication }

}

}

Definition:

The predefined set AllDifferencingModes contains the collection of all

possible differencing modes supported by the CaseCreateDifferenceFile

function:

� blockReplacement: When there are differences between the reference

case and the current case for an identifier the data of that identifier in

the current case is entirely displayed.

� elementReplacement: When there are differences between the reference

case and the current case for an identifier the differing elements in the

current case are displayed. This may include defaults for elements

deleted.

� elementAddition: When there are differences between the reference case

and the current case for an identifier the differences between elements

in the current case and reference case are displayed.

� elementMultiplication: When there are differences between the

reference case and the current case for an identifier the relative

differences between elements in the current case and reference case are

displayed.

Updatability:

The contents of the set cannot be modified.

Remarks:

Element parameters into AllDifferencingModes can be used as the

diffTypes argument of the CaseCreateDifferenceFile function.

See also:

The function CaseCreateDifferenceFile.

Chapter 32. Language Related Identifiers 997

AllExecutionStatuses

The predefined set AllExecutionStatuses contains the names of all execution

statuses associated with asynchronous solves.

Set AllExecutionStatuses {

Index : IndexExecutionStatus;

}

Definition:

The set AllExecutionStatuses contains the names of all execution statuses

associated with asynchronous solves. The execution status of an

asynchronous solve can be queried using the function

GMP::SolverSession::ExecutionStatus.

See also:

The function GMP::SolverSession::ExecutionStatus.

Chapter 32. Language Related Identifiers 998

AllGMPExtensions

The predefined set AllGMPExtensions contains the collection of all possible

extensions in the matrix manipulation library of Aimms.

Set AllGMPExtensions {

Index : IndexGMPExtensions;

Definition : {

data { DualObjective, DualDefinition,

DualLowerBound, DualUpperBound }

}

}

Definition:

The predefined set AllGMPExtensions contains the collection of all possible

extensions in the matrix manipulation library of Aimms.

Updatability:

The contents of the set cannot be modified.

Remarks:

Together with the suffixes .ExtendedConstraint and .ExtendedVariable,

element parameters into AllGMPExtensions can be used as the extension

argument of a constraint, a variable, and a mathematical program.

See also:

The set AllSuffixNames. Matrix manipulation is discussed in more detail in

Chapter 16 of the Language Reference.

Chapter 32. Language Related Identifiers 999

AllIdentifierTypes

The predefined set AllIdentifierTypes contains the names of all possible

identifier types.

Set AllIdentifierTypes {

Index : IndexIdentifierTypes;

}

Definition:

The predefined set AllIdentifierTypes contains the names of all possible

identifier types.

Updatability:

The contents of the set can not be modified; it has the following fixed

contents:

AllIdentifierTypes := data

{ set ,

calendar ,

horizon ,

index ,

parameter ,

’element parameter’ ,

’string parameter’ ,

’unit parameter’ ,

variable ,

’element variable’ ,

’complementarity variable’,

constraint ,

arc ,

node ,

’uncertainty variable’ ,

’uncertainty constraint’ ,

activity ,

resource ,

’mathematical program’ ,

macro ,

assertion ,

’database table’ ,

’database procedure’ ,

file ,

procedure ,

function ,

quantity ,

convention ,

LibraryModule ,

module ,

section ,

declaration } ;

Chapter 32. Language Related Identifiers 1000

See also:

� The sets AllAttributeNames and AllSuffixNames.

� Model edit functions, see Section 35.6 of the Language Reference.

� The functions me::ChangeType and IdentifierType.

Chapter 32. Language Related Identifiers 1001

AllIsolationLevels

The predefined set AllIsolationLevels contains the supported isolation levels

for a database transaction, as started through the procedure StartTransaction.

Set AllIsolationLevels {

Index : IndexIsolationLevels;

Definition : {

data { ReadUncommitted, ReadCommitted,

RepeatableRead, Serializable }

}

}

Definition:

The predefined set AllIsolationLevels contains the supported isolation

levels for a database transaction. They are:

� ReadUncommitted: a transaction operating at this level can see

uncommitted changes made by other transactions,

� ReadCommitted (default): a transaction operating at this level cannot see

changes made by other transactions until those transactions are

committed,

� RepeatableRead: a transaction operating at this level is guaranteed not to

see any changes made by other transactions in values it has already

read during the transaction, and

� Serializable: a transaction operating at this level guarantees that all

concurrent transactions interact only in ways that produce the same

effect as if each transaction were entirely executed one after the other.

Updatability:

The contents of the set cannot be modified.

Remarks:

Not all database servers may support all of these isolation levels, and may

cause the call to StartTransaction to fail.

See also:

The function StartTransaction.

Chapter 32. Language Related Identifiers 1002

AllFileAttributes

The predefined set AllFileAttributes contains the attributes which can be

used in the filtering of files.

Set AllFileAttributes {

Index : IndexFileAttributes;

Definition : data { Hidden, ReadOnly, Executable };

}

Definition:

The predefined set AllFileAttributes contains the attributes the intrinsic

functions DirectoryGetFiles, and DirectoryGetSubDirectories use to filter

their result. They are:

� Hidden: the file or subdirectory is normally not visible when querying

the folder in which it resides,

� ReadOnly: the file or subdirecotry is read only,

� Executable: the file is executable (this attribute is ignored for

DirectoryGetSubdirectories).

Updatability:

The contents of the set cannot be modified.

See also:

The functions DirectoryGetFiles, and DirectoryGetSubDirectories.

Chapter 32. Language Related Identifiers 1003

AllMathematicalProgrammingTypes

The predefined set AllMathematicalProgrammingTypes contains the list of

mathematical programming types supported by Aimms.

Set AllMathematicalProgrammingTypes {

SubsetOf : AllValueKeywords;

Index : IndexMathematicalProgrammingTypes;

}

Definition:

The set AllMathematicalProgrammingTypes contains the list of mathematical

programming types supported by Aimms.

Updatability:

The contents of the set AllMathematicalProgrammingTypes is completely

under the control of Aimms, and cannot be modified.

Remarks:

Element parameters into the set AllMathematicalProgrammingTypes can be

used in the declaration of mathematical programs or as part of the SOLVE

statement to dynamically modify the type of a mathematical program. The

predefined identifier CurrentSolver defines the active solver for each

mathematical programming type.

See also:

The set AllValueKeywords, CurrentSolver. Mathematical programs are

discussed in full detail in Section 15.1 of the Language Reference, the

SOLVE statement in Section 15.3.

Chapter 32. Language Related Identifiers 1004

AllMatrixManipulationDirections

The predefined set AllMatrixManipulationDirections contains the list of

optimization directions supported by the matrix manipulation library of

Aimms.

Set AllMatrixManipulationDirections {

SubsetOf : AllValueKeywords;

Index : IndexMatrixManipulationDirections;

}

Definition:

The set AllMatrixManipulationDirections contains the list of optimization

directions supported by the matrix manipulation library of Aimms.

Updatability:

The contents of the set AllMatrixManipulationDirections is completely

under the control of Aimms, and cannot be modified.

Remarks:

Element parameters into the set AllMatrixManipulationDirections can be

used as the direction argument of the GMP::Instance::SetDirection

function.

See also:

The set AllValueKeywords, the function GMP::Instance::SetDirection.

Matrix manipulation is discussed in more detail in Chapter 16 of the

Language Reference.

Chapter 32. Language Related Identifiers 1005

AllMatrixManipulationProgrammingTypes

The predefined set AllMatrixManipulationProgrammingTypes contains the

collection of mathematical programming types that can be used in

conjunction with the matrix manipulation library of Aimms.

Set AllMatrixManipulationProgrammingTypes {

SubsetOf : AllMathematicalProgrammingTypes;

Index : IndexMatrixManipulationProgrammingTypes;

}

Definition:

The predefined set AllMatrixManipulationProgrammingTypes contains the

collection of mathematical programming types that can be used in

conjunction with the matrix manipulation library of Aimms.

Updatability:

The contents of the set AllMatrixManipulationProgrammingTypes is

completely under the control of Aimms, and cannot be modified.

Remarks:

Element parameters into the set AllMatrixManipulationDirections can be

used as the type argument of the

GMP::Instance::SetMathematicalProgrammingType function.

See also:

The set AllMathematicalProgrammingTypes, the function

GMP::Instance::SetMathematicalProgrammingType . Matrix manipulation is

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 32. Language Related Identifiers 1006

AllProfilerTypes

The predefined set AllProfilerTypes contains the names of all types of

profiler data that can be stored in the predefined identifier ProfilerData.

Set AllProfilerTypes {

Index : IndexprofilerTypes;

}

Definition:

The set AllProfilerTypes currently contains the profiler types ‘hits’, ‘gross

time’, and ’net time’.

See also:

The function ProfilerStart and the predefined parameter ProfilerData.

Chapter 32. Language Related Identifiers 1007

AllRowTypes

The predefined set AllRowTypes contains the collection of all possible row

types and is the superset of .

Set AllRowTypes {

Index : IndexRowTypes;

Definition : data { ’<=’, ’=’, ’>=’, ranged, ’<’, ’>’, ’<>’ };

}

Definition:

The set AllRowTypes contains the collection of all possible row types

available in the matrix manipulation library of Aimms.

Updatability:

The contents of the set cannot be modified.

Remarks:

ELement parameters into AllRowTypes can be used as the type argument of

the GMP::Row::SetType function.

See also:

The function GMP::Row::SetType. Matrix manipulation is discussed in more

detail in Chapter 16 of the Language Reference.

Chapter 32. Language Related Identifiers 1008

AllConstraintProgrammingRowTypes

The predefined set AllConstraintProgrammingRowTypes contains the collection

of all possible row types available to be used by the Constraint Programming

global constraint cp::Count.

Set AllConstraintProgrammingRowTypes {

SubsetOf : AllRowTypes;

Index : IndexConstraintProgrammingRowTypes;

Definition : data { ’<=’, ’=’, ’>=’, ’<’, ’>’, ’<>’ };

}

Definition:

The set AllConstraintProgrammingRowTypes contains the collection of all

possible row types available as relation operator to the function cp::Count.

Updatability:

The contents of the set cannot be modified.

See also:

The function cp::Count and the set AllRowTypes

Chapter 32. Language Related Identifiers 1009

AllMathematicalProgrammingRowTypes

The predefined set AllMathematicalProgrammingRowTypes contains the

collection of all possible row types available in the matrix manipulation

library of Aimms.

Set AllMathematicalProgrammingRowTypes {

Index : IndexMathematicalProgrammingRowTypes;

Definition : data { ’<=’, ’=’, ’>=’, ranged };

}

Definition:

The set AllMathematicalProgrammingRowTypes contains the collection of all

possible row types available in the matrix manipulation library of Aimms.

Updatability:

The contents of the set cannot be modified.

Remarks:

ELement parameters into AllMathematicalProgrammingRowTypes can be used

as the type argument of the GMP::Row::SetType function.

See also:

The function GMP::Row::SetType and the super set AllRowTypes. Matrix

manipulation is discussed in more detail in Chapter 16 of the Language

Reference.

Chapter 32. Language Related Identifiers 1010

AllSolutionStates

The predefined set AllSolutionStates contains the names of possible values

of the program and solver status of a mathematical program.

Set AllSolutionStates {

Index : IndexSolutionStates;

}

Definition:

The set AllSolutionStates contains the names of all possible values of the

ProgramStatus and SolverStatus suffixes of a mathematical program.

Updatability:

The contents of the set cannot be modified.

Remarks:

The suffixes ProgramStatus and SolverStatus of a mathematical program

take their values in the set AllSolutionStates.

See also:

The program status and solver status are discussed in more detail in

Section 15.2 of the Language Reference.

Chapter 32. Language Related Identifiers 1011

AllSolverInterrupts

The predefined set AllSolverInterrupts contains the names of all causes for a

callback.

Set AllSolverInterrupts {

Index : IndexSolverInterrupts;

Definition : {

data { AddCut, Branch, Candidate, Heuristic, Incumbent,

Iterations, StatusChange, AddLazyConstraint,

Finished, Time }

}

}

Definition:

The set AllSolverInterrupts contains the names of all causes for a

callback.

Updatability:

The contents of the set cannot be modified.

Remarks:

If you have installed the same callback procedure for several callbacks,

you can call the function GMP::SolverSession::GetCallbackInterruptStatus,

which returns an element into the set AllSolverInterrupts, to obtain the

particular callback for which your callback procedure was called.

See also:

The routines GMP::Instance::SetCallbackAddCut,

GMP::Instance::SetCallbackAddLazyConstraint,

GMP::Instance::SetCallbackBranch, GMP::Instance::SetCallbackCandidate,

GMP::Instance::SetCallbackHeuristic,

GMP::Instance::SetCallbackIncumbent,

GMP::Instance::SetCallbackStatusChange, GMP::Instance::SetCallbackTime,

and GMP::SolverSession::GetCallbackInterruptStatus.

Chapter 32. Language Related Identifiers 1012

AllStochasticGenerationModes

The predefined set AllStochasticGenerationModes defines the modes in which

GMP::Instance::GenerateStochasticProgram may generate a stochastic

programming problem.

Set AllStochasticGenerationModes {

Index : IndexStochasticGenerationModes;

Definition : {

data { CreateNonAnticipativityConstraints,

SubstituteStochasticVariables }

}

}

Definition:

The predefined set AllStochasticGenerationModes defines the set of

elements CreateNonAnticipativityConstraints and

SubstituteStochasticVariables.

Updatability:

The contents of the set AllStochasticGenerationModes cannot be modified.

See also:

� Stochastic programming is discussed in Chapter 19 of the Language

Reference.

� The intrinsic function GMP::Instance::GenerateStochasticProgram.

Chapter 32. Language Related Identifiers 1013

AllSuffixNames

The predefined set AllSuffixNames contains the names of all existing suffixes

of all identifier types.

Set AllSuffixNames {

Index : IndexSuffixNames;

}

Definition:

The set AllSuffixNames contains the names of all possible suffixes for the

entire collection of identifier types.

Updatability:

The contents of the set cannot be modified.

See also:

� The set AllIdentifiers.

� The functions ScalarValue, ActiveCard, Card, CaseCompareIdentifier, and

GMP::Solution::SendToModelSelection.

Chapter 32. Language Related Identifiers 1014

AllValueKeywords

The predefined set AllValueKeywords serves as the root set of various other

predefined sets containing Aimms keywords.

Set AllValueKeywords {

Index : IndexValueKeywords;

Definition : {

AllMathematicalProgrammingTypes +

AllMatrixManipulationDirections +

AllViolationTypes + YesNo +

ContinueAbort + MergeReplace + OnOff +

DiskWindowVoid + MaximizingMinimizing

}

}

Definition:

The set AllValueKeywords contains keywords used in various other

predefined sets containing Aimms keywords.

Updatability:

The contents of the set AllValueKeywords is completely under the control

of Aimms, and cannot be modified.

Remarks:

The set AllValueKeywords is, in general, of little direct use in an Aimms

application.

See also:

The sets AllMathematicalProgrammingTypes,

AllMatrixManipulationDirections, AllViolationTypes, YesNo, ContinueAbort,

DiskWindowVoid, MaximizingMinimizing, MergeReplace, OnOff.

Chapter 32. Language Related Identifiers 1015

AllViolationTypes

The predefined set AllViolationTypes contains the collection of all violation

types for which violation penalties can be specified in a mathematical

program declaration.

Set AllViolationTypes {

SubsetOf : AllValueKeywords;

Index : IndexViolationTypes;

Definition : data { Lower, Upper, Definition };

}

Definition:

The set AllViolationTypes contains the violation types for which violation

penalties can be specified in a mathematical program declaration.

Updatability:

The contents of the set AllViolationTypes is completely under the control

of Aimms, and cannot be modified.

Remarks:

The set AllViolationTypes is typically used in the index domain of

identifiers specified in the ViolationPenalties attribute of a

MathematicalProgram.

See also:

The sets AllMathematicalProgrammingTypes,

AllMatrixManipulationDirections, ContinueAbort, DiskWindowVoid,

MaximizingMinimizing, MergeReplace, OnOff. The ViolationPenalties

attribute of a mathematical programs is discussed in Section 15.4 of the

Language Reference.

Chapter 32. Language Related Identifiers 1016

ContinueAbort

The predefined set ContinueAbort defines the set of possible return statuses of

solver callback procedures.

Set ContinueAbort {

SubsetOf : AllValueKeywords;

Index : IndexContinueAbort;

Definition : data { continue, abort };

}

Definition:

The set ContinueAbort defines the set of possible return statuses of solver

callback procedures.

Updatability:

The contents of the set cannot be modified.

Remarks:

The elements of the set ContinueAbort can be assigned to the

CallbackReturnStatus suffix of a mathematical program upon return of a

solver callback procedure.

See also:

The set AllValueKeywords. Solver callback procedures are discussed in

Section 15.2 of the Language Reference.

Chapter 32. Language Related Identifiers 1017

DiskWindowVoid

The predefined set DiskWindowVoid defines the set of possible devices of file

identifiers.

Set DiskWindowVoid {

SubsetOf : AllValueKeywords;

Index : IndexDiskWindowVoid;

Definition : data { disk, window, void };

}

Definition:

The predefined set DiskWindowVoid defines the set of possible devices

which can be entered in the Device attribute of a File identifier.

Updatability:

The contents of the set cannot be modified.

Remarks:

Element parameters into the set DiskWindowVoid can be entered in the

Device attribute of File identifiers to allow dynamic device changes for a

file.

See also:

The set AllValueKeywords. File identifiers are discussed in Section 31.1 of

the Language Reference.

Chapter 32. Language Related Identifiers 1018

Integers

The predefined set Integers defines the range of allowed integer set elements

in Aimms.

Set Integers {

Index : IndexIntegers;

Definition : {

{ (-2ˆ30+5) .. (2ˆ30+2) }

}

}

Definition:

The set Integers defines the range of integers that can possibly serve as

integer set elements in Aimms.

Updatability:

The contents of the set cannot be modified.

Remarks:

Subsets of the sets Integers are frequently used to enumerate objects

within a model. Datafiles (i.e. cases and datasets) in Aimms are

enumerated as subsets of the set Integers.

See also:

The sets AllDataFiles, AllCases, AllDataSets. Integer sets are discussed in

Section 3.2.2 of the Language Reference.

Chapter 32. Language Related Identifiers 1019

MaximizingMinimizing

The predefined set MaximizingMinimizing defines the set of possible

optimization directions of mathematical programs.

Set MaximizingMinimizing {

SubsetOf : AllValueKeywords;

Index : IndexMaximizingMinimizing;

Definition : data { maximize, minimize };

}

Definition:

The predefined set MaximizingMinimizing defines the set of possible

optimization directions that can be entered in the Direction attribute of

mathematical programs.

Updatability:

The contents of the set cannot be modified.

Remarks:

Element parameters into the set MaximizingMinimizing can be entered in

the Direction attribute of mathematical programs to allow dynamic

choices of the optimization direction.

See also:

The set AllValueKeywords. Mathematical programs are discussed in more

detail in Section 15.1 of the Language Reference.

Chapter 32. Language Related Identifiers 1020

MergeReplace

The predefined set MergeReplace defines the set of modes for the READ, WRITE

and SOLVE statements.

Set MergeReplace {

SubsetOf : AllValueKeywords;

Index : IndexMergeReplace;

Definition : data { merge, replace };

}

Definition:

The predefined set MergeReplace defines the set of modes for the READ,

WRITE and SOLVE statements as specified through the IN MERGE/REPLACE MODE

clause.

Updatability:

The contents of the set MergeReplace cannot be modified.

Remarks:

Element parameters into the set MergeReplace can be used to dynamically

indicate the mode of a READ, WRITE or SOLVE statement.

See also:

The set AllValueKeywords. The SOLVE statement is discussed in Section 15.3

of the Language Reference, the READ and WRITE statements in Section 26.2.

Chapter 32. Language Related Identifiers 1021

OnOff

The predefined set OnOff defines the set of possibilities the PageMode suffix of

File identifiers.

Set OnOff {

SubsetOf : AllValueKeywords;

Index : IndexOnOff;

Definition : data { on, off };

}

Definition:

The set OnOff defines the set of possibilities the PageMode suffix of File

identifiers.

Updatability:

The contents of the set OnOff cannot be modified.

Remarks:

Element parameters into the set OnOff assigned to be PageMode suffix of a

File identifier can be used to dynamically change the page mode of a file.

See also:

The set AllValueKeywords. The PageMode suffix of FILE identifiers is

discussed in full detail in Section 31.4.

Chapter 32. Language Related Identifiers 1022

TimeSlotCharacteristics

The predefined set TimeSlotCharacteristics contains the collection of

timeslot characteristic which can be used in conjunction with the function

TimeSlotCharacteristic.

Set TimeSlotCharacteristics {

Index : IndexTimeSlotCharacteristics;

Definition : {

data { century, year, quarter, month

weekday, yearday, monthday

week, weekyear, weekcentury

hour, minute, second, tick }

}

}

Definition:

The set TimeSlotCharacteristics contains the collection of timeslot

characteristic which can be used in conjunction with the function

TimeSlotCharacteristic.

Updatability:

The contents of the set cannot be modified.

Remarks:

ELement parameters into TimeSlotCharacteristics can be used as the

characteristic argument of the TimeSlotCharacteristic function.

See also:

The function TimeSlotCharacteristic. The use of the function

TimeSlotCharacteristic is explained in more detail in Section 33.4 of the

Language Reference.

Chapter 32. Language Related Identifiers 1023

YesNo

The predefined set YesNo defines the set of elements Yes and No.

Set YesNo {

SubsetOf : AllValueKeywords;

Index : IndexYesNo;

Definition : data { yes, no };

}

Definition:

The predefined set YesNo defines the set of elements Yes and No.

Updatability:

The contents of the set YesNo cannot be modified.

Remarks:

The set YesNo is not used by Aimms anymore.

See also:

The set AllValueKeywords.

Chapter 33

Model Related Identifiers

The following collection of predefined identifiers contains information

regarding the model associated with the Aimms project at hand. The

identifiers listed here contain either the complete set of model identifiers or

the set of all identifiers of a specific type.

� AllAssertions

� AllConstraints

� AllConventions

� AllDatabaseTables

� AllDefinedParameters

� AllDefinedSets

� AllFiles

� AllFunctions

� AllGMPEvents

� AllIdentifiers

� AllIndices

� AllIntegerVariables

� AllMacros

� AllMathematicalPrograms

� AllNonLinearConstraints

� AllParameters

� AllProcedures

� AllQuantities

� AllSections

� AllSets

� AllSolverSessionCompletionObjects

� AllSolverSessions

� AllStochasticConstraints

� AllStochasticParameters

� AllStochasticVariables

� AllUpdatableIdentifiers

� AllVariables

� AllVariablesConstraints

Chapter 33. Model Related Identifiers 1025

AllAssertions

The predefined set AllAssertions contains the names of all assertions within

an Aimms model.

Set AllAssertions {

SubsetOf : AllIdentifiers;

Index : IndexAssertions;

}

Definition:

The contents of the set AllAssertions is the collection of all assertion

names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

assertions in the Model Explorer.

Remarks:

The set AllAssertions or subsets thereof are typically used in the ASSERT

statement in an Aimms model.

See also:

The sets AllIdentifiers. Assertions are discussed in Section 25.2 of the

Language Reference.

Chapter 33. Model Related Identifiers 1026

AllConstraints

The predefined set AllConstraints contains the names of all constraints

within an Aimms model.

Set AllConstraints {

SubsetOf : AllVariablesConstraints;

Index : IndexConstraints;

}

Definition:

The contents of the set AllConstraints is the collection of all symbolic

constraint names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

constraints in the Model Explorer.

Remarks:

The set AllConstraints or subsets thereof are typically used in the

Constraints attribute of MathematicalProgram declared within an Aimms

model.

See also:

The sets AllIdentifiers, AllVariables. Constraints are discussed in

Section 14.2, mathematical programs in Section 15.1 of the Language

Reference.

Chapter 33. Model Related Identifiers 1027

AllConventions

The predefined set AllConventions contains the names of all conventions

defined within an Aimms model.

Set AllConventions {

SubsetOf : AllIdentifiers;

Index : IndexConventions;

}

Definition:

The contents of the set AllConventions is the collection of all conventions

defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

conventions in the Model Explorer.

Remarks:

Element parameters into the set AllConventions are typically used in the

main model node to allow dynamic selection of the unit convention to

which the model is subject.

See also:

The sets AllIdentifiers, AllQuantities. Conventions are discussed in full

detail in Section 32.8 of the Language Reference.

Chapter 33. Model Related Identifiers 1028

AllDatabaseTables

The predefined set AllDatabaseTables contains the names of all database

tables declared within an Aimms model.

Set AllDatabaseTables {

SubsetOf : AllIdentifiers;

Index : IndexDatabaseTables;

}

Definition:

The contents of the set AllDatabaseTables is the collection of all database

tables declared within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

database tables in the Model Explorer.

See also:

The sets AllIdentifiers. Database tables are discussed in Section 27.1 of

the Language Reference.

Chapter 33. Model Related Identifiers 1029

AllDefinedParameters

The predefined set AllDefinedParameters contains the names of all defined

parameters within an Aimms model.

Set AllDefinedParameters {

Subsetof : AllParameters;

Index : IndexDefinedParameters;

}

Definition:

The contents of the set AllDefinedParameters is the collection of all

parameters names with a non-empty Definition attribute within a

particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

definitions of parameters declared in the Model Explorer.

See also:

The sets AllParameters. Parameters are discussed in Section 4.1 of the

Language Reference.

Chapter 33. Model Related Identifiers 1030

AllDefinedSets

The predefined set AllDefinedSets contains the names of all defined sets

within an Aimms model.

Set AllDefinedSets {

SubsetOf : AllSets;

Index : IndexDefinedSets;

}

Definition:

The contents of the set AllDefinedSets is the collection of all set names

with a non-empty Definition attribute within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

definitions of sets declared in the Model Explorer.

See also:

The sets AllSets. Sets are discussed in Section 3.2 of the Language

Reference.

Chapter 33. Model Related Identifiers 1031

AllFiles

The predefined set AllFiles contains the names of all files declared within an

Aimms model.

Set AllFiles {

SubsetOf : AllIdentifiers;

Index : IndexFiles;

}

Definition:

The contents of the set AllFiles is the collection of all file identifiers

defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting file

identifiers in the Model Explorer.

Remarks:

The set AllFiles is the range of the element parameter CurrentFile.

See also:

The element parameter CurrentFile. Files are discussed in Section 31.1 of

the Language Reference.

Chapter 33. Model Related Identifiers 1032

AllFunctions

The predefined set AllFunctions contains the names of all functions defined

within an Aimms model.

Set AllFunctions {

SubsetOf : AllIdentifiers;

Index : IndexFunctions;

}

Definition:

The contents of the set AllFunctions is the collection of all function names

defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

functions in the Model Explorer.

Remarks:

Elements of the set AllFunctions are typically used in conjunction with the

APPLY statement, to allow data-driven evaluation of functional expressions.

See also:

The sets AllIdentifiers. Functions are discussed in Section 10.2 of the

Language Reference, the APPLY statement in Section 10.3.1.

Chapter 33. Model Related Identifiers 1033

AllGMPEvents

The predefined set AllGMPEvents contains all GMP Events.

Set AllGMPEvents {

SubsetOf : AllSolverSessionCompletionObjects;

Index : IndexGMPEvents;

}

Definition:

The set AllGMPEvents contains all GMP events used by the functions

GMP::Event::Create, GMP::Event::Delete, GMP::Event::Reset, and

GMP::Event::Set.

See also:

The functions GMP::Event::Create, GMP::Event::Delete, GMP::Event::Reset,

and GMP::Event::Set, and the predeclared identifier

AllSolverSessionCompletionObjects.

Chapter 33. Model Related Identifiers 1034

AllIdentifiers

The predefined set AllIdentifiers contains the names of all identifiers

declared within an Aimms model.

Set AllIdentifiers {

SubsetOf : AllSymbols;

Index : IndexIdentifiers, SecondIndexIdentifiers;

}

Definition:

The contents of the set AllIdentifiers is the collection of all identifier and

section names declared within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

identifiers in the Model Explorer.

Remarks:

Subsets of AllIdentifiers are occassionally used in READ, WRITE or DISPLAY

statements to indicate the set of identifiers to be read or written, as well

as in data control statements such as EMPTY and CLEANUP. It also serves as

the root set of the other (typed) identifier sets, which can be used

throughout an Aimms project.

See also:

The set AllSymbols. Data control statements are discussed in Section 25.3,

the READ and WRITE statements in Section 26.2, and the DISPLAY statement

in Section 31.3 of the Language Reference. Working with the set

AllIdentifiers is described in more detail in Section 25.4.

Chapter 33. Model Related Identifiers 1035

AllIndices

The predefined set AllIndices contains the names of all indices defined

within an Aimms model.

Set AllIndices {

SubsetOf : AllIdentifiers;

Index : IndexIndices;

}

Definition:

The contents of the set AllIndices is the collection of all indices defined

within a particular model.

Updatability:

The contents of the set can only be modified by adding indices to or

deleting indices from sets within the Model Explorer.

See also:

The sets AllSets, AllIdentifiers. Sets and their corresponding indices are

discussed in Section 3.2 of the Language Reference.

Chapter 33. Model Related Identifiers 1036

AllIntegerVariables

The predefined set AllIntegerVariables contains the names of all integer

variables within an Aimms model.

Set AllIntegerVariables {

SubsetOf : AllVariables;

Index : IndexIntegerVariables;

}

Definition:

The contents of the set AllIntegerVariables is the collection of all

symbolic variable names with as range a subset of Integers defined within

a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting integer

variables in the Model Explorer.

See also:

The sets AllVariables, Integers.

Chapter 33. Model Related Identifiers 1037

AllMacros

The predefined set AllMacros contains the names of all macros within an

Aimms model.

Set AllMacros {

SubsetOf : AllIdentifiers;

Index : IndexMacros;

}

Definition:

The contents of the set AllMacros is the collection of all symbolic macro

names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting macros

in the Model Explorer.

See also:

Macros are discussed in Section 6.4 of the Language Reference.

Chapter 33. Model Related Identifiers 1038

AllMathematicalPrograms

The predefined set AllMathematicalprograms contains the names of all

mathematical programs within an Aimms model.

Set AllMathematicalPrograms {

SubsetOf : AllIdentifiers;

Index : IndexMathematicalPrograms;

}

Definition:

The contents of the set AllMathematicalPrograms is the collection of all

symbolic mathematical programs defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

mathematical in the Model Explorer.

See also:

� Mathematical programs in Section 15.1 of the Language Reference.

� The functions GMP::Instance::Generate,

GMP::Instance::GenerateStochasticProgram, and

GMP::Instance::GetSymbolicMathematicalProgram .

Chapter 33. Model Related Identifiers 1039

AllNonLinearConstraints

The predefined set AllNonLinearConstraints contains the names of all

non-linear constraints within an Aimms model.

Set AllNonLinearConstraints {

SubsetOf : AllConstraints;

Index : IndexNonLinearConstraints;

}

Definition:

The contents of the set AllNonLinearConstraints is the collection of all

symbolic non-linear constraint names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

non-linear constraints in the Model Explorer.

See also:

The set AllConstraints.

Chapter 33. Model Related Identifiers 1040

AllParameters

The predefined set AllParameters contains the names of all parameters within

an Aimms model.

Set AllParameters {

SubsetOf : AllIdentifiers;

Index : IndexParameters;

}

Definition:

The contents of the set AllParameters is the collection of all symbolic

parameter names declared within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

parameters in the Model Explorer.

Remarks:

Subsets of AllParameters are occassionally used in READ, WRITE or DISPLAY

statements to indicate the set of parameters to be read or written, as well

as in data control statements such as EMPTY and CLEANUP.

See also:

The sets AllDefinedParameters, AllIdentifiers. Data control statements

are discussed in Section 25.3, the READ and WRITE statements in

Section 26.2, and the DISPLAY statement in Section 31.3 of the Language

Reference.

Chapter 33. Model Related Identifiers 1041

AllProcedures

The predefined set AllProcedures contains the names of all procedures

defined within an Aimms model.

Set AllProcedures {

SubsetOf : AllIdentifiers;

Index : IndexProcedures;

}

Definition:

The contents of the set AllProcedures is the collection of all procedure

names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

procedures in the Model Explorer.

Remarks:

Elements of the set AllProcedures are typically used in conjunction with

the APPLY statement, to allow data-driven procedural execution.

See also:

The sets AllIdentifiers. Procedures are discussed in Section 10.1 of the

Language Reference, the APPLY statement in Section 10.3.1.

Chapter 33. Model Related Identifiers 1042

AllQuantities

The predefined set AllQuantities contains the names of all quantities defined

within an Aimms model.

Set AllQuantities {

SubsetOf : AllIdentifiers;

Index : IndexQuantities;

}

Definition:

The contents of the set AllQuantities is the collection of all quantities

defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

quantities in the Model Explorer.

See also:

The sets AllIdentifiers, AllConventions. Quantities are discussed in full

detail in Section 32.2 of the Language Reference.

Chapter 33. Model Related Identifiers 1043

AllSections

The predefined set AllSections contains the names of all sections within an

Aimms model.

Set AllSections {

SubsetOf : AllIdentifiers;

Index : IndexSections;

}

Definition:

The contents of the set AllSections is the collection of all section names

defined within a particular model tree.

Updatability:

The contents of the set can only be modified by adding or deleting

sections in the Model Explorer.

Remarks:

Section names contained in AllSections are occassionally used in READ,

WRITE or DISPLAY statements to indicate the set of identifiers to be read or

written, as well as in data control statements such as EMPTY and CLEANUP.

See also:

The set AllIdentifiers. Model sections are discussed in Section 4.2 of the

User’s Guide. Data control statements are discussed in Section 25.3, the

READ and WRITE statements in Section 26.2, and the DISPLAY statement in

Section 31.3 of the Language Reference.

Chapter 33. Model Related Identifiers 1044

AllSets

The predefined set AllSets contains the names of all sets within an Aimms

model.

Set AllSets {

SubsetOf : AllIdentifiers;

Index : IndexSets;

}

Definition:

The contents of the set AllSets is the collection of all set names declared

within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting sets in

the Model Explorer.

Remarks:

Subsets of AllSets are occassionally used in READ, WRITE or DISPLAY

statements to indicate the set of sets to be read or written, as well as in

data control statements such as EMPTY, CLEANUP and CLEANUPDEPENDENTS.

See also:

The sets AllDefinedSets, AllIdentifiers. Data control statements are

discussed in Section 25.3, the READ and WRITE statements in Section 26.2,

and the DISPLAY statement in Section 31.3 of the Language Reference.

Chapter 33. Model Related Identifiers 1045

AllSolverSessionCompletionObjects

The predefined set AllSolverSessionCompletionObjects is the root set

containing both AllGMPEvents and AllSolverSessions.

Set AllSolverSessionCompletionObjects {

Index : IndexSolverSessionCompletionObjects;

Definition : AllGMPEvents + AllSolverSessions;

}

Definition:

The set AllExecutionStatuses is the root set containing both AllGMPEvents

and AllSolverSessions.

See also:

The predeclared identifiers AllGMPEvents and AllSolverSessions.

Chapter 33. Model Related Identifiers 1046

AllSolverSessions

The predefined set AllSolverSessions contains the names of all solver

sessions associated with generated mathematical programs in your model.

Set AllSolverSessions {

SubsetOf : AllSolverSessionCompletionObjects;

Index : IndexSolverSessions;

}

Definition:

The set AllSolverSessions contains the names of all solver sessions

associated with generated mathematical programs in your model. Solver

sessions are created through the SOLVE statement, and the functions

GMP::Instance::Solve and GMP::Instance::CreateSolverSession.

Updatability:

The contents of AllSolverSessions can only be modified programmatically

through the SOLVE statement, and the functions GMP::Instance::Solve,

GMP::Instance::CreateSolverSession and

GMP::Instance::DeleteSolverSession.

See also:

The functions GMP::Instance::Solve, GMP::Instance::CreateSolverSession

and GMP::Instance::DeleteSolverSession, and the predeclared identifier

AllSolverSessionCompletionObjects.

Chapter 33. Model Related Identifiers 1047

AllStochasticConstraints

The predefined set AllStochasticConstraints contains the names of all

constraints within an Aimms which references in its definition a parameter or

variable with the property Stochastic set.

Set AllStochasticConstraints {

SubsetOf : AllConstraints;

Index : IndexStochasticConstraints;

}

Definition:

The contents of the set AllStochasticConstraints is the collection of all

constraints which reference a parameter or variable with the property

Stochastic set within a particular model.

Updatability:

The contents of the set can only be modified by setting or clearing the

property Stochastic of the referenced variables and parameters in the

definition of constraints declared in the Model Explorer.

See also:

� Stochastic programming is discussed in Chapter 19 of the Language

Reference.

� The intrinsic function GMP::Instance::GenerateStochasticProgram.

� The sets AllConstraints, AllStochasticParameters and

AllStochasticVariables.

� Constraints are discussed in Chapter 14 of the Language Reference.

Chapter 33. Model Related Identifiers 1048

AllStochasticParameters

The predefined set AllStochasticParameters contains the names of all

parameters within an Aimms model with the property Stochastic set.

Set AllStochasticParameters {

SubsetOf : AllParameters;

Index : IndexStochasticParameters;

}

Definition:

The contents of the set AllStochasticParameters is the collection of all

parameters with the property Stochastic set within a particular model.

Updatability:

The contents of the set can only be modified by setting or clearing the

property Stochastic of parameters declared in the Model Explorer.

See also:

� Stochastic programming is discussed in Chapter 19 of the Language

Reference.

� The intrinsic function GMP::Instance::GenerateStochasticProgram.

� The sets AllParameters, AllStochasticVariables and

AllStochasticConstraints.

� Parameters are discussed in Section 4.1 of the Language Reference.

Chapter 33. Model Related Identifiers 1049

AllStochasticVariables

The predefined set AllStochasticVariables contains the names of all variables

within an Aimms model with the property Stochastic set.

Set AllStochasticVariables {

SubsetOf : AllVariables;

Index : IndexStochasticVariables;

}

Definition:

The contents of the set AllStochasticVariables is the collection of all

variables with the property Stochastic set within a particular model.

Updatability:

The contents of the set can only be modified by setting or clearing the

property Stochastic of variables declared in the Model Explorer.

See also:

� Stochastic programming is discussed in Chapter 19 of the Language

Reference.

� The intrinsic function GMP::Instance::GenerateStochasticProgram.

� The sets AllVariables, AllStochasticParameters and

AllStochasticConstraints.

� Variables are discussed in Chapter 14 of the Language Reference.

Chapter 33. Model Related Identifiers 1050

AllUpdatableIdentifiers

The predefined set AllUpdatableIdentifiers contains the names of the

identifiers that are, in principle, updatable.

Set AllUpdatableIdentifiers {

SubsetOf : AllIdentifiers;

Index : IndexUpdatableIdentifiers;

InitialData : {

(AllSets - AllDefinedSets) +

(AllParameters - AllDefinedParameters)

}

}

Definition:

The set AllUpdatableIdentifiers contains the names of the model

identifiers that are, in principle, considered updatable by Aimms.

Updatability:

The contents of AllUpdatableIdentifiers can be modified

programmatically from within an Aimms model. The set cannot be

updated from within the end-user interface.

Remarks:

� The set AllUpdatableIdentifiers determines which identifiers are

updatable in principle. Which identifiers in AllUpdatableIdentifiers can

actually be modified within the graphical end-user interface is

determined by the set CurrentInputs.

� By default, variables are considered not updatable by Aimms. If you

want to allow your end-users to update some or all variables from

within the end-user interface, you can accomplish this by adding these

variables to both the sets AllUpdatableIdentifiers and CurrentInputs.

See also:

The sets AllIdentifiers, CurrentInputs.

Chapter 33. Model Related Identifiers 1051

AllVariables

The predefined set AllVariables contains the names of all variables within an

Aimms model.

Set AllVariables {

SubsetOf : AllVariablesConstraints;

Index : IndexVariables;

}

Definition:

The contents of the set AllVariables is the collection of all symbolic

variable names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

variables in the Model Explorer.

Remarks:

The set AllVariables or subsets thereof are typically used in the Variables

attribute of MathematicalPrograms declared within an Aimms model.

See also:

The sets AllIdentifiers, AllConstraints. Variables are discussed in

Section 14.1, mathematical programs in Section 15.1 of the Language

Reference.

Chapter 33. Model Related Identifiers 1052

AllVariablesConstraints

The predefined set AllVariablesConstraints contains the names of all

variables and constraints within an Aimms model.

Set AllVariablesConstraints {

SubsetOf : AllIdentifiers;

Index : IndexVariablesConstraints;

}

Definition:

The contents of the set AllVariablesConstraints is the collection of all

symbolic variable and constraint names defined within a particular model.

Updatability:

The contents of the set can only be modified by adding or deleting

variables and/or constraints in the Model Explorer.

Remarks:

The set AllVariablesConstraints or subsets thereof are typically used in

the index domain of parameters entered in the ViolationPenalties

attribute of a MathematicalProgram declared within an Aimms model.

See also:

The sets AllIdentifiers, AllVariables, AllConstraints. The

ViolationPenalties attribute of a mathematical programs is discussed in

Section 15.4 of the Language Reference.

Chapter 34

Execution State Related Identifiers

The following collection of predefined identifiers contains information about

the current state of the Aimms execution engine.

� AllGeneratedMathematicalPrograms

� AllProgressCategories

� AllStochasticScenarios

� CurrentAutoUpdatedDefinitions

� CurrentErrorMessage

� CurrentFile

� CurrentFileName

� CurrentInputs

� CurrentMatrixBlockSizes

� CurrentMatrixColumnCount

� CurrentMatrixRowCount

� CurrentPageNumber

� ODBCDateTimeFormat

Chapter 34. Execution State Related Identifiers 1054

AllGeneratedMathematicalPrograms

The predefined set AllGeneratedMathematicalPrograms contains the names of

all generated mathematical programs associated with the symbolic

mathematical programs in an Aimms model.

Set AllGeneratedMathematicalPrograms {

Index : IndexGeneratedMathematicalPrograms;

Parameter : CurrentGeneratedMathematicalProgram;

}

Definition:

� The contents of the set AllGeneratedMathematicalPrograms is the

collection of all generated mathematical programs associated with

symbolic mathematical programs in your model, and generated through

the SOLVE statement, or the functions GMP::Instance::Generate and

GMP::Instance::CreateDual.

� The element parameter CurrentGeneratedMathematicalProgram refers to

the currently active generated mathematical program instance.

Updatability:

The contents of the set can only be modified through the SOLVE statement,

and the functions GMP::Instance::Generate, GMP::Instance::Copy,

GMP::Instance::Rename, GMP::Instance::Delete and

GMP::Instance::CreateDual.

See also:

The function GMP::Instance::Generate, GMP::Instance::Copy,

GMP::Instance::Rename, GMP::Instance::Delete and

GMP::Instance::CreateDual.

Chapter 34. Execution State Related Identifiers 1055

AllProgressCategories

The predefined set AllProgressCategories contains the names of all created

progress categories.

Set AllProgressCategories {

Index : IndexProgressCategories;

}

Definition:

The contents of the set AllProgressCategories is the collection of all

progress categories created by the functions

GMP::Instance::CreateProgressCategory and

GMP::SolverSession::CreateProgressCategory. These progress categories

are used by the GMP::ProgressWindow functions.

Updatability:

The contents of the set can only be modified through the functions

GMP::Instance::CreateProgressCategory,

GMP::SolverSession::CreateProgressCategory and

GMP::ProgressWindow::DeleteCategory.

Chapter 34. Execution State Related Identifiers 1056

AllStochasticScenarios

The predefined set AllStochasticScenarios contains the names of all

stochastic scenarios.

Set AllStochasticScenarios {

Index : IndexStochasticScenarios;

}

Definition:

The contents of the set AllStochasticScenarios is the collection of all

stochastic scenarios.

Updatability:

The contents of the set can be modified in the model.

See also:

� Stochastic programming is discussed in Chapter 19 of the Language

Reference.

� The intrinsic function GMP::Instance::GenerateStochasticProgram.

Chapter 34. Execution State Related Identifiers 1057

CurrentAutoUpdatedDefinitions

The predefined set CurrentAutoUpdatedDefinitions contains the names of the

defined identifiers whose values are updated automatically upon change of

their input values when displayed in the graphical end-user interface.

Set CurrentAutoUpdatedDefinitions {

SubsetOf : AllIdentifiers;

Index : IndexCurrentAutoUpdatedDefinitions;

InitialData : AllDefinedSets + AllDefinedParameters;

}

Definition:

The set CurrentAutoUpdatedDefinitions contains the names of the defined

identifiers whose values are updated automatically upon change of their

input values when displayed in the graphical end-user interface.

Updatability:

The contents of CurrentAutoUpdatedDefinitions can be modified

programmatically from within an Aimms model. The set cannot be

modified from within the end-user interface.

Remarks:

By default, all defined parameters and sets are immediately updated in a

graphical display whenever their input values are modified. In some cases,

however, this behavior can be unwanted, for instance if each single data

change by an end-user leads to a long re-evaluation of a defined identifier

which is also displayed on the same page. In such cases, you can remove

the defined identifier at hand from the set CurrentAutoUpdatedDefinitions

and explicitly update the identifier when you see fit, either by calling the

UPDATE statement, or by updating the identifier on page entry, upon data

change, or through a button action.

See also:

The sets AllIdentifiers, CurrentInputs. The UPDATE statement and the set

CurrentAutoUpdatedDefinitions are discussed in more detail in Section 7.3

of the Language Reference.

Chapter 34. Execution State Related Identifiers 1058

CurrentErrorMessage

The predefined string parameter CurrentErrorMessage contains a description

of the last runtime error that occurred during the execution of an Aimms

model.

StringParameter CurrentErrorMessage;

Definition:

The string parameter CurrentErrorMessage contains a description of the

last runtime error that occurred during the execution of an Aimms model.

It also contains the error message associated with errors occurring in

Aimms interface functions.

Updatability:

The value of CurrentErrorMessage can be modified programmatically from

within an Aimms model. Its value cannot be modified from within the

end-user interface.

Remarks:

� Aimms never clears the contents CurrentErrorMessage, but only updates

its value whenever an error occurs.

� When Aimms is called through the Aimms API, CurrentErrorMessage is

the only way to retrieve a description of the last Aimms runtime error

when an execution request failed.

See also:

Error handling in the Aimms API is discussed in more detail in Section 34.7

of the Language Reference. Error messages from interface functions are

discussed in Section 17.3 from the User’s Guide.

Chapter 34. Execution State Related Identifiers 1059

CurrentFile

The predefined element parameter CurrentFile contains the name of the file

identifier to which output is currently directed.

ElementParameter CurrentFile {

Range : AllFiles;

}

Definition:

The element parameter CurrentFile contains the name of the file identifier

to which output from the PUT and DISPLAY statements is currently directed.

Updatability:

The value of CurrentFile can be modified both programmatically from

within the Aimms model and from within the end-user interface. As a

result, the output from subsequent PUT and DISPLAY statements will be

redirected to the newly specified file identifier.

Remarks:

Output redirection can equivalently be accomplished using the PUT

statement. The name of the physical file or window associated with a file

identifier can be retrieved through the string parameter CurrentFileName.

See also:

The string parameter CurrentFileName. The PUT statement is discussed in

Section 31.2 of the Language Reference, the DISPLAY statement in

Section 31.3.

Chapter 34. Execution State Related Identifiers 1060

CurrentFileName

The predefined string parameter CurrentFileName contains the file name

associated with the file identifier to which output is currently directed.

StringParamter CurrentFileName;

Definition:

The string parameter CurrentFileName contains the file name associated

with the file identifier (as specified in its Name attribute) to which output

from the PUT and DISPLAY statements is currently directed.

Updatability:

The value of CurrentFileName is only for display purposes. It can be

modified programmatically from within the Aimms model, but the output

from PUT and DISPLAY will always be sent to the file or window whose name

is specified in the Name attribute of the corresponding file identifier.

Remarks:

The physical file name associated with a file identifier can be changed

dynamically, by entering a string parameter in the Name attribute of the file

identifier. The file identifier to which output is currently directed can be

retrieved through the element parameter CurrentFile.

See also:

The element parameter CurrentFile. File identifiers are discussed in

Section 31.1 of the Language Reference.

Chapter 34. Execution State Related Identifiers 1061

CurrentInputs

The predefined set CurrentInputs contains the names of the identifiers which

can actually be modified from within the graphical end-user interface.

Set CurrentInputs {

SubsetOf : AllUpdatableIdentifiers;

Index : IndexCurrentInputs;

InitialData : AllUpdatableIdentifiers;

}

Definition:

The set CurrentInputs contains the names of the model identifiers that can

actually modified from within the graphical end-user interface of Aimms.

Updatability:

The contents of CurrentInputs can be modified programmatically from

within an Aimms model. The set cannot be updated from within the

end-user interface.

Remarks:

� The set AllUpdatableIdentifiers determines which identifiers are

updatable in principle. Therefore, you can only add identifiers to

CurrentInputs which are already contained in the set

AllUpdatableIdentifiers

� By default, variables are considered not updatable by Aimms, and

cannot be modified from within the end-user interface. If you want to

allow your end-users to update some or all variables from within the

end-user interface, you can accomplish this by adding these variables to

both the sets AllUpdatableIdentifiers and CurrentInputs.

� Please be careful when changing the content of this set, because it has a

side-effect which may be overlooked easily. For example, when

executing the following statement:

CurrentInputs := ’MyIdentifier’;

you are not only assigning your identifier to the set, but also totally

replacing the previous content of the set! In order to prevent this, you

should use the following statement instead of the one above:

CurrentInputs := CurrentInputs - ’Main_My_Model’ + ’MyIdentifier’

(if your model is called ’My Model’)

See also:

The sets AllIdentifiers, CurrentInputs.

Chapter 34. Execution State Related Identifiers 1062

CurrentMatrixBlockSizes

The predefined parameter CurrentMatrixBlockSizes contains the number of

non-zeros for the last mathematical program generated.

Parameter CurrentMatrixBlockSizes {

IndexDomain : (IndexConstraints, IndexVariables);

}

Definition:

The parameter CurrentMatrixBlockSizes contains the number of non-zeros

for the last mathematical program generated. The parameter counts the

non-zeros in all generated rows of a particular symbolic constraint with

respect to all generated columns of a particular symbolic variable.

Remarks:

� You can use the parameter CurrentMatrixBlockSizes, for example, to

analyze which constraint-variable sub-block of the generated matrix

accounts for a number of non-zeros in a mathematical program that

appears to be unnaturally high.

� The parameters CurrentMatrixRowCount, CurrentMatrixColumnCount and

CurrentMatrixBlockSizes are only set when the Aimms option Solvers

General - Matrix Generation - Matrix Block Sizes is set to on.

See also:

The sets CurrentMatrixColumnCount, CurrentMatrixRowCount.

Chapter 34. Execution State Related Identifiers 1063

CurrentMatrixColumnCount

The predefined parameter CurrentMatrixColumnCount contains the number of

columns for the last mathematical program generated.

Parameter CurrentMatrixColumnCount {

IndexDomain : IndexVariables;

}

Definition:

The parameter CurrentMatrixColumnCount contains the number of columns

for the last mathematical program generated. The parameter counts the

columns generated for each individual symbolic variable.

Remarks:

� You can use the parameter CurrentMatrixColumnCount, for example, to

analyze which symbolic variable accounts for a number of columns in a

mathematical program that appears to be unnaturally high.

� The parameters CurrentMatrixRowCount, CurrentMatrixColumnCount and

CurrentMatrixBlockSizes are only set when the Aimms option Solvers

General - Matrix Generation - Matrix Block Sizes is set to on.

See also:

The sets CurrentMatrixRowCount, CurrentMatrixBlockSizes.

Chapter 34. Execution State Related Identifiers 1064

CurrentMatrixRowCount

The predefined parameter CurrentMatrixRowCount contains the number of

rows for the last mathematical program generated.

Parameter CurrentMatrixRowCount {

IndexDomain : IndexConstraints;

}

Definition:

The parameter CurrentMatrixRowCount contains the number of rows for the

last mathematical program generated. The parameter counts the rows

generated for each individual symbolic constraint.

Remarks:

� You can use the parameter CurrentMatrixRowCount, for example, to

analyze which symbolic constraint accounts for a number of rows in a

mathematical program that appears to be unnaturally high.

� The parameters CurrentMatrixRowCount, CurrentMatrixColumnCount and

CurrentMatrixBlockSizes are only set when the Aimms option Solvers

General - Matrix Generation - Matrix Block Sizes is set to on.

See also:

The sets CurrentMatrixColumnCount, CurrentMatrixBlockSizes.

Chapter 34. Execution State Related Identifiers 1065

CurrentPageNumber

The predefined parameter CurrentPageNumber contains current page number

used by Aimms when printing print pages.

Parameter CurrentPageNumber;

Definition:

The predefined parameter CurrentPageNumber contains current page

number used by Aimms when printing print pages.

Updatability:

Aimms will automatically reset the value CurrentPageNumber to 1 at the

following times:

� before printing a print page using the File-Print menu,

� before printing a print page using the PrintPage function outside of a

pair of calls to the functions PrintStartReport and PrintEndReport, and

� just after calling the function PrintStartReport.

The value of CurrentPageNumber can be modified programmatically from

within the Aimms model.

Remarks:

According to the list of rules above, modifying the value of

CurrentPageNumber will only have an effect of the page numbers printed on

print pages within a pair of calls to PrintStartReport and PrintEndReport.

See also:

The functions PrintPage, PrintStartReport, PrintEndReport. Print pages are

discussed in Section 14.1 of the User’s Guide, print functions are

discussed in more detail in Section 17.3.2.

Chapter 34. Execution State Related Identifiers 1066

ODBCDateTimeFormat

The predefined string parameter ODBCDateTimeFormat defines, for each

identifier within an Aimms model, the date-time conversion string.

StringParameter ODBCDateTimeFormat {

IndexDomain : IndexIdentifiers;

}

Definition:

The string parameter ODBCDateTimeFormat defines, for each identifier within

an Aimms model, the date-time format string, which Aimms will use in

converting Aimms data to date-time columns in a database table and vice

versa.

Updatability:

The data of ODBCDateTimeFormat can be modified both from within the

model and the end-user interface.

Remarks:

The use of ODBCDateTimeFormat to convert Aimms data to date-time

columns and vice versa, are not necessary for columns which are mapped

onto Aimms calendars. In that case, Aimms is able to determine the

conversion itself based on the timeslot format specified for the calendar.

See also:

The use of ODBCDateTimeFormat is discussed in more detail in Section 27.8

of the Language Reference. The format to which values of

ODBCDateTimeFormat should comply are discussed in Section 33.7.

Chapter 35

Case Management Related Identifiers

You can setup the case management of your Aimms project either to use a

single data manager file with cases and datasets, or to use separate folders

and case files on disk. Both styles of case management have their own

collection of predefined identifiers.

The following collection of predefined identifiers contains data regarding the

case types, data categories, cases and datasets associated with a particular

Aimms project, that uses the style Single Data Manager file:

� AllCases

� AllCaseTypes

� AllDataCategories

� AllDataFiles

� AllDataSets

� CurrentCase

� CurrentCaseSelection

� CurrentDataSet

� CurrentDefaultCaseType

The following collection of predefined identifiers contains data regarding the

case files and types of case files associated with a particular Aimms project,

that uses the style Disk files and folders:

� AllCases

� CurrentCase

� CurrentCaseSelection

� CurrentCaseFileContentType

� AllCaseFileContentTypes

� CaseFileURL

Chapter 35. Case Management Related Identifiers 1068

AllCases

The predefined set AllCases contains the references to all cases that are

currently available in the Aimms project.

Set AllCases {

SubsetOf : AllDataFiles;

Index : IndexCases;

}

Definition:

The set AllCases is used in both data management styles

Single Data Manager file and Disk files and folders.

When using Single Data Manager file, the contents of the set AllCases is

the collection of (integer) references to all cases stored within the data

manager file currently loaded within an Aimms project.

When using Disk files and folders, the contents of the set AllCases is the

collection of (integer) references to all case files that have been referenced

thus far. Each newly opened or saved case file is automatically added to

this set.

Updatability:

The contents of the set can only be modified implicitly by using the

various features of the Data Management tool, by executing any of the

Data menu commands or by using the specific case or dataset functions.

Remarks:

If the data management style is set to Single Data Manager file.

� Further information about the integer case references can be obtained

through the functions DataFileGetAcronym, DataFileGetDescription,

DataFileGetGroup, DataFileGetName, DataFileGetOwner, DataFileGetPath

and DataFileGetTime.

� The integer case references stored in the set AllCases are only

guaranteed to be unique within a single Aimms session, and,

furthermore, only within the context of a single data manager file

associated with a project. As a consequence, additional case

information retrieved through the functions listed above must be

refreshed after opening another data manager file.

If the data management style is set to Disk files and folders.

� The corresponding location on disk of any element in the set AllCases

can be obtained through the predeclared identifier CaseFileURL.

� The integer case references stored in the set AllCases are only

guaranteed to be unique within a single Aimms session and depend on

the order in which case files are accessed.

Chapter 35. Case Management Related Identifiers 1069

See also:

The set AllDataFiles. Accessing cases from within an Aimms model is

discussed in full detail in Section 16.2 of the User’s Guid.

Chapter 35. Case Management Related Identifiers 1070

AllCaseTypes

The predefined set AllCaseTypes contains the names of all case types declared

within an Aimms project.

Set AllCaseTypes {

Index : IndexCaseTypes;

}

Definition:

The contents of the set AllCaseTypes is the collection of all case types

defined within the Data Management Setup tool of a project.

Updatability:

The contents of the set can only be modified by adding or deleting case

types in the Data Management Setup tool.

Remarks:

� The function CaseGetType returns the case type of a case as an element

of the set AllCaseTypes. The identifiers and data categories associated

with a case type can be obtained through the functions CaseTypeContents

and CaseTypeCategories. The default case type of a case when saving it is

set through the predefined element parameter CurrentDefaultCaseType.

� This identifier is only relevant when the chosen Data Management style is

single data manager file.

Chapter 35. Case Management Related Identifiers 1071

AllDataCategories

The predefined set AllDataCategories contains the names of all data

categories declared within an Aimms project.

Set AllDataCategories {

Index : IndexDataCategories;

}

Definition:

The contents of the set AllDataCategories is the collection of all data

categories defined within the Data Management Setup tool of a project.

Updatability:

The contents of the set can only be modified by adding or deleting data

categories in the Data Management Setup tool.

Remarks:

� The function DatasetGetCategory returns the data category of a dataset

as an element of the set AllDataCategories. The identifiers associated

with a data category can be obtained through the function

DataCategoryContents.

� This identifier is only relevant when the chosen Data Management style is

single data manager file.

Chapter 35. Case Management Related Identifiers 1072

AllDataFiles

The predefined set AllDataFiles contains the references to all data files

stored in the data manager file currently loaded within an Aimms project.

Set AllDataFiles {

Index : IndexDataFiles;

Definition : AllCases + AllDataSets;

}

Definition:

The contents of the set AllDataFiles is the collection of (integer)

references to all data files (i.e. cases and datasets) stored within the data

manager file currently loaded within an Aimms project.

Updatability:

The contents of the set can only be modified by adding or deleting cases

and dataset in the Data Manager or through the Data menu, or using

various case and dataset interface functions.

Remarks:

� Elements of the set AllDataFiles are more commonly referenced

through its subsets AllCases and AllDataSets.

� Further information about the integer data file references can be

obtained through the functions DataFileGetAcronym,

DataFileGetDescription, DataFileGetGroup, DataFileGetName,

DataFileGetOwner, DataFileGetPath and DataFileGetTime.

� The integer data file references stored in the set AllDataFiles are only

guaranteed to be unique within a single Aimms session, and,

furthermore, only within the context of a single data manager file

associated with a project. As a consequence, additional data file

information retrieved through the functions listed above must be

refreshed after opening another data manager file.

See also:

The sets AllCases, AllDataSets.

Chapter 35. Case Management Related Identifiers 1073

AllDataSets

The predefined set AllDataSets contains the references to all datasets stored

in the data manager file currently loaded within an Aimms project.

Set AllDataSets {

SubsetOf : AllDataFiles;

Index : IndexDataSets;

}

Definition:

The contents of the set AllDataSets is the collection of (integer) references

to all datasets stored within the data manager file currently loaded within

an Aimms project.

Updatability:

The contents of the set can only be modified by adding or deleting

datasets in the Data Manager, by saving cases in the Data menu, or

through the functions DatasetCreate, DatasetDelete and DatasetSaveAs.

Remarks:

� Further information about the integer dataset references can be

obtained through the functions DataFileGetAcronym,

DataFileGetDescription, DataFileGetGroup, DataFileGetName,

DataFileGetOwner, DataFileGetPath and DataFileGetTime.

� The integer dataset references stored in the set AllDataSets are only

guaranteed to be unique within a single Aimms session, and,

furthermore, only within the context of a single data manager file

associated with a project. As a consequence, additional case

information retrieved through the functions listed above must be

refreshed after opening another data manager file.

� This identifier is only relevant when the chosen Data Management style is

single data manager file.

Chapter 35. Case Management Related Identifiers 1074

CurrentCase

The predefined element parameter CurrentCase contains a reference to the

currently active case within an Aimms project.

ElementParameter CurrentCase {

Range : AllCases;

}

Definition:

The element parameter CurrentCase contains an (integer) case reference

(as an element of AllCases) to the currently active case within an Aimms

project, or is empty if the active case is not named.

Updatability:

The element parameter CurrentCase is used in both data management

styles Single Data Manager file and Disk files and folders.

When using Single Data Manager file, the value of CurrentCase can only be

modified by actively loading another case either in the Data Manager,

through the Data menu, or using the functions CaseLoadCurrent and

CaseSaveAs.

When using Disk files and folders, the value of CurrentCase can only be

modified by actively loading or saving a case through the Data menu, or

by using the functions CaseFileSetCurrent, CaseCommandLoadAsActive,

CaseComandSave, CaseComandSaveAs or CaseCommandNew.

See also:

The set AllCases, the element parameter CurrentDataSet. Loading and

saving cases is discussed in full detail in Section 16.1 of the User’s Guide.

Chapter 35. Case Management Related Identifiers 1075

CurrentCaseSelection

The predefined set CurrentCaseSelection contains the current multiple case

selection within an Aimms project.

Set CurrentCaseSelection {

SubsetOf : AllCases;

Index : IndexCurrentCaseSelection;

}

Definition:

The contents of the set CurrentCaseSelection is the collection of (integer)

case references (as elements of AllCases) that is currently part of the

multiple case selection.

Updatability:

The contents of the set can be modified through the Data-Multiple Cases

menu, by calling the function CaseSelectMultiple, or programmatically

through a direct assignment within the model.

See also:

The set AllCases. Working with multiple cases is discussed in full detail in

Section 16.2 of the User’s Guide.

Chapter 35. Case Management Related Identifiers 1076

CurrentDataSet

The predefined element parameter CurrentDataSet contains a reference to the

current actively loaded dataset(s) within an Aimms project.

ElementParameter CurrentDataSet {

IndexDomain : IndexDataCategories;

Range : AllDataSets;

}

Definition:

The element parameter CurrentDataSet contains, for every data category,

an (integer) dataset reference (as an element of AllDataSets) to the current

actively loaded dataset within the active case, or is empty if there no

named dataset loaded as active for a particular data category.

Updatability:

The value of the element parameter CurrentDataSet can only be modified

by actively actively loading datasets into the active case either in the Data

Manager, through the Data menu, or using the functions

DatasetLoadCurrent and DatasetSaveAs.

Remarks:

This identifier is only relevant when the chosen Data Management style is

single data manager file.

Chapter 35. Case Management Related Identifiers 1077

CurrentDefaultCaseType

The predefined element parameter AllCaseTypes contains the name of the

current default case type.

ElementParameter CurrentDefaultCaseType {

Range : AllCaseTypes;

}

Definition:

The value of the element parameter CurrentDefaultCaseType, if non-empty,

restricts the selection of visible cases to the cases of the specified case

type in the Load Case dialog box. In addition, a non-empty value of

CurrentDefaultCaseType presets the case type to the specified case type in

the Save Case dialog box, and removes the end-user’s capability to modify

the case type interactively.

Updatability:

The value of the element parameter can be modified both in the model

and in the graphical end-user interface.

Remarks:

This identifier is only relevant when the chosen Data Management style is

single data manager file.

Chapter 35. Case Management Related Identifiers 1078

CurrentCaseFileContentType

The predefined element parameter CurrentCaseFileContentType contains the

references to a case file content, corresponding to the most recently loaded or

saved case file.

ElementParameter CurrentCaseFileContentType {

Range : AllCaseFileContentTypes;

}

Definition:

The value of CurrentCaseFileContentType is a references to a subset of

AllIdentifiers, which corresponds to the data that is stored in the most

recently loaded or saved case file. This subset is also used to determine

whether any data needs to be saved for the current case, before loading

another case file.

Updatability:

The value of the element parameter can be freely modified. The standard

case management functionality updates the value itself whenever a case

file is loaded or saved.

Remarks:

� This predeclared identifier is only relevant if the project option

Data Management style is set to Disk files and folders.

See also:

The set AllCaseFileContentTypes.

Chapter 35. Case Management Related Identifiers 1079

AllCaseFileContentTypes

The predefined set AllCaseFileContentTypes contains the references to all case

file content types that can be used within a particular Aimms project.

Set AllCaseFileContentTypes {

SubsetOf : AllSubsetsOfAllIdentifiers;

Index : IndexCaseFileContentTypes;

}

Definition:

An element in the set AllCaseFileContentTypes is a subset of

AllIdentifiers. Such a subset defines the identifiers that are stored in a

case file.

Updatability:

The contents of this set can be freely modified. By default, it only contains

the element ’AllIdentifiers’. If your project uses multiple types of case

files with different content, you should replace the default content of this

set with all content types applicable to your project.

Remarks:

� This predeclared identifier is only relevant if the project option

Data Management style is set to Disk files and folders.

� If this set contains more than one element, the dialog box for saving a

case file will show an additional drop down box, in which the user can

select the case content type to be used for saving.

See also:

The set AllSubsetsOfAllIdentifiers.

Chapter 35. Case Management Related Identifiers 1080

CaseFileURL

The string parameter CaseFileURL holds the url (i.e. the full path name) of the

file that corresponds to each element in AllCases.

StringParameter CaseFileURL {

IndexDomain : AllCases;

}

Definition:

The contents of the set AllCases is the collection of (integer) references to

all case files that have been loaded or saved during a specific session of

your Aimms project. The string parameter CaseFileURL helps you to get the

location of each of these cases.

Updatability:

The contents of the set AllCases as well as their corresponding values in

CaseFileURL are maintained by Aimms itself and cannot be modified

directly. They are modified when you load or save cases, or through the

function CaseFileURLtoElement.

Remarks:

� This predeclared identifier is only relevant if the project option

Data Management style is set to Disk files and folders.

� The integer case references stored in the set AllCases are only

guaranteed to be unique within a single Aimms session.

See also:

The set AllCases and the function CaseFileURLtoElement.

Chapter 36

Date-Time Related Identifiers

The following collection of predefined identifiers contains data used in

representing

� AllAbbrMonths

� AllAbbrWeekdays

� AllMonths

� AllTimeZones

� AllWeekdays

� LocaleAllAbbrMonths

� LocaleAllAbbrWeekdays

� LocaleAllMonths

� LocaleAllWeekdays

� LocaleLongDateFormat

� LocaleShortDateFormat

� LocaleTimeFormat

� LocaleTimeZoneName

� LocaleTimeZoneNameDST

Chapter 36. Date-Time Related Identifiers 1082

AllAbbrMonths

The predefined set AllAbbrMonths contains the abbreviated English names of

all months.

Set AllAbbrMonths {

Index : IndexAbbrMonths;

Definition : {

data { Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec }

}

}

Definition:

The set AllAbbrMonths contains the abbreviated English names of all

months.

Updatability:

The contents of the set cannot be modified.

Remarks:

The set AllAbbrMonths can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar.

See also:

The sets AllMonths, LocaleAllAbbrMonths, LocaleAllMonths. Calendars are

discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1083

AllAbbrWeekdays

The predefined set AllAbbrWeekdays contains the abbreviated English names of

all weekdays.

Set AllAbbrWeekdays {

Index : IndexAbbrWeekdays;

Definition : data { Mon, Tue, Wed, Thu, Fri, Sat, Sun };

}

Definition:

The set AllAbbrWeekdays contains the abbreviated English names of all

weekdays.

Updatability:

The contents of the set cannot be modified.

Remarks:

The set AllAbbrWeekdays can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar.

See also:

The sets AllWeekdays, LocaleAllAbbrWeekdays, LocaleAllWeekdays. Calendars

are discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1084

AllMonths

The predefined set AllMonths contains the unabbreviated English names of all

months.

Set AllMonths {

Index : IndexMonths;

Definition : {

data { January, February, March, April,

May, June, July, August,

September, October, November, December }

}

}

Definition:

The set AllMonths contains the unabbreviated English names of all months.

Updatability:

The contents of the set cannot be modified.

Remarks:

The set AllMonths can be used to construct a date-time format specification

as specified in Section 33.7. Such date-time format specifications are

required, for instance, in the TimeslotFormat attribute of a Calendar.

See also:

The sets AllAbbrMonths, LocaleAllMonths, LocaleAllMonths. Calendars are

discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1085

AllTimeZones

The predefined set AllTimeZones contains the set of all available time zones.

Set AllTimeZones {

Index : IndexTimeZones;

}

Definition:

The set AllTimeZones contains the set of all time zones as defined by the

operating system, plus a number of predefined time zones.

Updatability:

The contents of the set cannot be modified.

Remarks:

The set AllTimeZones can be used in the %TZ specifier of a time slot or

period format. Such time zone specifications can be used, for instance, in

the TimeslotFormat attribute of a Calendar.

See also:

Calendars are discussed in full detail in Section 33.2 of the Language

Reference, the time zone specific part of a date-time format in

Section 33.7.4.

Chapter 36. Date-Time Related Identifiers 1086

AllWeekdays

The predefined set AllWeekdays contains the unabbreviated English names of

all weekdays.

Set AllWeekdays {

Index : IndexWeekdays;

Definition : {

data { Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday }

}

}

Definition:

The set AllWeekdays contains the unabbreviated English names of all

weekdays.

Updatability:

The contents of the set cannot be modified.

Remarks:

The set AllWeekdays can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar.

See also:

The sets AllAbbrWeekdays, LocaleAllWeekdays, LocaleAllWeekdays. Calendars

are discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1087

LocaleAllAbbrMonths

The predefined set LocaleAllAbbrMonths contains the abbreviated names of all

months according the current system locale.

Set LocaleAllAbbrMonths {

Index : LocaleIndexAbbrMonths;

}

Definition:

The set LocaleAllAbbrMonths contains the abbreviated names of all months

according to the current system locale.

Updatability:

During system startup, the set LocaleAllAbbrMonths is filled with the set of

abbreviated month names according to the current system locale. The

contents of the set cannot be modified.

Remarks:

The set LocaleAllAbbrMonths can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar. The current system locale can be modified through the

Regional Settings dialog box in the Windows Control Panel.

See also:

The sets AllAbbrMonths, AllMonths, LocaleAllMonths. Calendars are

discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1088

LocaleAllAbbrWeekdays

The predefined set LocaleAllAbbrWeekdays contains the abbreviated names of

all weekdays according the current system locale.

Set LocaleAllAbbrWeekdays {

Index : LocaleIndexAbbrWeekdays;

}

Definition:

The set LocaleAllAbbrWeekdays contains the abbreviated names of all

weekdays according to the current system locale.

Updatability:

During system startup, the set LocaleAllAbbrWeekdays is filled with the set

of abbreviated weekday names according to the current system locale. The

contents of the set cannot be modified.

Remarks:

The set LocaleAllAbbrWeekdays can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar. The current system locale can be modified through the

Regional Settings dialog box in the Windows Control Panel.

See also:

The sets AllAbbrWeekdays, AllWeekdays, LocaleAllWeekdays. Calendars are

discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1089

LocaleAllMonths

The predefined set LocaleAllMonths contains the unabbreviated names of all

months according the current system locale.

Set LocaleAllMonths {

Index : LocaleIndexMonths;

}

Definition:

The set LocaleAllMonths contains the unabbreviated names of all months

according to the current system locale.

Updatability:

During system startup, the set LocaleAllMonths is filled with the set of

unabbreviated month names according to the current system locale. The

contents of the set cannot be modified.

Remarks:

The set LocaleAllMonths can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar. The current system locale can be modified through the

Regional Settings dialog box in the Windows Control Panel.

See also:

The sets AllAbbrMonths, AllMonths, LocaleAllAbbrMonths. Calendars are

discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1090

LocaleAllWeekdays

The predefined set LocaleAllWeekdays contains the unabbreviated names of all

weekdays according the current system locale.

Set LocaleAllWeekdays {

Index : LocaleIndexWeekdays;

}

Definition:

The set LocaleAllWeekdays contains the unabbreviated names of all

weekdays according to the current system locale.

Updatability:

During system startup, the set LocaleAllWeekdays is filled with the set of

unabbreviated weekday names according to the current system locale. The

contents of the set cannot be modified.

Remarks:

The set LocaleAllWeekdays can be used to construct a date-time format

specification as specified in Section 33.7. Such date-time format

specifications are required, for instance, in the TimeslotFormat attribute of

a Calendar. The current system locale can be modified through the

Regional Settings dialog box in the Windows Control Panel.

See also:

The sets AllAbbrWeekdays, AllWeekdays, LocaleAllAbbrWeekdays. Calendars

are discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1091

LocaleLongDateFormat

The predefined string parameter LocaleLongDateFormat contains the Aimms

date-time format equivalent with the long date format as specified in the

current system locale.

StringParameter LocaleLongDateFormat;

Definition:

The string parameter LocaleLongDateFormat contains the Aimms date-time

format equivalent with the long date format as specified in the current

system locale.

Updatability:

During system startup, the string parameter LocaleLongDateFormat is

computed on the basis of the information in the current system locale.

The contents of the string parameter cannot be modified.

Remarks:

The string parameter LocaleLongDateFormat can be used, for instance, in

the TimeslotFormat attribute of a Calendar. The current system locale can

be modified through the Regional Settings dialog box in the Windows

Control Panel.

See also:

The string parameters LocaleShortDateFormat, LocaleTimeFormat. Calendars

are discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1092

LocaleShortDateFormat

The predefined string parameter LocaleShortDateFormat contains the Aimms

date-time format equivalent with the short date format as specified in the

current system locale.

StringParameter LocaleShortDateFormat;

Definition:

The string parameter LocaleShortDateFormat contains the Aimms date-time

format equivalent with the short date format as specified in the current

system locale.

Updatability:

During system startup, the string parameter LocaleShortDateFormat is

computed on the basis of the information in the current system locale.

The contents of the string parameter cannot be modified.

Remarks:

The string parameter LocaleShortDateFormat can be used, for instance, in

the TimeslotFormat attribute of a Calendar. The current system locale can

be modified through the Regional Settings dialog box in the Windows

Control Panel.

See also:

The string parameters LocaleLongDateFormat, LocaleTimeFormat. Calendars

are discussed in full detail in Section 33.2 of the Language Reference,

date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1093

LocaleTimeFormat

The predefined string parameter LocaleTimeFormat contains the Aimms

date-time format equivalent with the time format specified in the current

system locale.

StringParameter LocaleTimeFormat;

Definition:

The string parameter LocaleTimeFormat contains the Aimms date-time

format equivalent with the time format specified in the current system

locale.

Updatability:

During system startup, the string parameter LocaleTimeFormat is computed

on the basis of the information in the current system locale. The contents

of the string parameter cannot be modified.

Remarks:

The string parameter LocaleTimeFormat can be used, for instance, in the

TimeslotFormat attribute of a Calendar. The current system locale can be

modified through the Regional Settings dialog box in the Windows

Control Panel.

See also:

The string parameters LocaleLongDateFormat, LocaleShortDateFormat.

Calendars are discussed in full detail in Section 33.2 of the Language

Reference, date-time formats in Section 33.7.

Chapter 36. Date-Time Related Identifiers 1094

LocaleTimeZoneName

The predefined string parameter LocaleTimeZoneName contains the local name

of all standard time zones.

StringParameter LocaleTimeZoneName {

IndexDomain : IndexTimeZones;

}

See also:

The predeclared identifier LocaleTimeZoneNameDST contains the local name

of all daylight saving time zones.

Chapter 36. Date-Time Related Identifiers 1095

LocaleTimeZoneNameDST

The predefined string parameter LocaleTimeZoneNameDST contains the local

name of all daylight saving time zones.

StringParameter LocaleTimeZoneNameDST {

IndexDomain : IndexTimeZones;

}

See also:

The predeclared identifier LocaleTimeZoneName contains the local name of

all standard time zones.

Chapter 37

Error Handling Related Identifiers

The following collection of predefined identifiers contains data regarding the

Error Handling functions.

� errh::PendingErrors

� errh::ErrorCodes

� errh::AllErrorCategories

� errh::AllErrorSeverities

Chapter 37. Error Handling Related Identifiers 1097

errh::PendingErrors

The predefined set errh::PendingErrors contains the error numbers of the

errors that can be processed by the current error filter.

Set PendingErrors {

SubsetOf : Integers;

Index : IndexPendingErrors;

}

Updatability:

The contents of this set cannot be modified. It is initialized when an error

filter becomes active.

Chapter 37. Error Handling Related Identifiers 1098

errh::ErrorCodes

The predefined set errh::ErrorCodes contains the error codes of the errors

encountered during this Aimms session.

Set ErrorCodes {

Index : IndexErrorCodes;

}

Updatability:

This set is grown during Aimms error handling by storing the codes of all

errors encountered.

Chapter 37. Error Handling Related Identifiers 1099

errh::AllErrorCategories

The predefined set errh::AllErrorCategories contains the error categories

that can be assigned to an error.

Set AllErrorCategories {

Index : IndexErrorCategories;

}

The names below are the elements in the set. The elements are shown

indented in order to show the structure that is used by the function

errh::InsideCategory.

� Engine: Errors from the Aimms engine.

� Internal: This is about Aimms internal logic that fails. These types

of errors shouldn’t occur, but if they do, they should be handled.

Severe internal errors (after generating a dump file) and internal

assertions that fail

� Authorization: Protecting the intellectual property of the

developer of the Aimms application.

� Licensing: Protecting the intellectual property of the developers

of the Aimms system.

� Memory: Running out of memory.

� Limit: Reaching an Aimms limit.

� Compiler: Errors detected by the Aimms compiler.

� Syntax: Errors related to the form of Aimms model text.

� Semantics: Errors related to the (allowed) interpretation of

Aimms model text.

� Legacy: Errors related to GAMS, Aimms 2 or the conversion

from a GAMS or Aimms 2 model to Aimms 3.

� Execution: Errors detected by the Aimms execution engine.

� Math: Errors such as division by zero, sqrt or log of a negative

number.

� InvalidArgument: Passing invalid arguments to the intrinsic

functions of Aimms.

� Unit: Runtime unit consistency checks that fail.

� IO: Database, File and Case IO errors.

� External: Passing argument data to / from external functions

and procedures and errors generated during the execution of

external functions.

� Generation: Runtime errors that occur during the generation

of a mathematical program

� MathematicalProgramming: Violating the requirements of a

particular mathematical programming class, or the selection

of a mathematical programming class that is too difficult or

too easy for the problem at hand.

Chapter 37. Error Handling Related Identifiers 1100

� NonlinearEvaluation: Errors that happen during the

evaluation of the (derivatives) of a constraint.

� Solver: Errors from the solution algorithms as part of the entire Aimms

package.

� GUI: Errors on pages

� User: Errors from RAISE statements or ASSERT statements.

Updatability:

The contents of this set cannot be modified.

Chapter 37. Error Handling Related Identifiers 1101

errh::AllErrorSeverities

The predefined set errh::AllErrorSeverities contains the error categories

that can be assigned to an error.

Set AllErrorSeverities {

Index : IndexErrorSeverities;

}

The names below are the elements in the set.

� severe: A severe internal error is an error that has occurred in the

Aimms logic itself.

� error: A normal error which indicates a situation from which normally

execution shouldn’t continue.

� warning: Something that should be looked at, but doesn’t necessarily

indicate a problem.

Updatability:

The contents of this set cannot be modified.

Part IX

Suffices

Chapter 38

Common Suffices

The following collection of suffices are common to all identifier types.

� .dim

� .txt

� .type

� .unit

38.1 Example

These suffixes are typically appended to an index into the set AllIdentifiers

or a subset thereof. Consider the following declaration:

Set SelectedIdentifiers {

SubsetOf : AllIdentifiers;

Index : si;

OrderBy : si;

}

Then the following loop will make a simple overview of those identifiers:

SelectedIdentifiers := AllParameters ; ! Or some other selection.

put outf ;

outf.pagewidth := 255 ; ! Wide

put "type":20, " ", "name":32, " ", "dim ", "unit":20, " ", "Text", / ;

put "-"*20, " ", "-"*32, " ", "--- ", "-"*20, " ", "-"*40, / ;

for (si) do ! For each selected identifier

put si.type:20, " " ! Type

si:32, " ", ! name

"(",si.dim:1:0, ") ", ! dimension

si.unit:20, " ", ! unit

si.txt, / ! Documenting text.

endfor ;

putclose ;

Remarks:

Note that the suffixes .dim, .txt and .type are deprecated.

See also Section 25.4 of the Language Reference.

Chapter 38. Common Suffices 1104

.dim

Definition:

The .dim suffix returns the dimension of the identifier at hand.

Datatype:

The value of the .dim suffix is numeric.

Dimension:

The dimension of the .dim suffix itself is scalar.

Remarks:

� This suffix is deprecated and it is advised to use the intrinsic function

IdentifierDimension instead.

� See also Section 25.4 of the Language Reference.

Chapter 38. Common Suffices 1105

.txt

Definition:

The .txt suffix returns the contents of the text attribute of the identifier

at hand. When that attribute is empty it returns the name of the identifier

itself.

Datatype:

The value of a .txt suffix is a string.

Dimension:

The .txt suffix is scalar.

Remarks:

� This suffix is typically used with an index into the set AllIdentifiers, as

illustrated in the common example on page 1103.

� See also Section 25.4 of the Language Reference.

� The gams equivalent name is .ts.

� This suffix is deprecated.

Chapter 38. Common Suffices 1106

.type

Definition:

The .type suffix returns the type of the identifier at hand.

Datatype:

The value of the .type suffix is an element in the Set AllIdentifierTypes.

Dimension:

The .type suffix is scalar.

Remarks:

� This suffix is typically used with an index into the set AllIdentifiers, as

illustrated in the common example on page 1103.

� See also Section 25.4 of the Language Reference.

� This suffix is deprecated, see IdentifierType.

Chapter 38. Common Suffices 1107

.unit

Definition:

The .unit suffix returns the unit of the identifier at hand.

Datatype:

The datatype of the u̇nit suffix is string

Dimension:

The .unit suffix is scalar.

Remarks:

� This suffix is typically used with an index into the set AllIdentifiers, as

illustrated in the common example on page 1103.

� See also the function IdentifierUnit

� See also Section 25.4 of the Language Reference.

Chapter 39

Horizon Suffices

The collection of suffices available to a horizon are.

� .past

� .planning

� .beyond

See also section 33.3 of the Language Reference.

Chapter 39. Horizon Suffices 1109

.past

Definition:

The Horizon suffix .past is a subset of the horizon. This subset contains

those periods that come before the current period.

Datatype:

The value of the .past suffix is set.

Remarks:

See also section 33.3 of the Language Reference.

Chapter 39. Horizon Suffices 1110

.planning

Definition:

The Horizon suffix .planning is a subset of the horizon. This subset is an

adjacent set of interval length attribute periods starting with the current

period attribute of the horizon at hand.

Datatype:

The value of the .planning suffix is set.

Remarks:

See also section 33.3 of the Language Reference.

Chapter 39. Horizon Suffices 1111

.beyond

Definition:

The Horizon suffix .beyond is a subset of the horizon. This subset contains

those periods that come after the planning periods.

Datatype:

The value of the .beyond suffix is set.

Remarks:

See also section 33.3 of the Language Reference.

Chapter 40

Variable and Constraint Suffices

Aimms variables support the following collection of suffixes. The suffixes

supported by Aimms common to variables and constraints are the following

collection of suffixes common to variables and constraint:

� .Basic

� .Level

� .Lower

� .Stochastic

� .Upper

� .Violation

� .ExtendedConstraint

� .ExtendedVariable

Chapter 40. Variable and Constraint Suffices 1113

.Basic

Definition:

When the property Basic of a constraint or variable is set or when the

option Always store basics is set to on, the .Basic suffix contains basis

status of the constraint or variable at the end of a solve.

Datatype:

The value of the .Basic suffix is an element in the predeclared

set AllBasicValues.

Dimension:

The .Basic suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� The default of the option Always store basics is on.

� In order to access the basic status of the definition of a variable X use

the notation X definition.Basic.

� See also Section 14.1 of the Language Reference

Chapter 40. Variable and Constraint Suffices 1114

.Level

Definition:

The .Level suffix contains the current value of a variable. When the

property Level of a constraint is set, the .Level suffix contains the current

value of the left hand side of the constraint after the last solve.

Datatype:

The value of the .Level suffix is numeric.

Dimension:

The .Level suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� When a variable without a suffix is used inside an assignment statement

or a parameter definition the .Level suffix is automatically used.

� See also Section 14.2.5 of the Language Reference.

� The gams and Aimms 2 equivalent suffix name is .l.

Chapter 40. Variable and Constraint Suffices 1115

.Lower

Definition:

The .Lower suffix contains the lower bound of a variable.

When the property Bounds of a constraint is set, the .Lower suffix contains

the minimum value the left hand side of the constraint may attain. Note

that for a <= constraint this value is -INF. This value is set at the end of the

generation step by Aimms.

Datatype:

The value of the .Lower suffix is numeric.

Dimension:

The .Lower suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� When the .lower suffix of a variable is equal to the .upper suffix

(see .Upper) of a variable that variable is treated as a frozen variable and

subsequently removed from the generated mathematical program

independently from the setting of the .nonvar suffix (see 14.1).

� In order to access the lower bound of the definition of a variable X use

the notation X definition.Lower.

� See also Sections 14.1 and 14.2.5 of the Language Reference.

� The gams and Aimms 2 equivalent suffix name is .lo.

Chapter 40. Variable and Constraint Suffices 1116

.Stochastic

Definition:

When the property Stochastic of a parameter or variable is set, the

.Stochastic suffix contains the stochastic data of that parameter or

variable. When the definition of a constraint contains a parameter or

variable with the Stochastic property set the .Stochastic suffix of that

constraint contains the stochastic rows.

Datatype:

The value of the .Stochastic suffix is numeric.

Dimension:

The dimension of .Stochastic suffix is one higher than that of the

identifier at hand. The domain of the .Stochastic suffix is prefixed with

the set AllStochasticScenarios to the domain of the identifier at hand. The

index domain of the .Stochastic suffix is prefixed with the index

IndexStochasticScenarios to the index domain of the identifier at hand.

Remarks:

� See also Chapter 19 of the Language Reference.

Chapter 40. Variable and Constraint Suffices 1117

.Upper

Definition:

The .Upper suffix contains the upper bound of a variable. When the

property Bounds of a constraint is set, the .Upper suffix contains the

maximum value the left hand side of the constraint may attain. Note that

for a >= constraint this value is INF. This value is set at the end of the

generation step by Aimms.

Datatype:

The value of the .Upper suffix is numeric.

Dimension:

The .Upper suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� When the .Lower suffix (see .Lower) of a variable is equal to the .Upper

suffix of that variable this variable is treated as a frozen variable and

subsequently removed from the generated mathematical program

independently from the setting of the .nonvar suffix (see 14.1).

� In order to access the upper bound of the definition of a variable X use

the notation X definition.Upper.

� See also Sections 14.1 and 14.2.5 of the Language Reference.

� The GAMS and AIMMS 2 equivalent suffix name is .up.

Chapter 40. Variable and Constraint Suffices 1118

.Violation

Definition:

The .Violation suffix of a variable contains the amount by which one of

the bounds of that variable is violated. The .Violation suffix of a

constraint contains the amount by which the definition of that constraint

is violated.

Datatype:

The value of the .Violation suffix is numeric.

Dimension:

The .Violation suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� When a variable X has a definition the suffix .DefinitionViolation can be

used to obtain the violation of the defining constraint of X. An

alternative is to use X definition.Violation.

� See also Section 15.4.2 of the Language Reference and

.DefinitionViolation.

Chapter 40. Variable and Constraint Suffices 1119

.ExtendedConstraint

Definition:

The .ExtendedConstraint suffix is the extended constraint associated with

a constraint, variable or mathematical program. It is an identifier in itself

and typically used wih AOA.

Dimension:

The dimension of the suffix .ExtendedConstraint is one higher than the

dimension of the identifier at hand. The domain of the suffix

.ExtendedConstraint is the set AllGMPExtensions followed by the domain

of the identifier at hand.

Remarks:

� See also Section 16.3.6 of the Language Reference.

Chapter 40. Variable and Constraint Suffices 1120

.ExtendedVariable

Definition:

The .ExtendedVariable suffix is the extended variable associated with a

constraint, variable or mathematical program. It is an identifier in itself

and typically used with the aoa solver.

Dimension:

The dimension of the suffix .ExtendedVariable is one higher than the

dimension of the identifier at hand. The domain of the suffix

.ExtendedVariable is the set AllGMPExtensions followed by the domain of

the identifier at hand.

Remarks:

� See also Section 16.3.6 of the Language Reference.

Chapter 41

Variable Suffices

Aimms variables support the following collection of suffixes.

� .ReducedCost

� .Nonvar

� .Relax

� .Complement

� .DefinitionViolation

� .Derivative

� .Priority

� .SmallestCoefficient

� .NominalCoefficient

� .LargestCoefficient

� .SmallestValue

� .LargestValue

Chapter 41. Variable Suffices 1122

.ReducedCost

Definition:

When the property ReducedCost of a variable is set or when the option

Always store marginals is set to on, the .ReducedCost suffix contains the

reduced cost of that variable.

Datatype:

The value of the .ReducedCost suffix is numeric.

Dimension:

The .ReducedCost suffix has the same dimension and domain as that of the

constraint at hand.

Remarks:

� The gams equivalent suffix name is .m.

� The default of the option Always store marginals is off.

� See also Section 14.1 of the Language Reference.

Chapter 41. Variable Suffices 1123

.Nonvar

Definition:

The .Nonvar suffix controls whether individual variables are frozen or not.

This suffix can take on three values:

0 This variable is not frozen and a value for the variable should be found

in the next solve statement.

1 This variable is frozen and it will retain its value during the SOLVE

statement. The corresponding column will be removed from the

generated mathematical program for the sake of efficiency.

-1 This variable is frozen and it will retain its value during the SOLVE

statement. The corresponding column will not be removed from the

generated mathematical program but can be manipulated during

subsequent calls of the GMP function library.

Datatype:

The value of the .Nonvar suffix is an integer in the range {−1,0,1} and the

default is 0.

Dimension:

The .Nonvar suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� When the .lower suffix of a variable is equal to the .upper suffix of the

same variable that variable is treated as a frozen variable and

subsequently removed from the generated mathematical program

independently from the setting of the .nonvar suffix.

� See also Section 14.1 of the Language Reference.

� The Aimms 2 equivalent suffix name is .freeze.

� The .NonVar suffix should not be confused with the gams suffix .fx. This

latter suffix is a shorthand for the gams suffixes .l, .lo and .up.

Chapter 41. Variable Suffices 1124

.Relax

Definition:

The variable suffix .Relax controls whether the integer variable at hand is

relaxed to a continuous range or not. This suffix can take on two values:

0 This variable is not relaxed and its restriction to take on only integral

values is passed on to the solver.

1 This variable is relaxed to the continuous range directly encompassing

its original integral range.

Datatype:

The value of the .Relax suffix is an integer in the range {0,1} and the

default is 0.

Dimension:

The .Relax suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� See also Section 14.1 of the Language Reference.

Chapter 41. Variable Suffices 1125

.Complement

Definition:

The variable suffix .Complement contains the level value of the

complementarity constraint after solving a complementarity problem.

Datatype:

The value of the .Complement suffix is numeric.

Dimension:

The .Complement suffix has the same dimension and domain as that of the

variable at hand.

Remarks:

� The Complement suffix is only applicable for complementarity variables.

� See also Section 23.1 of the Language Reference.

Chapter 41. Variable Suffices 1126

.DefinitionViolation

Definition:

The variable suffix .DefinitionViolation contains the amount by which the

defining constraint of that variable is violated when conducting an

infeasibility analysis.

Datatype:

The value of the .DefinitionViolation suffix is numeric.

Dimension:

The .DefinitionViolation suffix has the same dimension and domain as

that of the variable at hand.

Remarks:

� See also section 15.4 of the Language Reference.

Chapter 41. Variable Suffices 1127

.Derivative

Definition:

The variable suffix .Derivative contains the derivative values of a variable

used in an external function which is again used inside a constraint. The

.Derivative suffix is only applicable inside the derivative call attribute of

external functions.

Datatype:

The value of the .Derivative suffix is numeric.

Dimension:

The dimension of the suffix .Derivative is the dimension of the external

function plus the dimension of the variable. The domain of the suffix

.Derivative is the domain of the external function followed by the domain

of the variable.

Remarks:

� See also section 11.4.1 of the Language Reference.

Chapter 41. Variable Suffices 1128

.Priority

Definition:

The variable suffix .Priority controls branching priority in the branch and

bound solution process.

Datatype:

The value of the .Priority suffix is numeric.

Dimension:

The .Priority suffix has the same dimension and domain as that of the

constraint or variable at hand.

Remarks:

� See also Section 14.1 of the Language Reference.

� The gams equivalent suffix name is .prior.

Chapter 41. Variable Suffices 1129

.SmallestCoefficient

Definition:

When the property CoefficientRange of a variable is set and the option

Calculate Sensitivity Ranges is not set to off a coefficient range sensitivity

analysis is conducted such that the optimal basis remains constant. As a

result of this analysis the variable suffix .SmallestCoefficient contains the

smallest objective coefficient value.

Datatype:

The value of the .SmallestCoefficient suffix is numeric.

Dimension:

The .SmallestCoefficient suffix has the same dimension and domain as

that of the variable at hand.

Remarks:

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.1 of the Language Reference.

Chapter 41. Variable Suffices 1130

.NominalCoefficient

Definition:

When the property CoefficientRange of a variable is set and the option

Calculate Sensitivity Ranges is not set to off a coefficient range sensitivity

analysis is conducted such that the optimal basis remains constant. As a

result of this analysis the variable suffix .NominalCoefficient contains the

nominal objective coefficient value.

Datatype:

The value of the .NominalCoefficient suffix is numeric.

Dimension:

The .NominalCoefficient suffix has the same dimension and domain as

that of the variable at hand.

Remarks:

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.1 of the Language Reference.

Chapter 41. Variable Suffices 1131

.LargestCoefficient

Definition:

When the property CoefficientRange of a variable is set and the option

Calculate Sensitivity Ranges is not set to off a coefficient range sensitivity

analysis is conducted such that the optimal basis remains constant. As a

result of this analysis the variable suffix .LargestCoefficient contains the

largest objective coefficient value.

Datatype:

The value of the .LargestCoefficient suffix is numeric.

Dimension:

The .LargestCoefficient suffix has the same dimension and domain as

that of the variable at hand.

Remarks:

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.1 of the Language Reference.

Chapter 41. Variable Suffices 1132

.SmallestValue

Definition:

When the property ValueRange of a variable is set and the option

Calculate Sensitivity Ranges is not set to off a value range sensitivity

analysis is conducted such that the objective value remains constant. As a

result of this analysis the variable suffix .SmallestValue contains the

smallest possible value of that variable.

Datatype:

The value of the .SmallestValue suffix is numeric.

Dimension:

The .SmallestValue suffix has the same dimension and domain as that of

the variable at hand.

Remarks:

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.1 of the Language Reference.

Chapter 41. Variable Suffices 1133

.LargestValue

Definition:

When the property ValueRange of a variable is set and the option

Calculate Sensitivity Ranges is not set to off a value range sensitivity

analysis is conducted such that the objective value remains constant. As a

result of this analysis the variable suffix .LargestValue contains the largest

possible value of that variable.

Datatype:

The value of the .LargestValue suffix is numeric.

Dimension:

The .LargestValue suffix has the same dimension and domain as that of

the variable at hand.

Remarks:

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.1 of the Language Reference.

Chapter 42

Constraint Suffices

Aimms constraints support the following collection of suffices.

� .ShadowPrice

� .Convex

� .RelaxationOnly

� .SmallestShadowPrice

� .LargestShadowPrice

� .SmallestRightHandSide

� .NominalRightHandSide

� .LargestRightHandSide

See also Section 14.2 of the Language Reference.

Chapter 42. Constraint Suffices 1135

.ShadowPrice

Definition:

When the property ShadowPrice of a contraint is set or when the option

Always store marginals is set to on, the .ShadowPrice suffix contains the

shadow price of the constraint as computed by the solver. The shadow

price of a constraint is the marginal change in the objective value with

respect to a change in the right-hand side of the constraint.

Datatype:

The value of the .ShadowPrice suffix is numeric.

Dimension:

The .ShadowPrice suffix has the same dimension and domain as that of the

constraint at hand.

Remarks:

� When a variable X has a definition the suffix can also be applied to X but

this is not encouraged by the syntax highlighting. The preferred

notation is X definition.ShadowPrice.

� The gams equivalent suffix name is .m.

� The default of the option Always store basics is off.

� See also Section 14.2 of the Language Reference.

Chapter 42. Constraint Suffices 1136

.Convex

Definition:

The constraint suffix .Convex is an indicator to the solver Baron that this

constraint is convex.

Datatype:

The value of the .Convex suffix is an integer in the range {0,1} and the

default is 0.

Dimension:

The .Convex suffix has the same dimension and domain as that of the

constraint at hand.

Remarks:

� See also Section 14.2.6 of the Language Reference.

Chapter 42. Constraint Suffices 1137

.RelaxationOnly

Definition:

The constraint suffix .RelaxationOnly is an indicator to the solver Baron

that this constraint should be included as a relaxation to the

branch-and-bound algorithm, while it should be excluded from the local

search.

Datatype:

The value of the .RelaxationOnly suffix is an integer in the range {0,1} and

the default is 0.

Dimension:

The .RelaxationOnly suffix has the same dimension and domain as that of

the constraint at hand.

Remarks:

� See also Section 14.2.6 of the Language Reference.

Chapter 42. Constraint Suffices 1138

.SmallestShadowPrice

Definition:

When the property SmallestShadowPrice of a contraint is set and when the

option Calculate Sensitivity Ranges is set to on, the .SmallestShadowPrice

suffix contains the smallest shadow price of the constraint while holding

the objective value constant.

Datatype:

The value of the .SmallestShadowPrice suffix is numeric.

Dimension:

The .SmallestShadowPrice suffix has the same dimension and domain as

that of the constraint at hand.

Remarks:

� When a variable X has a definition the suffix can also be applied to X but

this is not encouraged by the syntax highlighting. The preferred usage

is X definition.SmallestShadowPrice.

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.2 of the Language Reference.

Chapter 42. Constraint Suffices 1139

.LargestShadowPrice

Definition:

When the property LargestShadowPrice of a contraint is set and when the

option Calculate Sensitivity Ranges is set to on, the .LargestShadowPrice

suffix contains the largest shadow price of the constraint while holding

the objective value constant.

Datatype:

The value of the .LargestShadowPrice suffix is numeric.

Dimension:

The .LargestShadowPrice suffix has the same dimension and domain as

that of the constraint at hand.

Remarks:

� When a variable X has a definition the suffix can also be applied to X but

this is not encouraged by the syntax highlighting. The preferred usage

is X definition.LargestShadowPrice.

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.2 of the Language Reference.

Chapter 42. Constraint Suffices 1140

.SmallestRightHandSide

Definition:

When the property RightHandSideRange of a contraint is set and the option

Calculate Sensitivity Ranges is not set to off the .SmallestRightHandSide

suffix contains the smallest right hand side such that the basis remains

constant.

Datatype:

The value of the .SmallestRightHandSide suffix is numeric.

Dimension:

The .SmallestRightHandSide suffix has the same dimension and domain as

that of the constraint at hand.

Remarks:

� When a variable X has a definition the suffix can also be applied to X but

this is not encouraged by the syntax highlighting. The preferred usage

is X definition.SmallestRightHandSide.

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.2 of the Language Reference.

Chapter 42. Constraint Suffices 1141

.NominalRightHandSide

Definition:

When the property RightHandSideRange of a contraint is set and the option

Calculate Sensitivity Ranges is not set to off the .NominalRightHandSide

suffix contains the right hand side value of the constraint. In case of a

ranged constraint it contains the largest of the two constraint bounds.

Datatype:

The value of the .NominalRightHandSide suffix is numeric.

Dimension:

The .NominalRightHandSide suffix has the same dimension and domain as

that of the constraint at hand.

Remarks:

� When a variable X has a definition the suffix can also be applied to X but

this is not encouraged by the syntax highlighting. The preferred usage

is X definition.NominalRightHandSide.

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.2 of the Language Reference.

Chapter 42. Constraint Suffices 1142

.LargestRightHandSide

Definition:

When the property RightHandSideRange of a contraint is set and the option

Calculate Sensitivity Ranges is not set to off the .LargestRightHandSide

suffix contains the largest right hand side such that the basis remains

constant.

Datatype:

The value of the .LargestRightHandSide suffix is numeric.

Dimension:

The .LargestRightHandSide suffix has the same dimension and domain as

that of the constraint at hand.

Remarks:

� When a variable X has a definition the suffix can also be applied to X but

this is not encouraged by the syntax highlighting. The preferred usage

is X definition.LargestRightHandSide.

� The default of the option Calculate Sensitivity Ranges is on.

� See also Section 14.2 of the Language Reference.

Chapter 43

Mathematical Program Suffices

Aimms mathematical programs support the following four collections of

suffices.

The first group of suffices steers the solution process. These suffices are

specified in the model before the solve statement and are used during the

solution process.

� .bratio

� .cutoff

� .domlim

� .iterlim

� .limrow

� .nodlim

� .optca

� .optcr

� .reslim

� .tolinfrep

� .workspace

The second group of suffixes contain information obtained during and at the

end of the solution process. these suffixes can be accessed after the solve

statement.

� .SolverStatus

� .ProgramStatus

� .SolverCalls

� .objective

� .incumbent

� .BestBound

� .GenTime

� .SolutionTime

� .Iterations

� .NumberOfBranches

� .NumberOfConstraints

� .NumberOfFails

� .NumberOfNonzeros

� .NumberOfVariables

� .NumberOfInfeasibilities

Chapter 43. Mathematical Program Suffices 1144

� .SumOfInfeasibilities

The third group of suffixes control which Aimms procedure should be called

during the solution process and whether this calling should take place.

� .CallbackProcedure

� .CallbackIterations

� .CallbackTime

� .CallbackStatusChange

� .CallbackIncumbent

� .CallbackReturnStatus

� .CallbackAddCut

� .CallbackAOA

The fourth group of suffixes are obsolete ones. They are only retained in

order not to invalidate converted Aimms 2 and GAMS models.

� .solveopt

� .prioropt

� .scaleopt

� .optfile

� .solprint

� .sysout

� .numnlins

� .numnlnz

� .domusd

� .nodusd

� .integer1

� .integer2

� .integer3

� .integer4

� .integer5

� .real1

� .real2

� .real3

� .real4

� .real5

� .line

� .limcol

Chapter 43. Mathematical Program Suffices 1145

.bratio

Definition:

The .bratio suffix controls the basis acceptance test. When specified it

overrides the option accept basis.

Datatype:

The value of the .bratio suffix is numeric.

Remarks:

� The suffix .bratio is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1146

.cutoff

Definition:

The .cutoff suffix can be specified when solving mixed integer programs.

When specified it overrides the option cutoff.

Datatype:

The value of the .cutoff suffix is numeric.

Remarks:

� The suffix .cutoff is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1147

.domlim

Definition:

When the number of domain violations during the optimization of a

nonlinear program exceeds the value of the suffix .domlim the solution

process is stopped. When specified this suffix overrides the option

maximal number of domain errors.

Datatype:

The value of the .domlim suffix is numeric.

Remarks:

� The suffix .domlim is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1148

.iterlim

Definition:

The .iterlim suffix limits the number of iterations that can be used to

solve the mathematical program. When specified this suffix overrides the

option iteration limit.

Datatype:

The value of the .iterlim suffix is numeric.

Remarks:

� The suffix .iterlim is initialized to NA. Aimms considers it specified

when its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1149

.limrow

Definition:

The .limrow suffix limits the number of rows printed in the constraint

listing per symbolic constraint. When specified it overrides the option

Number of rows per constraint in listing.

Datatype:

The value of the .limrow suffix is numeric.

Remarks:

� The suffix .limrow is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1150

.nodlim

Definition:

The .nodlim controls the maximum number of nodes created during the

Branch and Bound process. When specified it overrides the option

maximal number of nodes.

Datatype:

The value of the .nodlim suffix is numeric.

Remarks:

� The suffix .nodlim is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1151

.optca

Definition:

When specified, the solution process stops if the solver can guarantee that

the current best solution is within the value of suffix optca of the global

optimum. This is only valid for mixed integer programming models

including mixed integer quadratic problems. When specified the suffix

.optca overrides the option MIP Absolute Optimality Tolerance.

Datatype:

The value of the .optca suffix is numeric.

Remarks:

� The suffix .optca is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1152

.optcr

Definition:

When specified the solution procedure stops if the solver can guarantee

that the current best solution is within suffix .optcr of the global

optimum. This is only valid for mixed integer programming models

including mixed integer quadratic problems. The .optcr suffix controls the

append mode of the file. When specified the suffix .optcr overwrites the

option MIP Relative Optimality Tolerance

Datatype:

The value of the .optcr suffix is numeric.

Remarks:

� The suffix .optcr is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1153

.reslim

Definition:

When specified, the solution process stops after .reslim seconds. When

specified it overrides the option time limit.

Datatype:

The value of the .reslim suffix is numeric.

Remarks:

� The suffix .optcr is initialized to NA. Aimms considers it specified when

its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1154

.tolinfrep

Definition:

When specified, the suffix .tolinfrep is the tolerance on row feasibility

when computing the values of the suffixes .NumberOfInfeasibilities and

.SumOfInfeasibilities. When specified the option .tolinfrep overrides the

option bound tolerance.

Datatype:

The value of the .tolinfrep suffix is numeric.

Remarks:

� The suffix .tolinfrep is initialized to NA. Aimms considers it specified

when its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1155

.workspace

Definition:

The .workspace suffix controls the amount of workspace to be used by the

solver in Mb. When specified it overrides the option workspace.

Datatype:

The value of the .workspace suffix is numeric.

Remarks:

� The suffix .workspace is initialized to NA. Aimms considers it specified

when its value is not equal to NA.

Chapter 43. Mathematical Program Suffices 1156

.SolverStatus

Definition:

The mathematical program suffix .SolverStatus suffix contains the solver

status at the end of the solve statement.

Datatype:

The value of the .SolverStatus suffix is element and its range is

AllSolutionStates.

Remarks:

� The related gams and Aimms 2 name is .SolveStat but that value is a

numeric code.

� The .SolverStatus suffix is also mentioned in Table 15.3 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1157

.ProgramStatus

Definition:

The mathematical program suffix .ProgramStatus contains the status of

the mathematical program at the end of the solve.

Datatype:

The value of the .ProgramStatus suffix is an element in the set

AllSolutionStates.

Remarks:

� The related gams and Aimms 2 name is .modelstat but that value is a

numeric code.

� The .ProgramStatus suffix is also mentioned in Table 15.3 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1158

.SolverCalls

Definition:

The mathematical program suffix .SolverCalls contains the number of

times the mathematical program has been solved.

Datatype:

The value of the .SolverCalls suffix is an integer.

Remarks:

� The gams and Aimms 2 equivalent name is .number.

� The .SolverCalls suffix is also mentioned in Table 15.5 of the Language

Reference.

Chapter 43. Mathematical Program Suffices 1159

.objective

Definition:

The mathematical program suffix .objective suffix contains the value of

the objective at the end of the solve.

Datatype:

The value of the .objective suffix is numeric. When the solve is not

successful or infeasible the value of the .objective is NA.

Remarks:

� The equivalent gams and Aimms 2 name is .objval.

� The .objective suffix is also mentioned in Table 15.3 of the Language

Reference.

Chapter 43. Mathematical Program Suffices 1160

.Incumbent

Definition:

The .Incumbent suffix contains the current best solution during the

solution process of MIP, MIQP and MIQCP problems.

Datatype:

The value of the .Incumbent suffix is numeric.

Remarks:

� The .Incumbent suffix is also mentioned in Table 15.3 of the Language

Reference.

Chapter 43. Mathematical Program Suffices 1161

.BestBound

Definition:

The .BestBound suffix contains the current best bound during the

branch-and-bound solution process of MIP, MIQP and MIQCP problems.

Datatype:

The value of the .BestBound suffix is numeric.

Remarks:

� The .BestBound suffix is also mentioned in Table 15.3 of the Language

Reference.

Chapter 43. Mathematical Program Suffices 1162

.Nodes

Definition:

The mathematical program suffix .Nodes contains the number of nodes

visited during the Branch and Bound search.

Datatype:

The value of the .Nodes suffix is an integer.

Remarks:

� The equivalent GAMS and Aimms 2 name is .nodusd.

� The .Nodes suffix is also mentioned in Table 15.3.

Chapter 43. Mathematical Program Suffices 1163

.GenTime

Definition:

The mathematical program suffix .GenTime contains the time required to

generate the mathematical program.

Datatype:

The value of the .GenTime suffix is numeric and in wallclock seconds.

Remarks:

� The suffix .GenTime has unit [second] iff (1) this unit has been declared,

and (2) the option solution_time_has_unit_seconds is set to on. In all

other cases the suffix has no unit.

� The equivalent gams and Aimms 2 name is .resgen.

� The .GenTime suffix is also mentioned in Table 15.3.

Chapter 43. Mathematical Program Suffices 1164

.SolutionTime

Definition:

The mathematical program suffix .SolutionTime contains the time required

to solve the mathematical program.

Datatype:

The value of the .SolutionTime suffix is numeric.

Remarks:

� The suffix .SolutionTime has unit [second] iff (1) this unit has been

declared, and (2) the option solution_time_has_unit_seconds is kept to

its default of on. In all other cases the suffix has no unit.

� The gams and Aimms 2 equivalent name is .resusd.

� The .SolutionTime suffix is also mentioned in Table 15.3 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1165

.Iterations

Definition:

The mathematical program suffix .Iterations contains the number of

iterations executed by the solver.

Datatype:

The value of the .Iterations suffix is an integer.

Remarks:

� The gams and Aimms 2 equivalent name is .itrusd.

� The .Iterations suffix is also mentioned in Table 15.3 of the Language

Reference.

Chapter 43. Mathematical Program Suffices 1166

.NumberOfBranches

Definition:

The mathematical program suffix .NumberOfBranches contains the number

of nodes visited by a CP solver.

Datatype:

The value of the .NumberOfBranches suffix is an integer.

Remarks:

� The .NumberOfBranches suffix is also mentioned in Table 15.3 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1167

.NumberOfConstraints

Definition:

The mathematical program suffix .NumberOfConstraints contains the

number of individual constraints in the generated mathematical program.

Datatype:

The value of the .NumberOfConstraints suffix is an integer.

Remarks:

� The gams and Aimms 2 equivalent name is .numequ.

� The .NumberOfConstraints suffix is also mentioned in Table 15.5 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1168

.NumberOfFails

Definition:

The mathematical program suffix .NumberOfFails contains the number of

leaf nodes searched by a CP solver for which it has been proved that no

solution exists.

Datatype:

The value of the .NumberOfFails suffix is an integer.

Remarks:

� The .NumberOfFails suffix is also mentioned in Table 15.3 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1169

.NumberOfNonzeros

Definition:

The mathematical program suffix .NumberOfNonzeros contains the number

of nonzeros in the generated mathematical program.

Datatype:

The value of the .NumberOfNonzeros suffix is an integer.

Remarks:

� The gams and Aimms 2 equivalent name is .numnz.

� The .NumberOfNonzeros suffix is also mentioned in Table 15.5 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1170

.NumberOfVariables

Definition:

The mathematical program suffix .NumberOfVariables contains the number

of individual variables in the generated mathematical program.

Datatype:

The value of the .NumberOfVariables suffix is an integer.

Remarks:

� The gams and Aimms 2 equivalent name is .numvar.

� The .NumberOfVariables suffix is also mentioned in Table 15.5 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1171

.NumberOfInfeasibilities

Definition:

The mathematical program suffix .NumberOfInfeasibilities contains the

number of individual constraints that are infeasible at the end of the solve.

Datatype:

The value of the .NumberOfInfeasibilities suffix is an integer.

Remarks:

� The gams and Aimms 2 equivalent name is .numinfes.

� The .NumberOfInfeasibilities suffix is also mentioned in Table 15.3 of

the Language Reference.

Chapter 43. Mathematical Program Suffices 1172

.SumOfInfeasibilities

Definition:

The .SumOfInfeasibilities contains the sum of the infeasibilities at the

end of a solve.

Datatype:

The value of the .SumOfInfeasibilities suffix is numeric.

Remarks:

� The gams and Aimms 2 equivalent name is .suminfes.

� The .SumOfInfeasibilities suffix is also mentioned in Table 15.3 of the

Language Reference.

Chapter 43. Mathematical Program Suffices 1173

.CallbackProcedure

Definition:

The suffix .CallbackProcedure contains the name of the Aimms procedure

to be called for every suffix .CallbackIterations iterations executed.

Datatype:

The value of the .CallbackProcedure suffix is an element in the set of

AllProcedures and the default is the empty element ’’.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 43. Mathematical Program Suffices 1174

.CallbackIterations

Definition:

The suffix .CallbackIterations states after how many iterations the Aimms

procedure in the suffix .CallbackProcedure should be called.

Datatype:

The value of the .CallbackIterations suffix is numeric and the default is 0.

When the value of this suffix is 0, the callback procedure in the suffix

.CallbackProcedure is not called.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 43. Mathematical Program Suffices 1175

.CallbackTime

Definition:

The mathematical program suffix .CallbackTime contains the name of the

Aimms procedure to be called after a certain number of seconds have

elapsed.

Datatype:

The value of the .CallbackTime suffix is an element in the set of

AllProcedures and the default is the empty element ’’.

Remarks:

� See also Section 15.2 of the Language Reference.

� The CallbackTime callback procedure is supported by Cplex, Gurobi,

Cbc, Xa, CP Optimizer, Conopt, Knitro, Snopt and Ipopt.

� The number of (elapsed) seconds is determined by the general solvers

option Progress Time Interval. This option also specifies the interval

for updating the Progress Window during a solve. As a consequence, the

information passed to this callback procedure will be the same as the

information displayed in the Progress Window (except for small

differences for the solving time).

� The time callback will be called less often if Cplex uses dynamic search

as the MIP Search Strategy instead of branch-and-cut. In that case the

interval between two successive calls might sometimes be larger than

the interval as specified by the option Progress Time Interval.

Chapter 43. Mathematical Program Suffices 1176

.CallbackStatusChange

Definition:

The mathematical program suffix .CallbackStatusChange contains the

name of the Aimms procedure to be called upon a status change of the

generated mathematical program during the solution process.

Datatype:

The value of the .CallbackStatusChange suffix is an element in the set of

AllProcedures and the default is the empty element ’’.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 43. Mathematical Program Suffices 1177

.CallbackIncumbent

Definition:

The mathematical program suffix .CallbackIncumbent contains the name of

the Aimms procedure to be called when a new incumbent is found during

the solution process.

Datatype:

The value of the .CallbackIncumbent suffix is an element in the set of

AllProcedures and the default is the empty element ’’.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 43. Mathematical Program Suffices 1178

.CallbackReturnStatus

Definition:

The mathematical program suffix .CallbackReturnStatus controls the

continuation of the solution process. It can be set from within one of the

callback procedures.

Datatype:

The value of the .CallbackReturnStatus suffix is an element in the set

ContinueAbort.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 43. Mathematical Program Suffices 1179

.CallbackAOA

Definition:

The mathematical program suffix .CallbackAOA contains the name of the

Aimms procedure to be called by the AOA open solver.

Datatype:

The value of the .CallbackAOA suffix is an element in the set of

AllProcedures and the default is the empty element ’’.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 43. Mathematical Program Suffices 1180

.CallbackAddCut

Definition:

The mathematical program suffix .CallbackAddCut contains the name of

the Aimms procedure to be called to add additional cuts.

Datatype:

The value of the .CallbackAddCut suffix is an element in the set of

AllProcedures and the default is the empty element ’’.

Remarks:

� See also Section 15.2 of the Language Reference.

Chapter 44

File Suffices

Aimms files support the following three collections of suffices.

File suffix group 1: the suffixes that apply to the entire file.

� .Ap

� .blankzeros

� .case

� .PageNumber

� .PageMode

� .PageSize

� .PageWidth

File suffix group 2: the suffixes that control page layout.

� .TopMargin

� .LeftMargin

� .BottomMargin

� .BodyCurrrentColumn

� .BodyCurrentRow

� .BodySize

� .FooterCurrentColumn

� .FooterCurrentRow

� .FooterSize

� .HeaderCurrentColumn

� .HeaderCurrentRow

� .HeaderSize

File suffix group 3: the suffixes that control the formatting of individual

elements.

� .lj

� .lw

� .nd

� .nj

� .nr

� .nw

� .nz

� .sj

Chapter 44. File Suffices 1182

� .sw

� .tf

� .tj

� .tw

Chapter 44. File Suffices 1183

.Ap

Definition:

The .Ap suffix controls the append mode of the file.

Datatype:

The value of the .Ap suffix is an integer in the range {0,1} and the default

is 0. The interpretation of the possible values is:

0 Overwrite

1 Append

Remarks:

� The file attribute mode should be used instead.

Chapter 44. File Suffices 1184

.blank zeros

Definition:

The .blank zeros suffix controls whether or not numbers (almost) equal to

0.0 should be printed as blanks or as 0.0’s according to the current format.

Datatype:

The value of the .blank zeros suffix is an integer in the range {0..2} and

the default is 0. The possible values are:

0 Do not print numbers equal or within Aimms tolerances equal to 0.0 as

blanks.

1 Print numbers equal or within Aimms tolerances equal to 0.0 as blanks.

2 Print numbers after formatting equal to 0.0 as blanks.

Chapter 44. File Suffices 1185

.case

Definition:

The .case suffix controls whether or not the output is translated to upper

case.

Datatype:

The value of the .case suffix is an integer in the range {1,2} and the

default is 0. The interpretation of the possible values is:

0 Leave the output in mixed case.

1 Translate the output to upper case.

Chapter 44. File Suffices 1186

.PageNumber

Definition:

The file suffix .PageNumber contains the number of the current page.

Datatype:

The value of the .PageNumber suffix is numeric.

Remarks:

� The equivalent gams and Aimms 2 name is .lp.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1187

.PageMode

Definition:

The file suffix .PageMode controls the formatting style of the page.

Datatype:

The value of the .PageMode suffix is an element in the predeclared set OnOff

and the default is Off. The interpretation of the possible values is:

On Structure output in pages

Off Do not structure output in pages.

Remarks:

� The equivalent gams and Aimms 2 name is .pc but this value is numeric.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1188

.PageSize

Definition:

The file suffix .PageSize controls the maximum number of lines on a page

including header, body and footer.

Datatype:

The value of the .PageSize suffix is an integer in the range {3..200}.

Remarks:

� The equivalent gams and Aimms 2 name is .ps.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1189

.PageWidth

Definition:

The file suffix .PageWidth controls the maximum number of characters per

line. When specified it overrides the option listing page width.

Datatype:

The value of the .PageWidth suffix is an integer in the range {30..32767}.

Remarks:

� The suffix .PageWidth is initialized to -1. Aimms considers it specified

when its value is not equal to -1.

� The equivalent gams and Aimms 2 name is .pw.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1190

.TopMargin

Definition:

The file suffix .TopMargin controls the top margin in number of lines.

Datatype:

The value of the .TopMargin suffix is an integer in the range {0..option

listing size} and the default is 0.

Remarks:

� The equivalent gams and Aimms 2 name up to Aimms 3.3 is .tm.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1191

.LeftMargin

Definition:

The .LeftMargin is the left margin in number of characters.

Datatype:

The value of the .LeftMargin suffix is an integer in the range {0..option

listing page width} and the default is 0.

Remarks:

� The equivalent gams and Aimms 2 name up to Aimms 3.3 is .lm.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1192

.BottomMargin

Definition:

The .BottomMargin is the bottom margin in number of lines.

Datatype:

The value of the .BottomMargin suffix is an integer in the range {0..option

listing size} and the default is 0.

Remarks:

� The equivalent gams and Aimms 2 name up to Aimms 3.3 is .bm.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1193

.BodyCurrentColumn

Definition:

The .BodyCurrentColumn contains the current column position in the file.

Datatype:

The value of the .BodyCurrentColumn suffix is an integer in the range

{0..option listing page width} and the default is 0.

Remarks:

� The equivalent gams and Aimms 2 name is .cc.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1194

.BodyCurrentRow

Definition:

The .BodyCurrentRow contains the current line number of the current page.

Datatype:

The value of the .BodyCurrentRow suffix is an integer in the range {0..option

listing size} and the default is 1.

Remarks:

� The equivalent gams and Aimms 2 name is .cr.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1195

.BodySize

Definition:

The .BodySize contains the number of lines on the current page.

Datatype:

The value of the .BodySize suffix is an integer in the range {0..option

listing size} and the default is 1.

Remarks:

� The equivalent gams and Aimms 2 name is .ll.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1196

.FooterCurrentColumn

Definition:

The .FooterCurrentColumn contains the current column position in the

page footer.

Datatype:

The value of the .FooterCurrentColumn suffix is an integer in the range

{0..option listing page width} and the default is 0.

Remarks:

� The equivalent gams and Aimms 2 name is .ftcc.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1197

.FooterCurrentRow

Definition:

The .FooterCurrentRow contains the current line number of the footer of

the current page.

Datatype:

The value of the .FooterCurrentRow suffix is an integer in the range

{0..option listing size} and the default is 1.

Remarks:

� The equivalent gams and Aimms 2 name is .ftcr.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1198

.FooterSize

Definition:

The .FooterSize contains the number of lines in the footer of the page.

Datatype:

The value of the .FooterSize suffix is an integer in the range {0..option

listing size} and the default is 1.

Remarks:

� The equivalent gams and Aimms 2 name is .ftll.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1199

.HeaderCurrentColumn

Definition:

The .HeaderCurrentColumn contains the current column position in the

header of the page.

Datatype:

The value of the .HeaderCurrentColumn suffix is an integer in the range

{0..option listing page width} and the default is 0.

Remarks:

� The equivalent gams and Aimms 2 name is .hdcc.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1200

.HeaderCurrentRow

Definition:

The .HeaderCurrentRow contains the current row number in the header of

the page.

Datatype:

The value of the .HeaderCurrentRow suffix is an integer in the range

{0..option listing size} and the default is 1.

Remarks:

� The equivalent gams and Aimms 2 name is .hdcr.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1201

.HeaderSize

Definition:

The .HeaderSize contains the number of lines in the header of the page.

Datatype:

The value of the .HeaderSize suffix is an integer in the range {0..option

listing size} and the default is 1.

Remarks:

� The equivalent gams and Aimms 2 name is .hdll.

� See also Section 31.4 of the Language Reference.

Chapter 44. File Suffices 1202

.lj

Definition:

The .lj suffix controls the element justification. When specified it

overrides the option put element justification.

Datatype:

The value of the .lj suffix is integer in the range {1..3} and the default

is -1. The possible values are:

1 Right

2 Left

3 Center

Remarks:

� The suffix .lj is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .lj is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1203

.lw

Definition:

The .lw suffix controls the element field width. When specified it overrides

the option put element width.

Datatype:

The value of the .lw suffix is an integer in the range {0..option

listing page width} and the default is -1.

Remarks:

� The suffix .lw is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .lw is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1204

.nd

Definition:

The .nd suffix controls the number of decimals displayed. When specified

it overrides the option put number decimals.

Datatype:

The value of the .nd suffix is an integer in the range {0..option

listing page width} and the default is -1.

Remarks:

� The suffix .nd is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .nd is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1205

.nj

Definition:

The .nj suffix controls numeric justification. When specified it overrides

the option put number justification.

Datatype:

The value of the .nj suffix is integer in the range {1..3} and the default

is -1. The possible values are:

1 Right

2 Left

3 Center

Remarks:

� The suffix .nj is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .nj is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1206

.nr

Definition:

The .nr suffix controls the numeric formatting method. When specified it

overrides the option put number style.

Datatype:

The value of the .nr suffix is an integer in the range {0..3} and the default

is -1. The possible values are:

0 Fit field or e format

1 Fit field width

2 Always e format

3 Fit field or e format or 0

Remarks:

� The suffix .nr is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .nr is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1207

.nw

Definition:

The .nw suffix controls numeric field width. When specified it overrides

the option put number width.

Datatype:

The value of the .nw suffix is an integer in the range {0..option

listing page width} and the default is -1.

Remarks:

� The suffix .nw is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .nw is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1208

.nz

Definition:

The .nz suffix controls the nonzero tolerance. When specified it overrides

the option put number tolerance.

Datatype:

The value of the .nz suffix is a floating point number in the range [0,1] and

the default is -1.0.

Remarks:

� The suffix .nz is initialized to -1.0. Aimms considers it specified when

its value is not equal to -1.0.

� The suffix .nz is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1209

.sj

Definition:

The .sj suffix controls the justification of the texts associated with

elements in a GAMS model. In an Aimms model a string parameter is used

instead of associating texts with elements. When specified it overrides the

option put string justification.

Datatype:

The value of the .sj suffix is integer in the range {1..3} and the default

is -1. The possible values are:

1 Right

2 Left

3 Center

Remarks:

� The suffix .sj is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .sj is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1210

.sw

Definition:

The .sw suffix controls the field width of the texts associated with

elements in a GAMS model. In an Aimms model a string parameter is used

instead of associating texts with elements. A value of 0 implies variable

length. When specified it overrides the option put string width.

Datatype:

The value of the .sw suffix is an integer in the range {0..option

listing page width} and the default is -1.

Remarks:

� The suffix .sw is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .sw is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1211

.tf

Definition:

The .tf suffix controls the text fill mode when putting the text associated

with identifiers. There is no option associated with this suffix.

Datatype:

The value of the .tf suffix is an integer in the range {0..2} and the default

is 2. The possible values are:

0 No fill.

1 Fill existing only.

2 Fill always.

Remarks:

� The suffix .tf is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1212

.tj

Definition:

The .tj suffix controls the justification when putting the text associated

with identifiers. When specified it overrides the option

put string justification.

Datatype:

The value of the .tj suffix is integer in the range {1..3} and the default

is -1. The possible values are:

1 Right

2 Left

3 Center

Remarks:

� The suffix .tj is initialized to -1. Aimms considers it specified when its

value is not equal to -1.

� The suffix .tj is a legacy from gams and Aimms 2.

Chapter 44. File Suffices 1213

.tw

Definition:

The .tw suffix controls field width when putting the text associated with

identifiers. When specified it overrides the option put string width.

Datatype:

The value of the .tw suffix is an integer in the range {0..option

listing page width} and the default is -1.

Remarks:

� The suffix .tw is initialized to -1. When its value is not equal to -1

Aimms considers it specified.

� The suffix .tw is a legacy from gams and Aimms 2.

Part X

Deprecated

Chapter 45

Deprecated Language Elements

The current implementation of Aimms supports the following deprecated

features, but it may cease to do so in a future implementation. The current

implementation does so to support converted GAMS and Aimms 2 applications.

45.1 Deprecated keywords

The keywords for which direct replacements are available are documented in

Table 45.1.

Deprecated Modern equivalent

clean CleanDependents

CumulativeDistribution DistributionCumulative

eps zero

evaluate update

FailureCount FailCount

InverseCumulativeDistribution DistributionInverseCumulative

maximise maximize

maximising maximize

maximizing maximize

minimise minimize

minimising minimize

minimizing minimize

net_inflow netinflow

net_outflow netoutflow

puttl puthd

Table 45.1: Aimms deprecated keywords and their modern equivalents

Chapter 45. Deprecated Language Elements 1216

The deprecated keyword abort

The keyword abort is a gams keyword that can be followed by a condition and

a list of identifiers to be displayed. The execution run is interrupted after

executing this statement. Suggested rewrite: use a display statement followed

by a halt statement or a raise error statement. See also

� display See Section 31.3,

� halt See Section 8.3.6, and

� raise error See Section 8.4.2.

The deprecated keywords yes and no

The keywords yes and no are gams keywords that can be used in assignments

to sets in order to add or remove elements. Suggested rewrite: use the Aimms

set syntax. For instance, replace

s1(i) $ cond1(i) := yes ;

s2(i) $ cond2(i) := no ;

by the following code:

s1 += { i | cond1(i) } ;

s2 -= { i | cond2(i) } ;

The deprecated keyword system

The gams keyword system is followed by a suffix. The Aimms language

supports the following equivalent code for selected system suffixes as

documented in Table 45.2.

Deprecated Modern equivalent

.date CurrentToString("%Am|AllAbbrMonths| %d, %c%y")

.time CurrentToString("%H:%M:%S")

.version AimmsRevisionString(string parameter, 4);

.page currentOutputFile.PageNumber

Table 45.2: The keyword system and selected suffixes with their modern coun-

terparts

The system suffixes .ifile, .ofile, .rdate, .rfile, .rtime, .sfile, and .title

are pointless within the Aimms environment.

Chapter 45. Deprecated Language Elements 1217

45.2 Deprecated intrinsic procedures and functions

The mapping of the matrix manipulation procedures to gmp procedures and

functions is documented in Table 46.1 of the Language Reference.

The following intrinsic functions are deprecated, but can be replaced by an

equivalent call to an existing intrinsic procedure or function:

� FindRString(SearchString, Key, CaseSensitive, WordOnly,

IgnoreWhite) can be replaced by a call to FindNthString(SearchString,

Key, -1, CaseSensitive, WordOnly, IgnoreWhite) where -1 indicates that

searching should be done right to left, see also FindNthString.

� One may replace SQLDirect with DirectSQL

� One may replace StringToLabel with StringToElement

The deprecated iterative operators are documented in Table 45.3.

Deprecated Modern equivalent

smax max

smin min

arg nth

Table 45.3: Aimms deprecated iterative operators and their modern equiva-

lents

45.3 Deprecated suffixes

Most deprecated suffixes can be directly translated into their modern

equivalents, as documented in Table 45.4.

The following suffixes deserve some more consideration:

� .ap The append mode of a file, 0: replace contents when opening the

file, 1: append to file. This functionality is now covered by the mode

attribute of that file, see Section 31.1.

� .m The marginal value of a variable or constraint. For a constraint the

suffix .m should be replaced by the suffix .ShadowPrice. For a variable

the suffix .m should be replaced by the suffix .ReducedCost.

� .modelstat This suffix of a mathematical program is numeric, it should

be replaced by the element valued suffix .ProgramStatus. Note that

Element(AllSolutionStates, mp.solvestat+1) = mp.ProgramStatus. See

also Table 15.6 and AllSolutionStates.

� .solvestat or .solverstat These suffixes of a mathematical program are

numeric, they should be replaced by the element valued suffix

.SolverStatus. Note that Element(AllSolutionStates, mp.solvestat+15)

= mp.SolverStatus. See also Table 15.6 and AllSolutionStates.

Chapter 45. Deprecated Language Elements 1218

� .dim This should be replaced by a call to IdentifierDimension.

� .txt This should be replaced by a call to IdentifierText.

� .type This should be replaced by a call to IdentifierType.

Chapter 45. Deprecated Language Elements 1219

Deprecated Modern equivalent

Variables

.l .level

.lo .lower

.up .upper

.freeze .nonvar

.prior .priority

Files

.bm .BottomMargin

.cc .BodyCurrrentColumn

.cr .BodyCurrrentRow

.ftcc .FooterCurrrentColumn

.ftcr .FooterCurrrentRow

.ftll .HeaderSize

.hdcc .HeaderCurrrentColumn

.hdcr .HeaderCurrrentRow

.hdll .FooterSize

.lm .LeftMargin

.lp .pn .PageNumber

.pc .PageMode

.ps .PageSize

.pw .PageWidth

.tm .TopMargin

Mathematical programs

.bestest .objest .BestBound

.CallbackNewIncumbent .CallbackIncumbent

.iterusd .iterations

.nodusd .nodes

.number .SolverCalls

.numequ .NumberOfConstraints

.numinfes .NumberOfInfeasibilities

.numintvar .NumberOfIntegerVariables

.numnlequ .NumberOfNonlinearConstraints

.numnlins .NumberOfNonlinearInstructions

.numnlnz .numnlz .NumberOfNonlinearNonzeros

.numnlvar .NumberOfNonlinearVariables

.numnz .NumberOfNonzeros

.numSOS1 .NumberOfSOS1Constraints

.numSOS2 .NumberOfSOS2Constraints

.numvar .NumberOfVariables

.objval .Objective

.resgen .GenTime

.resusd .SolutionTime

.suminfes .SumOfInfeasibilities

Table 45.4: Aimms deprecated suffixes and their modern equivalents

Chapter 46

Matrix Manipulation Functions

Aimms supports the following matrix manipulation functions:

� MatrixActivateRow

� MatrixAddColumn

� MatrixAddRow

� MatrixDeactivateRow

� MatrixFreezeColumn

� MatrixGenerate

� MatrixModifyCoefficient

� MatrixModifyColumnType

� MatrixModifyDirection

� MatrixModifyLeftHandSide

� MatrixModifyLowerBound

� MatrixModifyQuadraticCoefficient

� MatrixModifyRightHandSide

� MatrixModifyRowType

� MatrixModifyType

� MatrixModifyUpperBound

� MatrixRegenerateRow

� MatrixRestoreState

� MatrixSaveState

� MatrixSolve

� MatrixUnfreezeColumn

In addition, the following function can be used the add cuts during the

solution process of a mixed integer program:

� GenerateCut

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp functions.

Aimms versions prior to version 3.5, also supported a collection of matrix

manipulation procedures with more limited functionality. Although these

procedures will remain to be supported for all Aimms 3.x versions, they

Chapter 46. Matrix Manipulation Functions 1221

have become deprecated. The deprecated manipulation procedures and

their gmp counterparts in Aimms 3.5 and higher are listed in Table 46.1.

Deprecated procedure gmp counterpart

MatrixModifyCoefficient GMP::Coefficient::Set

MatrixModifyQuadraticCoefficient GMP::Coefficient::SetQuadratic

MatrixModifyRightHandSide GMP::Row::SetRightHandSide

MatrixModifyLeftHandSide GMP::Row::SetLeftHandSide

MatrixModifyRowType GMP::Row::SetType

MatrixAddRow GMP::Row::Add

MatrixRegenerateRow GMP::Row::Generate

MatrixDeactivateRow GMP::Row::Deactivate

MatrixActivateRow GMP::Row::Activate

MatrixModifyLowerBound GMP::Column::SetLowerBound

MatrixModifyUpperBound GMP::Column::SetUpperBound

MatrixModifyColumnType GMP::Column::SetType

MatrixAddColumn GMP::Column::Add

MatrixFreezeColumn GMP::Column::Freeze

MatrixUnfreezeColumn GMP::Column::Unfreeze

MatrixModifyType GMP::Instance::SetMathematicalProgrammingType

MatrixModifyDirection GMP::Instance::SetDirection

MatrixGenerate GMP::Instance::Generate

MatrixSolve GMP::Instance::Solve, GMP::SolverSession::Execute

MatrixSaveState GMP::Instance::Copy

MatrixRestoreState GMP::Instance::Copy

Table 46.1: Deprecated matrix manipulation procedures

Chapter 46. Matrix Manipulation Functions 1222

MatrixActivateRow

The procedure MatrixActivateRow activates a row in the matrix that was

previously deactivated.

MatrixActivateRow(

MP, ! (input) a mathematical program

row ! (input) a scalar value

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row in the matrix; this can not be the

objective row.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixDeactivateRow. Matrix manipulation routines are

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1223

MatrixAddColumn

The procedure MatrixAddColumn adds a column to the matrix.

MatrixAddColumn(

MP, ! (input) a mathematical program

column ! (input) a scalar value

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

column

A scalar reference to an existing column name in the model.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Coefficients for this column can be added to the matrix by using the

procedure MatrixModifyCoefficient. After calling MatrixAddColumn the

type and the lower and upper bound of the column are set according to

the definition of the corresponding symbolic variable. By using the

procedures MatrixModifyColumnType, MatrixModifyLowerBound and

MatrixModifyUpperBound the column type and the lower and upper bound

can be changed.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixModifyCoefficient, MatrixModifyColumnType,

MatrixModifyLowerBound, MatrixModifyUpperBound. Matrix manipulation

routines are discussed in more detail in Chapter 16 of the Language

Reference.

Chapter 46. Matrix Manipulation Functions 1224

MatrixAddRow

The procedure MatrixAddRow adds a row to the matrix.

MatrixAddRow(

MP, ! (input) a mathematical program

row ! (input) a scalar value

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row name in the model.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Initially, the row will added with zero coefficients, regardless of whether

the symbolic Aimms constraint has a definition or not. Regeneration of

all of the coefficients of the row according to its definition can be

achieved through the procedure MatrixRegenerateRow. Individual

coefficients of the row can be added by calling the procedure

MatrixModifyCoefficient.

� After calling MatrixAddRow the type of the row is set to ’<=’ and the

right-hand-side value to INF (the left-hand-side value is set to -INF). By

using the procedures MatrixModifyRowType and

MatrixModifyRightHandSide the row type and right-hand-side value can

be changed.

� After a call to MatrixAddRow or MatrixRegenerateRow for a certain row it is

not allowed to do another call to MatrixAddRow for that row.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixModifyCoefficient, MatrixModifyLeftHandSide,

MatrixModifyRightHandSide, MatrixModifyRowType, MatrixRegenerateRow.

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1225

MatrixDeactivateRow

The procedure MatrixDeactivateRow deactivates a row in the matrix. The row

will be ignored by the solver until it is activated again.

MatrixDeactivateRow(

MP, ! (input) a mathematical program

row ! (input) a scalar value

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row in the matrix; this can not be the

objective row.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Deactivating a row results in changing the type of that row into ’<’ and

the right hand side value into INF (the row coefficients do not change).

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixActivateRow. Matrix manipulation routines are

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1226

MatrixFreezeColumn

The procedure MatrixFreezeColumn fixes the value of a column in the model.

The column can be freed by using MatrixUnfreezeColumn.

MatrixFreezeColumn(

MP, ! (input) a mathematical program

column, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing column in the matrix.

value

The value to which the column should be fixed.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� Fixing a column to a certain value has the same effect as changing the

lower and upper bound into that value.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixModifyLowerBound, MatrixModifyUpperBound,

MatrixUnfreezeColumn. Matrix manipulation routines are discussed in more

detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1227

MatrixGenerate

The procedure MatrixGenerate instructs Aimms to generate a mathematical

program without actually solving it.

MatrixGenerate(

MP ! (input) a mathematical program

)

Arguments:

MP

A mathematical program to be generated. The mathematical program

should be a linear, mixed-integer linear or quadratic programming

model.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� The procedure MatrixGenerate can be used to generate a mathematical

program, if your algorithm does not call the SOLVE statement to solve it

initially, prior using the matrix manipulation routines.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1228

MatrixModifyCoefficient

The procedure MatrixModifyCoefficient changes a coefficient in the matrix.

This procedure can also be used to modify a coefficient in the objective row.

The value for the coefficient can be equal to 0.0 prior to calling this procedure.

MatrixModifyCoefficient(

MP, ! (input) a mathematical program

row, ! (input) a scalar value

column, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row in the matrix; this might be the

objective row.

column

A scalar reference to an existing column in the matrix.

value

The new value that should be assigned to the coefficient

corresponding to row and column in the matrix. This value should be

unequal to NA, INF, -INF and UNDF.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1229

MatrixModifyColumnType

The procedure MatrixModifyColumnType changes the type of a column in the

matrix into either ’continuous’ or ’integer’.

MatrixModifyColumnType(

MP, ! (input) a mathematical program

column, ! (input) a scalar value

type ! (input) a column type

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

column

A scalar reference to an existing column in the matrix.

type

One of the column types ’continuous’ or ’integer’ that should be

assigned to the column.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1230

MatrixModifyDirection

The procedure MatrixModifyDirection changes the direction of a mathematical

program to ’maximize’, ’minimize’ or ’none’. The direction ’none’ is the

instruction to the solver to find a feasible solution. If the type of the

mathematical program is ’MIP’ then the solver will try to find an integer

feasible solution.

MatrixModifyDirection(

MP, ! (input) a mathematical program

direction ! (input) a direction

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

direction

One of the directions ’maximize’, ’minimize’ or ’none’.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

The set AllMatrixManipulationDirections. Matrix manipulation routines

are discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1231

MatrixModifyLeftHandSide

The procedure MatrixModifyLeftHandSide changes the left-hand-side of a row

in the matrix.

MatrixModifyLeftHandSide(

MP, ! (input) a mathematical program

row, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing ranged row in the matrix.

value

The new value that should be assigned to the left-hand-side of the

row. This value should be unequal to NA, UNDF and INF (but might be

-INF).

Remarks:

� After a call to MatrixSolve Aimms checks for each modified ranged row

whether or not the left-hand-side value is valid, that is, the

left-hand-side value should be unequal to INF.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixModifyRightHandSide, MatrixSolve. Matrix

manipulation routines are discussed in more detail in Chapter 16 of the

Language Reference.

Chapter 46. Matrix Manipulation Functions 1232

MatrixModifyLowerBound

The procedure MatrixModifyLowerBound changes the lower bound of a column

in the matrix.

MatrixModifyLowerBound(

MP, ! (input) a mathematical program

column, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing column in the matrix.

value

The new value that should be assigned to the lower bound of the

column.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixModifyUpperBound. Matrix manipulation routines are

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1233

MatrixModifyQuadraticCoefficient

The procedure MatrixModifyQuadraticCoefficient changes a quadratic

coefficient in the objective row of a quadratic mathematical program. The

value for the coefficient can be equal to 0.0 prior to calling this procedure.

MatrixModifyQuadraticCoefficient(

MP, ! (input) a mathematical program

col1, ! (input) a scalar value

col2, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a quadratic programming model.

col1

A scalar reference to an existing column.

col2

A scalar reference to an existing column.

value

The new value that should be assigned to the quadratic coefficient

corresponding to col1 and col2 in the objective row. This value should

be unequal to NA, INF, -INF and UNDF.

Return value:

The procedure returns 1 on success, and 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1234

MatrixModifyRightHandSide

The procedure MatrixModifyRightHandSide changes the right-hand-side of a

row in the matrix.

MatrixModifyRightHandSide(

MP, ! (input) a mathematical program

row, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row in the matrix; this can not be the

objective row.

value

The new value that should be assigned to the right-hand-side of the

row. This value should be unequal to NA and UNDF (but might be INF or

-INF).

Remarks:

� If you assign INF to the right-hand-side value of a row with type ’=’,

MatrixModifyRightHandSide will not produce an error, since you might

want to change the type of this row into ’<=’ (using

MatrixModifyRowType) immediately thereafter.

� After a call to MatrixSolve Aimms checks for each modified row whether

or not the right-hand-side value is valid for the current row type. If the

row type is ’=’ then the right-hand-side value should be unequal to INF

and -INF; if the row type is ’<=’ or ’ranged’ then it should be unequal to

-INF.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixModifyLeftHandSide, MatrixModifyRowType,

MatrixSolve. Matrix manipulation routines are discussed in more detail in

Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1235

MatrixModifyRowType

The procedure MatrixModifyRowType changes the type of a row in the matrix.

MatrixModifyRowType(

MP, ! (input) a mathematical program

row, ! (input) a scalar value

type ! (input) a row type

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row in the matrix; this can not be the

objective row.

type

One of the row types ’<=’, ’=’, ’>=’ or ’ranged’ that should be

assigned to the row.

Remarks:

� The following examples show what happens if we change the row type

into ’ranged’:

a(x) <= 3 modified into ’ranged’ results in -inf <= a(x) <= 3

a(x) >= 3 modified into ’ranged’ results in 3 <= a(x) <= inf

a(x) = 3 modified into ’ranged’ results in 3 <= a(x) <= 3

The next examples show what happens if we change the row type of a

’ranged’ row:

2 <= a(x) <= 4 modified into ’<=’ results in a(x) <= 4

2 <= a(x) <= 4 modified into ’>=’ results in a(x) >= 2

2 <= a(x) <= 4 modified into ’=’ results in a(x) = 4

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1236

MatrixModifyType

The procedure MatrixModifyType changes the type of a mathematical program

from ’MIP’ into ’RMIP’, or vice versa.

MatrixModifyType(

MP, ! (input) a mathematical program

type ! (input) a mathematical programming type

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

type

One of the types ’MIP’ or ’RMIP’.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1237

MatrixModifyUpperBound

The procedure MatrixModifyUpperBound changes the upper bound of a column

in the matrix.

MatrixModifyUpperBound(

MP, ! (input) a mathematical program

column, ! (input) a scalar value

value ! (input) a numerical expression

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

column

A scalar reference to an existing column in the matrix.

value

The new value that should be assigned to the upper bound of the

column.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixModifyLowerBound. Matrix manipulation routines are

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1238

MatrixRegenerateRow

The procedure MatrixRegenerateRow regenerates the coefficients of a row

according to the definition of its associated symbolic constraint in the model.

MatrixRegenerateRow(

MP, ! (input) a mathematical program

row ! (input) a scalar value

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

row

A scalar reference to an existing row name in the model.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� If the row does not exist yet, it will be automatically added to the matrix

before generating its coefficients.

� Before regenerating the row, the procedure first removes all existing

matrix coefficients.

� This procedure will automatically add columns that are not in the

matrix.

� The row type and the right-hand-side value (and, if the row type is

’ranged’, the left-hand-side value) are set according to the constraint

definition.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixAddRow, MatrixModifyCoefficient,

MatrixModifyLeftHandSide, MatrixModifyRightHandSide, MatrixModifyRowType.

Matrix manipulation routines are discussed in more detail in Chapter 16

of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1239

MatrixRestoreState

With procedure MatrixRestoreState you can restore the state of your

mathematical program as it was on the moment that you called

MatrixSaveState.

MatrixRestoreState(

MP, ! (input) a mathematical program

state ! (input) an integer scalar parameter

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

state

The value corresponding to a state that you want to restore.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixSaveState. Matrix manipulation routines are

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1240

MatrixSaveState

With the procedure MatrixSaveState you can save the current state of a

mathematical program. Later on, after manipulating the mathematical

program, you can restore this state by calling MatrixRestoreState.

MatrixSaveState(

MP, ! (input) a mathematical program

state ! (output) an integer scalar parameter

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

state

On return, contains a positive integer value assigned to the state.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� States are numbered from 1 upwards by Aimms.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixRestoreState. Matrix manipulation routines are

discussed in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1241

MatrixSolve

The procedure MatrixSolve instructs the solver to solve a mathematical

program in its current state after being modified by using several matrix

manipulation procedures.

MatrixSolve(

MP ! (input) a mathematical program

)

Arguments:

MP

A mathematical program that was previously solved or generated.

The mathematical program should be a linear, mixed-integer linear or

quadratic programming model.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� After a call to MatrixSolve Aimms will first check if all modifications

performed by calling matrix manipulation procedures are all valid,

before actually calling the solver. Most errors, however, will be filtered

out by the matrix manipulation procedures themselves.

� As of Aimms release 3.5, the matrix manipulation procedures have

become deprecated. New projects should use the gmp library instead.

Please refer to Table 46.1 of the Language Reference for a mapping of

the matrix manipulation procedures to corresponding gmp procedures.

See also:

The procedure MatrixGenerate. Matrix manipulation routines are discussed

in more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1242

MatrixUnfreezeColumn

The procedure MatrixUnfreezeColumn frees a column that was fixed with

MatrixFreezeColumn. After calling MatrixUnfreezeColumn the value of the

column can vary again between its lower and upper bound.

MatrixUnfreezeColumn(

MP, ! (input) a mathematical program

column ! (input) a scalar value

)

Arguments:

MP

A mathematical program that was previously solved. The

mathematical program should be a linear or mixed-integer linear

programming model.

column

A scalar reference to an existing fixed column in the matrix.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

As of Aimms release 3.5, the matrix manipulation procedures have become

deprecated. New projects should use the gmp library instead. Please refer

to Table 46.1 of the Language Reference for a mapping of the matrix

manipulation procedures to corresponding gmp procedures.

See also:

The procedures MatrixFreezeColumn, MatrixModifyLowerBound,

MatrixModifyUpperBound. Matrix manipulation routines are discussed in

more detail in Chapter 16 of the Language Reference.

Chapter 46. Matrix Manipulation Functions 1243

GenerateCut

The procedure GenerateCut adds a row to the matrix during the solution

process of a mixed integer proghram.

GenerateCut(

Arow, ! (input) a scalar value

[local] ! (optional, default 1) a scalar binary expression

)

Arguments:

Arow

A scalar reference to an existing row name in the model.

local

A scalar binary value to indicate whether the cut is valid for the local

problem (i.e. the problem corresponding to the current node in the

solution process and all its descendant nodes) only (value 1) or for

the global problem (value 0).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This procedure can only be called from within a CallbackAddCut callback

procedure.

� A CallbackAddCut callback procedure will only be called when solving

mixed integer programs with Cplex, Gurobi or Odh-Cplex.

See also:

See Section 15.2 of the Language Reference for more details on how to

install a callback procedure to add cuts.

Chapter 47

Outer Approximation Functions

The Aimms Outer Approximation functions allow you to solve MINLP

problems through a sequence of MIP and NLP solves. The following Outer

Approximation functions are available.

Master MIP

functions

Aimms supports the following Outer Approximation functions for solving and

managing the master MIP problem:

� MasterMIPAddLinearizations

� MasterMIPDeleteIntegerEliminationCut

� MasterMIPDeleteLinearizations

� MasterMIPEliminateIntegerSolution

� MasterMIPGetCPUTime

� MasterMIPGetIterationCount

� MasterMIPGetNumberOfColumns

� MasterMIPGetNumberOfNonZeros

� MasterMIPGetNumberOfRows

� MasterMIPGetObjectiveValue

� MasterMIPGetProgramStatus

� MasterMIPGetSolverStatus

� MasterMIPGetSumOfPenalties

� MasterMIPIsFeasible

� MasterMIPLinearizationCommand

� MasterMIPSetCallback

� MasterMIPSolve

MINLP functionsAimms supports the following Outer Approximation functions for managing

the global MINLP problem:

� MINLPGetIncumbentObjectiveValue

� MINLPGetOptimizationDirection

� MINLPIncumbentIsFeasible

� MINLPIncumbentSolutionHasBeenFound

� MINLPSetIncumbentSolution

� MINLPSetIterationCount

� MINLPSetProgramStatus

� MINLPSolutionDelete

Chapter 47. Outer Approximation Functions 1245

� MINLPSolutionRetrieve

� MINLPSolutionSave

NLP functionsAimms supports the following Outer Approximation functions for managing

and solving the NLP problem:

� NLPGetCPUTime

� NLPGetIterationCount

� NLPGetNumberOfColumns

� NLPGetNumberOfNonZeros

� NLPGetNumberOfRows

� NLPGetObjectiveValue

� NLPGetProgramStatus

� NLPGetSolverStatus

� NLPIsFeasible

� NLPLinearizationPointHasBeenFound

� NLPSolutionIsInteger

� NLPSolve

Chapter 47. Outer Approximation Functions 1246

MasterMIPAddLinearizations

The procedure MasterMIPAddLinearizations adds a linearization for a subset of

AllNonlinearConstraints. The linearizations are created by using the solution

present at that time inside the Aimms Outer Approximation solver interface.

Normally the solution that is returned by the NLP solver is used.

When permitted, variables are introduced to allow for deviations from each

linearized constraint. These deviation variables are penalized in the objective

function using the penalty multipliers times the corresponding shadow prices

(Lagrange multipliers). The procedure returns the updated linearization

counter in the output argument n.

MasterMIPAddLinearizations(

IncludedConstraints, ! (input) subset of the set AllNonlinearConstraints

DeviationsPermitted, ! (input) 0-1 parameter over AllNonlinearConstraints

PenaltyMultiplier, ! (input) parameter over AllNonlinearConstraints

n ! (output) integer scalar parameter

)

Arguments:

IncludedConstraints

Set of nonlinear constraints for which linearizations have to be added.

DeviationsPermitted

Parameter that indicates whether or not variables should be

introduced to allow for deviations from each linearized constraint. If

so, the corresponding entry in this parameter should be 1, otherwise

0.

PenaltyMultiplier

The deviation variables (if any) are penalized in the objective function

by using the values in this parameter times the corresponding

shadow prices (Lagrange multipliers).

n

The updated linearization counter.

Return value:

MasterMIPAddLinearizations has no return value.

Chapter 47. Outer Approximation Functions 1247

MasterMIPDeleteIntegerEliminationCut

The procedure MasterMIPDeleteIntegerEliminationCut deletes a set of integer

solution elimination cuts and variables that was previously added by the

MasterMIPEliminateIntegerSolution procedure.

MasterMIPDeleteIntegerEliminationCut(

n ! (input) integer scalar value

)

Arguments:

n

The cut counter for the set of cuts and variables that has to be

deleted. It was returned by MasterMIPEliminateIntegerSolution when

these cuts and variables were added.

Return value:

MasterMIPDeleteIntegerEliminationCut has no return value.

Chapter 47. Outer Approximation Functions 1248

MasterMIPDeleteLinearizations

The procedure MasterMIPDeleteLinearizations deletes a set of linearizations

that was previously added by the MasterMIPAddLinearizations procedure for a

certain solution.

MasterMIPDeleteLinearizations(

n ! (input) integer scalar value

)

Arguments:

n

The linearization counter for the set of linearizations that has to be

deleted. It was returned by MasterMIPAddLinearizations when these

linearizations were added.

Return value:

MasterMIPDeleteLinearizations has no return value.

Chapter 47. Outer Approximation Functions 1249

MasterMIPEliminateIntegerSolution

The procedure MasterMIPEliminateIntegerSolution adds a set of cuts and

variables to the master MIP model instance which eliminates the current

integer solution inside the Aimms Outer Approximation solver interface.

MasterMIPEliminateIntegerSolution(

n ! (output) integer scalar parameter

)

Arguments:

n

The updated cut counter.

Return value:

MasterMIPEliminateIntegerSolution has no return value.

Remarks:

To eliminate the current integer solution, 3 variables (2 continuous, 1

binary) and 3 constraints are added for each integer variable whose level

value is between its bounds. Also one main cut constraint is added. In

case all integer variables are binary, only this main cut constraint is added.

Chapter 47. Outer Approximation Functions 1250

MasterMIPGetCPUTime

The function MasterMIPGetCPUTime returns the CPU time needed to solve the

master MIP problem.

MasterMIPGetCPUTime

Arguments:

None

Return value:

The function MasterMIPGetCPUTime returns the double value of the CPU

time (in seconds) needed to solve the last master MIP problem.

Chapter 47. Outer Approximation Functions 1251

MasterMIPGetIterationCount

The function MasterMIPGetIterationCount returns the iteration count

associated with the last master MIP problem solved.

MasterMIPGetIterationCount

Arguments:

None

Return value:

The function MasterMIPGetIterationCount returns the iteration count

associated with the last master MIP problem solved.

Chapter 47. Outer Approximation Functions 1252

MasterMIPGetNumberOfColumns

The function MasterMIPGetNumberOfColumns returns the number of columns in

the last master MIP problem solved.

MasterMIPGetNumberOfColumns

Arguments:

None

Return value:

The function MasterMIPGetNumberOfColumns returns the number of columns

in the last master MIP problem solved.

Chapter 47. Outer Approximation Functions 1253

MasterMIPGetNumberOfNonZeros

The function MasterMIPGetNumberOfNonZeros returns the number of nonzeros

in the last master MIP problem solved.

MasterMIPGetNumberOfNonZeros

Arguments:

None

Return value:

The function MasterMIPGetNumberOfNonZeros returns the number of

nonzeros in the last master MIP problem solved.

Chapter 47. Outer Approximation Functions 1254

MasterMIPGetNumberOfRows

The function MasterMIPGetNumberOfRows returns the number of rows in the last

master MIP problemm solved.

MasterMIPGetNumberOfRows

Arguments:

None

Return value:

The function MasterMIPGetNumberOfRows returns the number of rows in the

last master MIP problem solved.

Chapter 47. Outer Approximation Functions 1255

MasterMIPGetObjectiveValue

The function MasterMIPGetObjectiveValue returns the objective value of the

last solved master MIP.

MasterMIPGetObjectiveValue

Arguments:

None

Return value:

The function MasterMIPGetObjectiveValue returns the objective value of the

last solved master MIP.

Chapter 47. Outer Approximation Functions 1256

MasterMIPGetProgramStatus

The function MasterMIPGetProgramStatus returns the program (or model)

status associated with the last master MIP problem solved.

MasterMIPGetProgramStatus

Arguments:

None

Return value:

The function MasterMIPGetProgramStatus returns the program (or model)

status associated with the last master MIP problem solved. The return

value will be an element in the set AllSolutionStates.

Chapter 47. Outer Approximation Functions 1257

MasterMIPGetSolverStatus

The function MasterMIPGetSolverStatus returns the solver status associated

with the last master MIP problem solved.

MasterMIPGetSolverStatus

Arguments:

None

Return value:

The function MasterMIPGetSolverStatus returns the solver status

associated with the last master MIP problem solved. The return value will

be an element in the set AllSolutionStates.

Chapter 47. Outer Approximation Functions 1258

MasterMIPGetSumOfPenalties

The function MasterMIPGetSumOfPenalties returns the sum of the penalties in

the solution of the last solved master MIP.

MasterMIPGetSumOfPenalties

Arguments:

None

Return value:

The function MasterMIPGetSumOfPenalties returns the sum of the penalties

in the solution of the last solved master MIP.

Chapter 47. Outer Approximation Functions 1259

MasterMIPIsFeasible

The function MasterMIPIsFeasible indicates whether the solution found for

the last solved master MIP is feasible or not.

MasterMIPIsFeasible

Arguments:

None

Return value:

The function MasterMIPIsFeasible returns 1 if the solution of the last

master MIP is feasible, or 0 otherwise.

Chapter 47. Outer Approximation Functions 1260

MasterMIPLinearizationCommand

The procedure MasterMIPLinearizationCommand allows you to retrieve or

modify certain aspects of the linearization of a constraint added for

linearization counter n at the individual level. The argument Command specifies

which data (e.g. GetDeviation) should be retrieved or modified. The retrieved

or modified value is passed through the CommandData argument.

MasterMIPLinearizationCommand(

n, ! (input) integer scalar value

ModelConstraint, ! (input) scalar value

Command, ! (input) element parameter into

! MasterMIPLinearizationCommands

CommandData ! (inout) scalar value (in) or parameter (out)

)

Arguments:

n

The linearization counter as returned by MasterMIPAddLinearizations

when adding this linearization.

ModelConstraint

Scalar reference to a constraint for which certain aspects of the

linearization have to be retrieved or modified.

Command

Element parameter into MasterMIPLinearizationCommands that specifies

which data should be retrieved or modified. Possible values are:

Command Description

GetDeviation Get the value of the deviation variable.

RemoveDeviation Delete the deviation variable.

GetWeight Get the objective coefficient of the deviation

variable.

SetWeight Set the objective coefficient of the deviation

variable.

GetDeviationBound Get the upper bound of the deviation variable.

SetDeviationBound Get the upper bound of the deviation variable.

GetLagrangeMultiplier Get value of the shadow price (Lagrange mul-

tiplier) of constraint for last solved NLP.

CommandData

The retrieved or modified value.

Return value:

MasterMIPLinearizationCommand has no return value.

Chapter 47. Outer Approximation Functions 1261

Remarks:

� Normally, the weight obtained with ’GetWeight’ equals the value of the

penalty multiplier, as passed to MasterMIPAddLinearizations, times the

shadow price (Lagrange multiplier) of the constraint. With ’SetWeight’

this weight can be changed.

� Note that ’SetWeight’ can be used to create a deviation variable (slack) if

the linearization does not have one. To do so the value filled in for

CommandData should be unequal to 0.

� The lower bound of a deviation variable always equals 0.

Chapter 47. Outer Approximation Functions 1262

MasterMIPSetCallback

The procedure MasterMIPSetCallback allows the user to set a callback

procedure that will be called during the solve of the master MIP. It will be

called either for every new incumbent value found by the MIP solver or after a

certain number of iterations. This is determined by the argument Iterations.

MasterMIPSetCallback(

ProcedureName, ! (input) scalar string expression

Iterations ! (input) integer scalar value

)

Arguments:

ProcedureName

The name of the Aimms procedure that will be used as callback

procedure.

Iterations

If Iterations ≥ 1 then the callback procedure will be called after this

number of iterations; else it will be called for every new incumbent

value found by the MIP solver.

Return value:

MasterMIPSetCallback() has no return value.

Chapter 47. Outer Approximation Functions 1263

MasterMIPSolve

The procedure MasterMIPSolve calls the MIP solver to solve the master MIP

problem. Any modifications that have been made since the last call to

MasterMIPSolve will be added to the master MIP prior to solving. Examples of

such modifications are additions of linearizations and cuts that eliminate

integer solutions.

MasterMIPSolve

Arguments:

None

Return value:

MasterMIPSolve() has no return value.

Chapter 47. Outer Approximation Functions 1264

MINLPGetIncumbentObjectiveValue

The function MINLPGetIncumbentObjectiveValue returns the objective value

associated with the incumbent solution.

MINLPGetIncumbentObjectiveValue

Arguments:

None

Return value:

The function MINLPGetIncumbentObjectiveValue returns the objective value

associated with the incumbent solution.

Chapter 47. Outer Approximation Functions 1265

MINLPGetOptimizationDirection

The function MINLPGetOptimizationDirection returns the optimization

direction: 1 for maximization and -1 for minimization.

MINLPGetOptimizationDirection

Arguments:

None

Return value:

The function MINLPGetOptimizationDirection returns 1 for maximization

and -1 for minimization.

Chapter 47. Outer Approximation Functions 1266

MINLPIncumbentIsFeasible

The function MINLPIncumbentIsFeasible indicates whether the current

incumbent solution is feasible or not for the MINLP problem.

MINLPIncumbentIsFeasible

Arguments:

None

Return value:

The function MINLPIncumbentIsFeasible returns 1 if the current incumbent

solution is feasible for the MINLP problem, or 0 otherwise.

Chapter 47. Outer Approximation Functions 1267

MINLPIncumbentSolutionHasBeenFound

The function MINLPIncumbentSolutionHasBeenFound indicates whether an

incumbent has already been specified.

MINLPIncumbentSolutionHasBeenFound

Arguments:

None

Return value:

The function MINLPIncumbentSolutionHasBeenFound returns 1 if an

incumbent has already been specified, or 0 otherwise.

Chapter 47. Outer Approximation Functions 1268

MINLPSetIncumbentSolution

The procedure MINLPSetIncumbentSolution marks the current values of the

decision variables as an incumbent solution for the MINLP problem.

MINLPSetIncumbentSolution

Arguments:

None

Return value:

MINLPSetIncumbentSolution() has no return value.

Chapter 47. Outer Approximation Functions 1269

MINLPSetIterationCount

The procedure MINLPSetIterationCount sets the iteration count for the MINLP

problem.

MINLPSetIterationCount(

IterationCount ! (input) integer scalar value

)

Arguments:

IterationCount

The iteration number that should be set for the MINLP problem.

Return value:

MINLPSetIterationCount() has no return value.

Chapter 47. Outer Approximation Functions 1270

MINLPSetProgramStatus

The procedure MINLPSetProgramStatus sets the program status for the MINLP

problem.

MINLPSetProgramStatus(

ProgramStatus ! (input) element parameter into AllSolutionStates

)

Arguments:

ProgramStatus

Element parameter into AllSolutionStates that sets the program

status for the MINLP problem.

Return value:

MINLPSetProgramStatus() has no return value.

Chapter 47. Outer Approximation Functions 1271

MINLPSolutionDelete

The procedure MINLPSolutionDelete deletes the solution inside the Aimms

Outer Approximation solver interface that was previously saved by a call to

MINLPSolutionSave with solution number n.

MINLPSolutionDelete(

n ! (input) integer scalar value

)

Arguments:

n

The solution number corresponding to the solution that has to be

deleted. The solution number was passed to MINLPSolutionSave before

to label the solution.

Return value:

MINLPSolutionDelete has no return value.

Chapter 47. Outer Approximation Functions 1272

MINLPSolutionRetrieve

The procedure MINLPSolutionRetrieve retrieves the solution previously saved

by a call to MINLPSolutionSave with solution number n, and stores it as the

current solution inside the Aimms Outer Approximation solver interface.

MINLPSolutionRetrieve(

n ! (input) integer scalar value

)

Arguments:

n

The solution number corresponding to the solution that has to be

retrieved. The solution number was passed to MINLPSolutionSave

before to label the solution.

Return value:

MINLPSolutionRetrieve has no return value.

Chapter 47. Outer Approximation Functions 1273

MINLPSolutionSave

The procedure MINLPSolutionSave saves the current solution that is present

inside the Aimms Outer Approximation solver interface, and stores it as

solution number n for later retrieval.

MINLPSolutionSave(

n ! (input) integer scalar value

)

Arguments:

n

The solution number used to label the saved solution.

Return value:

MINLPSolutionSave has no return value.

Remarks:

If as solution was saved before with the same value for n then that

solution will be replaced by this new solution.

Chapter 47. Outer Approximation Functions 1274

NLPGetCPUTime

The function NLPGetCPUTime returns the CPU time needed to solve the last NLP

subproblem.

NLPGetCPUTime

Arguments:

None

Return value:

The function NLPGetCPUTime returns the double value of the CPU time (in

seconds) needed to solve the last NLP subproblem.

Chapter 47. Outer Approximation Functions 1275

NLPGetIterationCount

The function NLPGetIterationCount returns the iteration count associated with

the last NLP subproblem solved.

NLPGetIterationCount

Arguments:

None

Return value:

The function NLPGetIterationCount returns the iteration count associated

with the last NLP subproblem solved.

Chapter 47. Outer Approximation Functions 1276

NLPGetNumberOfColumns

The function NLPGetNumberOfColumns returns the number of columns in the last

NLP subproblem solved.

NLPGetNumberOfColumns

Arguments:

None

Return value:

The function NLPGetNumberOfColumns returns the number of columns in the

last NLP subproblem solved.

Chapter 47. Outer Approximation Functions 1277

NLPGetNumberOfNonZeros

The function NLPGetNumberOfNonZeros returns the number of nonzeros in the

last NLP subproblem solved.

NLPGetNumberOfNonZeros

Arguments:

None

Return value:

The function NLPGetNumberOfNonZeros returns the number of nonzeros in

the last NLP subproblem solved.

Chapter 47. Outer Approximation Functions 1278

NLPGetNumberOfRows

The function NLPGetNumberOfRows returns the number of rows in the last NLP

subproblem solved.

NLPGetNumberOfRows

Arguments:

None

Return value:

The function NLPGetNumberOfRows returns the number of rows in the last

NLP subproblem solved.

Chapter 47. Outer Approximation Functions 1279

NLPGetObjectiveValue

The function NLPGetObjectiveValue returns the objective value of the last

solved NLP.

NLPGetObjectiveValue

Arguments:

None

Return value:

The function NLPGetObjectiveValue returns the objective value of the last

solved NLP.

Chapter 47. Outer Approximation Functions 1280

NLPGetProgramStatus

The function NLPGetProgramStatus returns the program (or model) status

associated with the last NLP subproblem solved.

NLPGetProgramStatus

Arguments:

None

Return value:

The function NLPGetProgramStatus returns the program (or model) status

associated with the last NLP subproblem solved. The return value will be

an element in the set AllSolutionStates.

Chapter 47. Outer Approximation Functions 1281

NLPGetSolverStatus

The function NLPGetSolverStatus returns the solver status associated with the

last NLP subproblem solved.

NLPGetSolverStatus

Arguments:

None

Return value:

The function NLPGetSolverStatus returns the solver status associated with

the last NLP subproblem solved. The return value will be an element in the

set AllSolutionStates.

Chapter 47. Outer Approximation Functions 1282

NLPIsFeasible

The function NLPIsFeasible indicates whether the solution found for the last

solved NLP is feasible or not.

NLPIsFeasible

Arguments:

None

Return value:

The function NLPIsFeasible returns 1 if the solution of the last NLP is

feasible, or 0 otherwise.

Chapter 47. Outer Approximation Functions 1283

NLPLinearizationPointHasBeenFound

The function NLPLinearizationPointHasBeenFound indicates whether the NLP

solver has found a point that can be used to linearize the nonlinear

constraints. If the NLP problem is infeasible then usually the NLP solver

provides a point that solves the so-called feasibility problem (i.e., a point that

minimizes the sum of the infeasibilities).

NLPLinearizationPointHasBeenFound

Arguments:

None

Return value:

The function NLPLinearizationPointHasBeenFound returns 1 if the NLP

solver has found a point that can be used to linearize the nonlinear

constraints. It returns 0 otherwise.

Remarks:

This function always returns 1 if the NLP has found a feasible solution.

Chapter 47. Outer Approximation Functions 1284

NLPSolutionIsInteger

The function NLPSolutionIsInteger indicates whether the solution found for

the last NLP is integer and feasible, or not.

NLPSolutionIsInteger

Arguments:

None

Return value:

The function NLPSolutionIsInteger returns 1 if the solution of the last NLP

is integer feasible, or 0 otherwise.

Chapter 47. Outer Approximation Functions 1285

NLPSolve

The procedure NLPSolve calls the NLP solver to solve the NLP subproblem in

which the (symbolic) integer variables in the set FrozenVariables remain

frozen during the solve, and all other integer variables are considered to be

continuous between their bounds.

NLPSolve(

FrozenVariables ! (input) subset of the set AllIntegerVariables

)

Arguments:

FrozenVariables

The set of (symbolic) integer variables that remain frozen during the

solve of the NLP. This is a subset of AllIntegerVariables.

Return value:

NLPSolve() has no return value.

Chapter 48

Data management via a single data manager

file

Aimms supports the following functions for accessing the cases in the Data

Manager; the chosen Data Management style is single data manager file:

� Cases

� Data categories

� Datasets

48.1 Cases

� CaseDelete

� CaseFind

� CaseGetChangedStatus

� CaseGetDatasetReference

� CaseGetType

� CaseLoadCurrent

� CaseLoadIntoCurrent

� CaseMerge

� CaseNew

� CaseSave

� CaseSaveAll

� CaseSaveAs

� CaseSelect

� CaseSelectMultiple

� CaseSelectNew

� CaseSetChangedStatus

� CaseSetCurrent

� CaseReadFromSingleFile

� CaseWriteToSingleFile

Chapter 48. Data management via a single data manager file 1287

CaseCreate

The procedure CaseCreate creates a new case node in the Data Management

tree. The name of the case and the folder in which it is created is given as an

argument to the function.

CaseCreate(

case_path, ! (input) scalar string expression

case ! (output) element parameter into AllCases

)

Arguments:

case path

A string expression holding the path and name of the new case. The

path is specified relative to the root of the case tree.

case

An element parameter into AllCases. On successful return this

parameter will refer to the newly created element in AllCases.

Return value:

The procedure returns 1 if the case is created successfully. It returns 0 if

the case could not be created or if the case already exists.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the specified path contains folders that do not exist, then these

folders are created automatically. To check whether a specific case path

already exists you can use the function CaseFind.

� If the option Data Management style is set to disk files and folders there

is no valid replacement.

See also:

The procedures CaseFind, CaseDelete.

Chapter 48. Data management via a single data manager file 1288

CaseDelete

The procedure CaseDelete deletes a specific case node from the Data

Management tree.

CaseDelete(

case ! (input) element parameter into AllCases

)

Arguments:

case

An element parameter into AllCases, representing the case that you

want to delete.

Return value:

The procedure returns 1 if the case is deleted successfully, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function FileDelete instead.

See also:

The procedure CaseFind.

Chapter 48. Data management via a single data manager file 1289

CaseFind

The procedure CaseFind searches the Data Management tree for a case with a

specific name.

CaseFind(

case_path, ! (input) scalar string expression

case ! (output) element parameter into AllCases

)

Arguments:

case path

A string expression holding the path and name of a case. The path is

specified relative to the root of the case tree.

case

An element parameter into AllCases. On successfull return this

parameter will refer to the case found.

Return value:

The procedure returns 1 if the case is found, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders there

is no valid replacement.

See also:

The procedures CaseCreate, CaseDelete.

Chapter 48. Data management via a single data manager file 1290

CaseGetChangedStatus

The function CaseGetChangedStatus returns whether the data of the currently

active case has changed and thus needs to be saved.

CaseGetChangedStatus

Arguments:

None

Return value:

The function returns 1 if the data has changed, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function DataChangeMonitorHasChanged instead.

See also:

The functions CaseSetChangedStatus, CaseSave.

Chapter 48. Data management via a single data manager file 1291

CaseGetDatasetReference

With the function CaseGetDatasetReference you can, for every data category,

obtain a reference to the dataset that is included in a specific case.

CaseGetDatasetReference(

case, ! (input) element from the set AllCases

data_category, ! (input) element from the set AllDataCategories

dataset ! (output) element parameter into AllDataSets

)

Arguments:

case

An element in the set AllCases, refering to the case for which you

want to retrieve the dataset reference.

data-category

An element in the set AllDataCategories, refering to the specific data

category for which you want to obtain the dataset reference.

dataset

An element parameter into AllDataSets, on return this argument will

contain the included dataset. It is set to the empty element if no

dataset is included or if the dataset no longer exists.

Return value:

If any of the first two arguments does not refer to a valid case or data

category, or if the data category is not part of the case type, then the

function returns −1 and CurrentErrorMessage will contain a proper error

message. If a dataset is included, and this dataset still exists, then the

function returns 1 and the argument dataset will refer to that dataset. If

there is no dataset included, then the function returns 1 and dataset is set

to the empty element. If a dataset is included, but this dataset has been

deleted, then the function returns 0 and dataset is set to the empty

element.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� You can use the functions CaseGetType and CaseTypeCategories to check

whether a specific data category is part of a case.

� If the option Data Management style is set to disk files and folders there

is no valid replacement.

See also:

The functions CaseGetType, CaseTypeCategories.

Chapter 48. Data management via a single data manager file 1292

CaseGetType

The procedure CaseGetType retrieves the case type for a specific case.

CaseGetType(

case, ! (input) element of the set AllCases

case_type ! (output) element parameter into AllCaseTypes

)

Arguments:

case

An element of the set AllCases, refering to the case for which you

want to retrieve its case type.

case type

An element parameter into AllCaseTypes, on successfull return this

argument will contain the case type for the given case.

Return value:

The procedure returns 1 on success, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseFileGetContentType instead.

Chapter 48. Data management via a single data manager file 1293

CaseLoadCurrent

The procedure CaseLoadCurrent loads an existing case as the new current case.

You can use it to load either a case that is passed as argument to the

procedure, or a case that the user can select via a dialog box. If the data of

the currently loaded case has changed, then the user is asked to save this

data first.

CaseLoadCurrent(

case, ! (input/output) An element parameter into AllCases

[dialog], ! (optional) 0 or 1

[keepUnreferencedRuntimeLibs ! (optional) 0 or 1

)

Arguments:

case

An element parameter into the pre-defined set AllCases. If the

argument dialog is set to 0, then no dialog box is shown and the case

to which the element parameter currently refers is loaded. If the

argument dialog is set to 1, then the value of the element parameter

is used to initialize the dialog box. The case that the user has selected

and is loaded successfully is returned through this argument.

dialog (optional)

An integer value indicating whether or not the user gets a dialog box

in which he can select the case to load. The default value is 1, thus if

this argument is omitted the dialog box will be shown.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the case is loaded, but not referenced in the case,

should be kept in memory or destroyed during the case load. The

default is 0 indicating that the runtime libraries not referenced in the

case should be destroyed during the case load.

Return value:

The procedure returns 1 on success. If the user cancelled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If you want to suppress the dialog box for the unsaved data, then you

may call CaseSetChangedStatus(0) prior to CaseLoadCurrent.

� If the option Data Management style is set to disk files and folders,

please use the function CaseCommandLoadAsActive instead.

Chapter 48. Data management via a single data manager file 1294

See also:

The procedures CaseLoadIntoCurrent, CaseMerge, CaseSave,

CaseSetChangedStatus.

Chapter 48. Data management via a single data manager file 1295

CaseLoadIntoCurrent

The procedure CaseLoadIntoCurrent loads the data of an existing case into the

current case. You can use it to load either a case that is passed as argument

to the procedure, or a case that the user can select via a dialog box. The data

that is stored in the case will overwrite any data of the currently active case,

and thus this current case is set to have changed data.

CaseLoadIntoCurrent(

case, ! (input/output) An element parameter into AllCases

[dialog] ! (optional) 0 or 1

[keepUnreferencedRuntimeLibs ! (optional) 0 or 1

)

Arguments:

case

An element parameter into the pre-defined set AllCases. If the

argument dialog is set to 0, then no dialog is shown and the case to

which the element parameter currently refers is loaded. If the

argument dialog is set to 1, then the value of the element parameter

is used to initialize the dialog box. The case that the user has selected

and is loaded successfully is returned through this argument.

dialog (optional)

An integer value indicating whether or not the user gets a dialog box

in which he can select the case to load. The default value is 1, thus if

this argument is omitted the dialog box will be shown.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the case is loaded, but not referenced in the case,

should be kept in memory or destroyed during the case load. The

default is 0 indicating that the runtime libraries not referenced in the

case should be destroyed during the case load.

Return value:

The procedure returns 1 on success. If the user cancelled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseCommandLoadIntoActive instead.

Chapter 48. Data management via a single data manager file 1296

See also:

The procedures CaseLoadCurrent, CaseMerge, CaseSave,

CaseSetChangedStatus.

Chapter 48. Data management via a single data manager file 1297

CaseMerge

The procedure CaseMerge merges the data of an existing case with the current

data. You can use it to merge either a case that is passed as argument to the

procedure, or a case that the user can select via a dialog box. Only the

non-default data that is stored in the case will be merged with the data of the

currently active case. This current case is set to have changed data.

CaseMerge(

case, ! (input/output) An element parameter into AllCases

[dialog], ! (optional) 0 or 1

[keepUnreferencedRuntimeLibs ! (optional) 0 or 1

)

Arguments:

case

An element parameter into the pre-defined set AllCases. If the

argument dialog is set to 0, then no dialog box is shown and the case

to which the element parameter currently refers is merged. If the

argument dialog is set to 1, then the value of the element parameter

is used to initialize the dialog box. The case that the user has selected

and is merged successfully is returned through this argument.

dialog (optional)

An integer value indicating whether or not the user gets a dialog box

in which he can select the case to merge. The default value is 1, thus

if this argument is omitted the dialog box will be shown.

keepUnreferencedRuntimeLibs (optional)

An integer value indicating whether or not any runtime libraries in

existence before the case is merged, but not referenced in the case,

should be kept in memory or destroyed during the case merge. The

default is 1 indicating that the runtime libraries not referenced in the

case will be retained during the case merge.

Return value:

The procedure returns 1 on success. If the user cancelled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseCommandMergeIntoActive instead.

Chapter 48. Data management via a single data manager file 1298

See also:

The procedures CaseLoadCurrent, CaseLoadIntoCurrent, CaseSave,

CaseGetChangedStatus.

Chapter 48. Data management via a single data manager file 1299

CaseNew

The procedure CaseNew starts a new case. The procedure is similar to the

command New Case from the Data menu. The procedure does not change

any of the current data, it only assures that there is no longer a current case.

If you did have a current case and the data of this case has been changed,

then Aimms will ask whether or not this case should be saved first.

CaseNew

Arguments:

None

Return value:

The procedure returns 1 on success. If the user cancelled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� If the option Data Management style is set to disk files and folders,

please use the function CaseCommandNew instead.

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If you use CaseNew, then the name of this new case is not specified until

you save the case. If you want to start a new named case, then you can

use the following piece of code:

if (CaseGetChangedStatus) then

if (CaseSave = 0) then

return ;

endif ;

endif ;

if (CaseSelectNew(a_case)) then

CaseSetCurrent(a_case);

CaseSetChangedStatus(a_case, 1);

endif ;

See also:

The procedures CaseLoadCurrent, CaseSave, CaseSelectNew, CaseSetCurrent.

Chapter 48. Data management via a single data manager file 1300

CaseSave

The procedure CaseSave saves the data to the current case. If there is no

current case, then the procedure behaves exactly as the CaseSaveAs procedure.

If the case has active references to datasets that contain changed data, then

these datasets are saved as well.

CaseSave(

[confirm] ! (optional) 0, 1 or 2

)

Arguments:

confirm (optional)

An integer to indicate whether or not the procedure should ask for

confirmation before overwriting the existing case. If 0, then no

confirmation dialog box is shown. If 1 (default), then whether the

confirmation dialog box is shown depends on the case type

properties. If 2, then always a confirmation dialog box is shown.

Return value:

The procedure returns 1 if the case is saved successfully. It returns 0 if

the user canceled the save operation. If any other error occurs, then the

procedure returns −1 and CurrentErrorMessage will contain an error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseCommandSave or CaseFileSave instead.

See also:

The procedures CaseSaveAs, CaseSaveAll, CaseLoadCurrent,

CaseGetChangedStatus.

Chapter 48. Data management via a single data manager file 1301

CaseSaveAll

With the procedure CaseSaveAll you can save (via a single call) the current

case and all active datasets that need saving.

CaseSaveAll(

[confirm] ! (optional) integer value (0, 1 or 2)

)

Arguments:

confirm (optional)

If 0, then cases and datasets are saved without confirmation. If 2,

then Aimms will display a dialog box for the cases and datasets that

are about to be saved and ask for confirmation. If 1 (default), then

Aimms will use the properties of the case type and data categories to

determine whether a confirmation dialog box should be displayed.

Return value:

The procedure returns 1 if the user chooses not to save the data or if the

user chooses to save the data and the save was executed successfully. It

returns 0 if the user cancelled any of the dialog boxes. If any other error

occurs then the procedure returns −1 and CurrentErrorMessage will

contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� This function always returns 1 if the IDE is not loaded, for example

when running the component version of Aimms or when running with

the command line option --as-server.

� If the option Data Management style is set to disk files and folders,

please use the function CaseDialogConfirmAndSave and CaseCommandSave

instead.

See also:

The procedures CaseSave, DatasetSave.

Chapter 48. Data management via a single data manager file 1302

CaseSaveAs

The procedure CaseSaveAs shows a dialog box in which the user can specify a

(new) case to which the data is saved. If the case has active references to

datasets that contain changed data, then these datasets are saved as well.

When saving these datasets the procedure will simply overwrite the current

datasets, thus with CaseSaveAs you can only change the current case and not

any of the current datasets.

CaseSaveAs(

case ! (output) element parameter in AllCases

)

Arguments:

case

An element parameter in AllCases. On return this parameter will refer

to the case that the user selected.

Return value:

The procedure returns 1 if the case is saved successfully. It returns 0 if

the user canceled the save operation. If any other error occurs, then the

procedure returns −1 and CurrentErrorMessage will contain an error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseCommandSaveAs instead.

See also:

The procedures CaseSave, CaseSaveAll, CaseLoadCurrent,

CaseGetChangedStatus.

Chapter 48. Data management via a single data manager file 1303

CaseSelect

The procedure CaseSelect shows a dialog box in which the user can select an

existing case.

CaseSelect(

case, ! (output) element parameter in AllCases

[title] ! (optional) string expression

)

Arguments:

case

An element parameter in AllCases. On return the case will refer to the

selected case.

title (optional)

A string expression that is used as the title for the dialog box. If this

argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user did select a case. If the user presses

Cancel, then the procedure returns 0.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseDialogSelectForLoad or

CaseDialogSelectForSave instead.

See also:

The procedure CaseSelectNew.

Chapter 48. Data management via a single data manager file 1304

CaseSelectMultiple

The procedure CaseSelectMultiple shows a dialog box in which the user can

select a number of cases (and datasets). The selected subset of cases and

datasets is stored in the pre-defined set CurrentCaseSelection, which is used

in the page objects for which the property Multiple Cases is set.

CaseSelectMultiple(

[cases_only] ! (optional) 0 or 1

)

Arguments:

cases only (optional)

This argument controls whether the user can only select cases or can

select both datasets and cases. If this argument is omitted, then the

default value is 0, which means that both cases and datasets can be

selected.

Return value:

The procedure returns 1 if the user pressed the OK button, and 0 if the

user pressed Cancel.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseDialogSelectMultiple instead.

Chapter 48. Data management via a single data manager file 1305

CaseSelectNew

The procedure CaseSelectNew shows a dialog box in which the user can select

a new case.

CaseSelect(

case, ! (output) element parameter in AllCases

[title] ! (optional) string expression

)

Arguments:

case

An element parameter in AllCases. On return the case will refer to the

selected case.

title (optional)

A string expression that is used as the title for the dialog box. If this

argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user did select a case. If the user pressed

Cancel, then the procedure returns 0.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If via this procedure the user creates a new case (i.e. a new case node in

the data management tree), then this case does not yet contain any data.

The case will only contain data after you explicitly save data to the case.

� If the option Data Management style is set to disk files and folders,

please use the function CaseDialogSelectForLoad or

CaseDialogSelectForSave instead.

See also:

The procedures CaseSelect, CaseSetCurrent, CaseSave.

Chapter 48. Data management via a single data manager file 1306

CaseSetChangedStatus

The procedure CaseSetChangedStatus can set the status of the current case to

either changed or unchanged.

CaseSetChangedStatus(

status, ! (input) 0 or 1

[include_datasets] ! (optional) 0 or 1

)

Arguments:

status

An integer value holding the new case status: 0 for unchanged, 1 for

changed.

include datasets (optional)

An integer to indicate whether or not the the status of the included

and active datasets should be set as well. If you omit this argument,

then the default value is 0 (status of datasets is not set).

Return value:

The procedure returns 1.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function DataChangeMonitorCreate or

DataChangeMonitorReset instead.

See also:

The procedures CaseGetChangedStatus, DatasetSetChangedStatus.

Chapter 48. Data management via a single data manager file 1307

CaseSetCurrent

The procedure CaseSetCurrent sets the case that is regarded as the current

case. It does not load or save any data or checks whether data needs to be

saved. You can, for example, use it to make a newly created case the current

case, so that during a CaseSave the data is written to this case.

CaseSetCurrent(

case ! (input) element of the set AllCases

)

Arguments:

case

An element of the set AllCases, refering to the case that should

become the current case.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the option Data Management style is set to disk files and folders,

please use the function CaseFileSetCurrent instead.

See also:

The procedures CaseNew, CaseCreate, CaseSelectNew, CaseSave.

Chapter 48. Data management via a single data manager file 1308

CaseReadFromSingleFile

The procedure CaseReadFromSingleFile reads the data from a single case file

on disk.

CaseReadFromSingleFile(

inputFileName ! (input) scalar string expression

)

Arguments:

inputFileName

A string expression holding the path and name of the input file.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The procedures CaseWriteToSingleFile, CaseSave.

Chapter 48. Data management via a single data manager file 1309

CaseWriteToSingleFile

The procedure CaseWriteToSingleFile writes the current data to a case file on

disk.

CaseWriteToSingleFile(

outputFileName ! (input) scalar string expression

)

Arguments:

outputFileName

A string expression holding the path and name of the output file.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� The procedure CaseWriteToSingleFile uses the current case type to

determine which data should be written. This is usually the case type of

the last loaded case. If you want to make sure that a specific case type is

used, you can preset the case type via the predefined element parameter

CurrentDefaultCaseType.

The files written by CaseWriteToSingleFile can only be read by

CaseReadFromSingleFile.

See also:

The procedures CaseReadFromSingleFile, CaseSave.

Chapter 48. Data management via a single data manager file 1310

48.2 Datasets

Aimms supports the following functions for accessing the datasets in the

Data Manager:

� DatasetCreate

� DatasetDelete

� DatasetFind

� DatasetGetCategory

� DatasetGetChangedStatus

� DatasetLoadCurrent

� DatasetLoadIntoCurrent

� DatasetMerge

� DatasetNew

� DatasetSave

� DatasetSaveAll

� DatasetSaveAs

� DatasetSelect

� DatasetSelectNew

� DatasetSetChangedStatus

� DatasetSetCurrent

Chapter 48. Data management via a single data manager file 1311

DatasetCreate

The procedure DatasetCreate creates a new dataset node in the Data

Management tree. The data category, the name of the dataset and the folder

in which it is created is given as an argument to the procedure.

DatasetCreate(

data_category, ! (input) element in AllDataCategories

dataset_path, ! (input) scalar string expression

dataset ! (output) element parameter into AllDataSets

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which a dataset must be created.

dataset path

A string expression holding the path and name of the new dataset.

The path is specified relative to the corresponding data category root

node in the Data Management tree.

dataset

An element parameter into AllDataSets. On successful return this

parameter will refer to the newly created element in AllDataSets.

Return value:

The procedure returns 1 if the dataset is created successfully. It returns 0

if the dataset could not be created or if the dataset already exists.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If the specified path contains folders that do not exist, then these

folders are created automatically. To check whether a specific dataset

path already exists you can use the procedure DatasetFind.

See also:

The procedures DatasetFind, DatasetDelete.

Chapter 48. Data management via a single data manager file 1312

DatasetDelete

The procedure DatasetDelete deletes a specific dataset node from the Data

Management tree.

DatasetDelete(

data_category, ! (input) element in AllDataCategories

dataset ! (input) element parameter into AllDataSets

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which a dataset is be deleted.

dataset

An element parameter into AllDataSets, representing the dataset that

you want to delete.

Return value:

The procedure returns 1 if the dataset is deleted successfully, or 0

otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedure DatasetFind.

Chapter 48. Data management via a single data manager file 1313

DatasetFind

The procedure DatasetFind searches the Data Management tree for a dataset

with a specific name and belonging to a specific data category.

DatasetFind(

data_category, ! (input) element in AllDataCategories

dataset_path, ! (input) scalar string expression

dataset ! (output) element parameter into AllDataSets

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which the datasets must be searched.

dataset path

A string expression holding the path and name of a dataset. The path

is specified relative to the corresponding data category root node in

the Data Management tree.

dataset

An element parameter into AllDataSets. On successful return this

parameter will refer to the dataset found.

Return value:

The procedure returns 1 if the dataset is found, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetCreate, DatasetDelete.

Chapter 48. Data management via a single data manager file 1314

DatasetGetCategory

The procedure DatasetGetCategory retrieves the data category of a specific

dataset.

DatasetGetCategory(

dataset, ! (input) element of the set AllDataSets

data_category ! (output) element parameter into AllDataCategories

)

Arguments:

dataset

An element of the set AllDataSets, refering to the dataset for which

you want to retrieve its data category.

data category

An element parameter into AllDataCategories, on successfull return

this argument will contain the data category of the given dataset.

Return value:

The procedure returns 1 on success, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

Chapter 48. Data management via a single data manager file 1315

DatasetGetChangedStatus

The function DatasetGetChangedStatus returns whether the data associated

with a specific data category has changed and thus needs to be saved.

DatasetGetChangedStatus(

data_category ! (input) element in AllDataCategories

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which the changed status must be retrieved.

Return value:

The function returns 1 if the data has changed, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The functions DatasetSetChangedStatus, DatasetSave.

Chapter 48. Data management via a single data manager file 1316

DatasetLoadCurrent

The procedure DatasetLoadCurrent loads an existing dataset as the new

current dataset for a specific data category. You can use it to load either a

dataset that is passed as argument to the procedure, or a dataset that the

user can select via a dialog box. If the data of the corresponding data

category has changed, then the user is asked to save this data first.

DatasetLoadCurrent(

data_category, ! (input) element in AllDataCategories

dataset, ! (input/output) an element parameter into AllDataSets

[dialog] ! (optional) 0 or 1

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which a dataset is loaded.

dataset

An element parameter in the set AllDataSets. If the argument dialog

is set to 0, then no dialog box is shown and the dataset to which the

element parameter currently refers is loaded. If the argument dialog

is set to 1, then the value of the element parameter is used to

initialize the dialog box. The dataset that the user has selected and is

loaded successfully is returned through this argument.

dialog (optional)

An integer value indicating whether or not the user gets a dialog box

in which he can select the dataset to load. The default value is 1, thus

if this argument is omitted the dialog box will be shown.

Return value:

The procedure returns 1 on success. If the user canceled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If you want to suppress the dialog box for the unsaved data, then you

may call DatasetSetChangedStatus(category,0) prior to

DatasetLoadCurrent.

See also:

The procedures DatasetLoadIntoCurrent, DatasetMerge, DatasetSave,

DatasetSetChangedStatus.

Chapter 48. Data management via a single data manager file 1317

DatasetLoadIntoCurrent

The procedure DatasetLoadIntoCurrent loads the data of an existing dataset as

the new current dataset for a specific data category. You can use it to load

either a dataset that is passed as argument to the procedure, or a dataset that

the user can select via a dialog box. The data that is stored in the dataset will

overwrite any data of the currently active dataset, and thus this current

dataset is set to have changed data.

DatasetLoadIntoCurrent(

data_category, ! (input) element in AllDataCategories

dataset, ! (input/output) an element parameter

! into AllDataSets

[dialog] ! (optional) 0 or 1

)

Arguments:

category

An element in AllDataCategories, specifying the data category for

which a dataset is loaded.

dataset

An element parameter in the set AllDataSets. If the argument dialog

is set to 0, then no dialog box is shown and the dataset to which the

element parameter currently refers is loaded. If the argument dialog

is set to 1, then the value of the element parameter is used to

initialize the dialog box. The dataset that the user has selected and is

loaded successfully is returned through this argument.

dialog (optional)

An integer value indicating whether or not the user gets a dialog box

in which he can select the dataset to load. The default value is 1, thus

if this argument is omitted the dialog box will be shown.

Return value:

The procedure returns 1 on success. If the user canceled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetLoadCurrent, DatasetMerge, DatasetSave,

DatasetSetChangedStatus.

Chapter 48. Data management via a single data manager file 1318

DatasetMerge

The procedure DatasetMerge merges the data of an existing dataset with the

current data. You can use it to merge either a dataset that is passed as

argument to the procedure, or a dataset that the user can select via a dialog

box. Only the non-default data that is stored in the dataset will be merged

with the current data.

DatasetMerge(

data_category, ! (input) element in AllDataCategories

dataset, ! (input/output) an element parameter into AllDataSets

[dialog] ! (optional) 0 or 1

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which a dataset is loaded.

dataset

An element parameter in the set AllDataSets. If the argument dialog

is set to 0, then no dialog box is shown and the dataset to which the

element parameter currently refers is loaded. If the argument dialog

is set to 1, then the value of the element parameter is used to

initialize the dialog box. The dataset that the user has selected and is

loaded successfully is returned through this argument.

dialog (optional)

An integer value indicating whether or not the user gets a dialog box

in which he can select the dataset to load. The default value is 1, thus

if this argument is omitted the dialog box will be shown.

Return value:

The procedure returns 1 on success. If the user cancelled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetLoadCurrent, DatasetLoadIntoCurrent, DatasetSave,

DatasetGetChangedStatus.

Chapter 48. Data management via a single data manager file 1319

DatasetNew

The procedure DatasetNew starts a new unnamed dataset for a specific data

category. The procedure is similar to the command Dataset New from the

Data menu. The procedure does not change any of the current data, it only

sets the current dataset to unnamed. If you did have a currently named

dataset and the data of this dataset has been changed, then Aimms will ask

whether or not this dataset should be saved first.

DatasetNew(

data_category ! (input) an element of AllDataCategories

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to start a new unnamed dataset.

Return value:

The procedure returns 1 on success. If the user cancelled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If you use CaseNew, then the name of this new case is not specified

until you save the case. If you want to start a new named case, then you

can use the following piece of code:

if (CaseGetChangedStatus) then

if (CaseSave = 0) then

return ;

endif ;

endif ;

if (CaseSelectNew(a_case)) then

CaseSetCurrent(a_case);

CaseSetChangedStatus(a_case, 1);

endif ;

See also:

The procedures DatasetLoadCurrent, DatasetSave, DatasetSelectNew,

DatasetSetCurrent.

Chapter 48. Data management via a single data manager file 1320

DatasetSave

The procedure DatasetSave saves the data of a data category to the active

dataset. If there is no named active dataset, then the procedure behaves

exactly as the DatasetSaveAs procedure.

DatasetSave(

data_category, ! (input) element in AllDataCategories

[confirm] ! (optional) 0, 1 or 2

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to save the data.

confirm (optional)

An integer to indicate whether or not the procedure should ask for

confirmation before overwriting the existing dataset. If 0, then no

confirmation dialog box is shown. If 1 (default), then whether or not

the confirmation dialog box is shown depends on the case type

properties. If 2, then always a confirmation dialog box is shown.

Return value:

The procedure returns 1 if the dataset is saved successfully. It returns 0 if

the user canceled the save operation. If any other error occurs, then the

procedure returns −1 and CurrentErrorMessage will contain an error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetSaveAs, DatasetSaveAll, DatasetLoadCurrent and

function DatasetGetChangedStatus.

Chapter 48. Data management via a single data manager file 1321

DatasetSaveAll

The procedure DatasetSaveAll saves the data of all data category to the active

datasets. If there are no named active datasets, then the procedure behaves

according to the DatasetSaveAs procedure.

DatasetSaveAll(

[confirm] ! (optional) 0, 1 or 2

)

Arguments:

confirm (optional)

An integer to indicate whether or not the procedure should ask for

confirmation before overwriting the existing datasets. If 0, then no

confirmation dialog box is shown. If 1 (default), then whether or not

the confirmation dialog box is shown depends on the case type

properties. If 2, then always a confirmation dialog box is shown.

Return value:

The procedure returns 1 if the datasets are saved successfully. It returns 0

if the user canceled the save operation. If any other error occurs, then the

procedure returns −1 and CurrentErrorMessage will contain an error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetSaveAs, DatasetSave, DatasetLoadCurrent,

DatasetGetChangedStatus.

Chapter 48. Data management via a single data manager file 1322

DatasetSaveAs

The procedure DatasetSaveAs shows a dialog box in which the user can specify

a (new) dataset to which the data is saved.

DatasetSaveAs(

data_category, ! (input) element in AllDataCategories

dataset ! (output) element parameter in AllDataSets

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to save the data.

dataset

An element parameter in AllDataSets. On return this parameter will

refer to the dataset that the user selected.

Return value:

The procedure returns 1 if the dataset is saved successfully. It returns 0 if

the user cancelled the save operation. If any other error occurs, then the

procedure returns −1 and CurrentErrorMessage will contain an error

message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetSave, DatasetSaveAll, DatasetLoadCurrent,

DatasetGetChangedStatus.

Chapter 48. Data management via a single data manager file 1323

DatasetSelect

The procedure DatasetSelect shows a dialog box in which the user can select

an existing dataset for a given data category.

DatasetSelect(

data_category, ! (input) element in AllDataCategories

dataset, ! (output) element parameter in AllDataSets

[title] ! (optional) string expression

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to the user to select a dataset.

dataset

An element parameter in AllDataSets. On return the dataset will refer

to the selected dataset.

title (optional)

A string expression that is used as the title for the dialog box. If this

argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user did select a dataset. If the user

pressed Cancel, then the procedure returns 0.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedure DatasetSelectNew.

Chapter 48. Data management via a single data manager file 1324

DatasetSelectNew

The procedure DatasetSelectNew shows a dialog box in which the user can

select a new dataset for a given data category.

DatasetSelectNew(

data_category, ! (input) element in AllDataCategories

dataset, ! (output) element parameter in AllDataSets

[title] ! (optional) string expression

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to the user to select a new dataset.

dataset

An element parameter in AllDataSets. On return the dataset will refer

to the selected dataset.

title (optional)

A string expression that is used as the title for the dialog box. If this

argument is omitted, then a default title is used.

Return value:

The procedure returns 1 if the user did select a dataset. If the user

pressed Cancel, then the procedure returns 0.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If via this procedure the user creates a new dataset (i.e. a new dataset

node in the data management tree), then this case dataset does not yet

contain any data. The dataset will only contain data after you explicitly

save data to it.

See also:

The procedures DatasetSelect, DatasetSetCurrent, DatasetSave.

Chapter 48. Data management via a single data manager file 1325

DatasetSetChangedStatus

The procedure DatasetSetChangedStatus can set the status of a data category

to either changed or unchanged.

DatasetSetChangedStatus(

data_category, ! (input) element in AllDataCategories

status ! (input) 0 or 1

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to set the changed status.

status

An integer value holding the new dataset status: 0 for unchanged, 1

for changed.

Return value:

The procedure returns 1.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The function DatasetGetChangedStatus.

Chapter 48. Data management via a single data manager file 1326

DatasetSetCurrent

The procedure DatasetSetCurrent sets the dataset that is regarded as the

current dataset for a given data category. It does not load or save any data or

checks whether data needs to be saved. You can, for example, use it to make

a newly created dataset the current dataset, so that during a DatasetSave the

data is written to this dataset.

DatasetSetCurrent(

data_category, ! (input) element in AllDataCategories

dataset ! (input) element of the set AllDataSets

)

Arguments:

data category

An element in AllDataCategories, specifying the data category for

which you want to set the current dataset.

dataset

An element of the set AllDataSets, refering to the dataset that should

become the current dataset.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DatasetNew, DatasetCreate, DatasetSelectNew, DatasetSave.

Chapter 48. Data management via a single data manager file 1327

48.3 Data Manager files

Aimms supports the following Data Manager functions, that are not specific

for cases or datasets only:

� CaseTypeCategories

� CaseTypeContents

� DataCategoryContents

� DataFileCopy

� DataFileExists

� DataFileGetAcronym

� DataFileGetComment

� DataFileGetDescription

� DataFileGetGroup

� DataFileGetName

� DataFileGetOwner

� DataFileGetPath

� DataFileGetTime

� DataFileReadPermitted

� DataFileSetAcronym

� DataFileSetComment

� DataFileWritePermitted

� DataImport220

� DataManagerFileNew

� DataManagerFileOpen

� DataManagerFileGetCurrent

� DataManagerExport

� DataManagerImport

� DataManagementExit

Chapter 48. Data management via a single data manager file 1328

CaseTypeCategories

The procedure CaseTypeCategories retrieves the sub-collection of data

categories that is included in a specific case type.

CaseTypeCategories(

case_type, ! (input) element of the set AllCaseTypes

category_set ! (output) subset of AllDataCategories

)

Arguments:

case type

An element of the set AllCaseTypes, refering to the case type for

which you want to retrieve the included data categories.

category set

A subset of the set AllDataCategories, on successfull return this

subset is filled with the data categories included in the case type.

Return value:

The procedure returns 1 on success, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures CaseGetType, CaseTypeContents, DataCategoryContents.

Chapter 48. Data management via a single data manager file 1329

CaseTypeContents

The procedure CaseTypeContents retrieves the sub-collection of identifiers that

is contained in a specific case type.

CaseTypeContents(

case_type, ! (input) element of the set AllCaseTypes

identifier_set ! (output) subset of AllIdentifiers

)

Arguments:

case type

An element of the set AllCaseTypes, refering to the case type for

which you want to retrieve the contents.

identifier set

A subset of the set AllIdentifiers, on successful return this subset is

filled with all identifiers contained in the case type.

Return value:

The procedure returns 1 on success, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� The procedure returns the contents of the case type itself, as well as the

contents of all data categories that are included in the case type.

See also:

The procedures CaseGetType, CaseTypeCategories, DataCategoryContents.

Chapter 48. Data management via a single data manager file 1330

DataCategoryContents

The procedure DataCategoryContents retrieves the sub-collection of identifiers

that is contained in a specific data category.

DataCategoryContents(

data_category, ! (input) element of the set AllDataCategories

identifier_set ! (output) subset of AllIdentifiers

)

Arguments:

data category

An element of the set AllDataCategories, refering to the data category

for which you want to retrieve the contents.

identifier set

A subset of the set AllIdentifiers, on successful return this subset is

filled with all identifiers contained in the data category.

Return value:

The procedure returns 1 on success, 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures CaseTypeCategories, CaseTypeContents.

Chapter 48. Data management via a single data manager file 1331

DataFileCopy

With the procedure DataFileCopy you can copy a data file stored within a data

manager file, to another data file within the same data manager file.

DataFileCopy(

datafile, ! (input) element in the set AllDataFiles

acronym, ! (input) string

copiedDatafile ! (output) element parameter into AllDataFiles

)

Arguments:

datafile

An element in the set AllDataFiles, AllCases or AllDataSets.

acronym

The name of the new data file to be created

copiedDatafile

On success, contains the element in AllDataFiles associated with the

datafile into which the original data file was copied.

Return value:

The procedure returns 1 if the data file has been copied, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� If a datafile with the given acronym already exists in the data manager

file, the call to DataFileCopy will fail.

Chapter 48. Data management via a single data manager file 1332

DataFileExists

With the procedure DataFileExists you can check whether a specific element

from the set AllDataFiles still refers to a valid case or dataset. Especially

when multiple users have access to the same data file, an element may

become invalid.

DataFileExists(

datafile ! (input) element in the set AllDataFiles

)

Arguments:

datafile

An element in the set AllDataFiles, AllCases or AllDataSets.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

� Note that AllCases and AllDataSets are subsets of AllDataFiles.

See also:

The procedure DataFileGetName.

Chapter 48. Data management via a single data manager file 1333

DataFileGetAcronym

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileGetAcronym you can obtain the acronym that is specified in

the data manager for any element of the set AllDataFiles (cases or datasets).

DataFileGetAcronym(

datafile, ! (input) element in the set AllDataFiles

acronym ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

acronym

A scalar string valued parameter. On return this parameter will

contain the acronym of the datafile. If no acronym is specified, then

an empty string is returned.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetName.

Chapter 48. Data management via a single data manager file 1334

DataFileGetComment

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileGetComment you can obtain the comment that is specified in

the data manager for any element of the set AllDataFiles (cases or datasets).

DataFileGetComment(

datafile, ! (input) element in the set AllDataFiles

comment ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

comment

A scalar string valued parameter. On return this parameter will

contain the comment of the datafile. If no comment is specified, then

an empty string is returned.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetName.

Chapter 48. Data management via a single data manager file 1335

DataFileGetDescription

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileGetDescription you can obtain the description that the

user entered via the properties of a case or dataset.

DataFileGetDescription(

datafile, ! (input) element in the set AllDataFiles

description ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

name

A scalar string valued parameter. On return this parameter will

contain the description of the datafile. If no description has been

specified, then this string is empty.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetName, DataFileGetAcronym.

Chapter 48. Data management via a single data manager file 1336

DataFileGetGroup

With the procedure DataFileGetGroup you can obtain the group name

associated with the user that currently owns a specific case or dataset.

DataFileGetGroup(

datafile, ! (input) element in the set AllDataFiles

group ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

group

A scalar string valued parameter. On return this parameter will

contain the group name associated with the user that owns the

datafile. If there is no current owner, or if the project does not have a

user database associated with it, then an empty string is returned.

Return value:

The procedure returns 1 if the given datafile exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetOwner.

Chapter 48. Data management via a single data manager file 1337

DataFileGetName

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileGetName you can obtain the name in the data manager for

any element of the set AllDataFiles (cases or datasets).

DataFileGetName(

datafile, ! (input) element in the set AllDataFiles

name ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

name

A scalar string valued parameter. On return this parameter will

contain the name of the datafile. This name does not include the

name of the folder(s) in which it is located.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetPath, DataFileGetAcronym.

Chapter 48. Data management via a single data manager file 1338

DataFileGetOwner

With the procedure DataFileGetOwner you can obtain the name of the user that

currently owns a specific case or dataset.

DataFileGetOwner(

datafile, ! (input) element in the set AllDataFiles

owner ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

owner

A scalar string valued parameter. On return this parameter will

contain the name of the user that owns the datafile. If there is no

current owner, or if the project does not have a user database

associated with it, then an empty string is returned.

Return value:

The procedure returns 1 if the given datafile exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetGroup.

Chapter 48. Data management via a single data manager file 1339

DataFileGetPath

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileGetPath you can obtain the path in the data manager for

any element of the set AllDataFiles (cases or datasets). The path of a datafile

consists of a sequence folder names and the name of the datafile itself,

separated by backslash characters.

DataFileGetPath(

datafile, ! (input) element in the set AllDataFiles

path ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

path

A scalar string valued parameter. On return this parameter will

contain the path of the datafile.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetName, DataFileGetAcronym.

Chapter 48. Data management via a single data manager file 1340

DataFileGetTime

With the procedure DataFileGetTime you can obtain the time on which the

data of a specific case or dataset was last modified (saved).

DataFileGetTime(

datafile, ! (input) element in the set AllDataFiles

time ! (output) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

time

A scalar string valued parameter. On return this parameter will

contain a string representation of the modification time, using Aimms’

standard date and time format: ”YYYY-MM-DD hh:mm:ss”.

Return value:

The procedure returns 1 if the given datafile exists and contains saved

data. If the datafile does not exist, or if no data has yet been saved in the

datafile, then the procedure returns 0.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, FileTime.

Chapter 48. Data management via a single data manager file 1341

DataFileReadPermitted

With the procedure DataFileReadPermitted you can check whether the current

user has read permission for the specified case or dataset. For example, you

can use this procedure to issue your own error message if the permission is

not granted. If the current user does not have read permission, then any call

to a data manager procedure that involves a read operation will result in an

error message, and fails.

DataFileReadPermitted(

datafile ! (input) element in the set AllDataFiles

)

Arguments:

datafile

An element in the set AllDataFiles.

Return value:

The procedure returns 1 if the current user does have read permission,

and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedure DataFileWritePermitted.

Chapter 48. Data management via a single data manager file 1342

DataFileSetAcronym

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileSetAcronym you can set the acronym for the data file

corresponding to any element of the set AllDataFiles (cases or datasets).

DataFileSetAcronym(

datafile, ! (input) element in the set AllDataFiles

acronym ! (input) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

acronym

A scalar string valued parameter. This parameter contains the

acronym to be associated with the datafile. If an empty string is

specified, any existing acronym will be deleted.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetAcronym.

Chapter 48. Data management via a single data manager file 1343

DataFileSetComment

The predefined set AllDataFiles (and its subsets AllCases and AllDataSets), is

an integer set. The mapping of these integers onto the cases and datasets in

the project is maintained by the data manager, and is not editable. With the

procedure DataFileSetComment you can set the comment for the data file

corresponding to any element of the set AllDataFiles (cases or datasets).

DataFileSetComment(

datafile, ! (input) element in the set AllDataFiles

comment ! (input) scalar string parameter

)

Arguments:

datafile

An element in the set AllDataFiles.

comment

A scalar string valued parameter. This parameter contains the

comment to be associated with the datafile. If an empty string is

specified, any existing comment will be deleted.

Return value:

The procedure returns 1 if the given datafile still exists, and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataFileExists, DataFileGetComment.

Chapter 48. Data management via a single data manager file 1344

DataFileWritePermitted

With the procedure DataFileWritePermitted you can check whether the

current user has write permission for the specified case or dataset. For

example, you can use this procedure to issue your own error message if the

permission is not granted. If the current user does not have write permission,

then any call to a data manager procedure that involves a write (save)

operation will result in an error message, and fails.

DataFileWritePermitted(

datafile ! (input) element in the set AllDataFiles

)

Arguments:

datafile

An element in the set AllDataFiles.

Return value:

The procedure returns 1 if the current user does have write permission,

and 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedure DataFileReadPermitted.

Chapter 48. Data management via a single data manager file 1345

DataImport220

With the procedure DataImport220 you can load a separate Aimms case file,

such as the case files that were created with Aimms 2.20. After importing a

case file using this procedure you can save the data as a new case node in the

Data Management tree.

DataImport220(

filename ! (input/output) a string parameter

)

Arguments:

filename

A string parameter, that on return will contain the name of the file

that the user selected for importing.

Return value:

The procedure returns 1 on success. If the user canceled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This procedure is only applicable if the project option

Data Management style is set to Single Data Manager file.

� This procedure is especially useful for converting old cases to the new

Aimms.

See also:

The procedure CaseSaveAs.

Chapter 48. Data management via a single data manager file 1346

DataManagerFileNew

With the procedure DataManagerFileNew you can create a new, empty data file.

On success, the new data file will be used as the current data file for the

project.

DataManagerFileNew(

filename, ! (input) a scalar string expression

[UseAsDefault] ! (optional, default 1) a scalar binary expression

)

Arguments:

filename

A string containing the name of the new data file (relative to the

project directory)

UseAsDefault

A binary value to indicate whether the new data file should be used as

the default data file the next time the project is opened (value 1) or

not (value 0).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataManagerFileOpen, DataManagerFileGetCurrent.

Chapter 48. Data management via a single data manager file 1347

DataManagerFileOpen

With the procedure DataManagerFileOpen you can open an existing data file. On

success, the data file will be used as the current data file for the project.

DataManagerFileOpen(

filename, ! (input) a scalar string expression

[UseAsDefault] ! (optional, default 1) a scalar binary expression

)

Arguments:

filename

A string containing the name of the existing data file (relative to the

project directory).

UseAsDefault

A binary value to indicate whether the data file should be used as the

default data file the next time the project is opened (value 1) or not

(value 0).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataManagerFileNew, DataManagerFileGetCurrent.

Chapter 48. Data management via a single data manager file 1348

DataManagerFileGetCurrent

With the procedure DataManagerFileGetCurrent you can obtain the name of the

current data file.

DataManagerFileGetCurrent(

filename ! (output) a scalar string

)

Arguments:

filename

A string to contain the name of the current data file (relative to the

project directory).

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedures DataManagerFileNew, DataManagerFileOpen.

Chapter 48. Data management via a single data manager file 1349

DataManagerExport

With the procedure DataManagerExport you can export a collection of cases

and datasets from the data management tree to a new data file.

DataManagerExport(

filename, ! (input) a scalar string expression

datafiles ! (input/output) a subset of AllDataFiles

)

Arguments:

filename

A string containing the name of the data file to which the cases and

datasets must be exported.

datafiles

A subset of AllDataFiles, containing the cases and datasets that you

want to export. Any dataset that is referred to by a case in this set is

automatically added to the set.

Return value:

The procedure returns 1 on success, or 0 otherwise.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedure DataManagerImport.

Chapter 48. Data management via a single data manager file 1350

DataManagerImport

With the procedure DataManagerImport you can import the entire data

management tree that is stored in another data file into your current data

management tree. If the imported tree contains cases (or datasets) that

already exist in the current tree, then you can choose whether these cases (or

datasets) should overwrite the current nodes or should be imported as new

nodes.

DataManagerImport(

filename, ! (input) a scalar string expression

[overwrite] ! (optional) 0, 1 or 2

)

Arguments:

filename

A string containing the name of the data file that must be imported.

overwrite (optional)

This integer indicates whether or not existing cases (or datasets) are

overwritten by cases (or datasets) from the imported file. If 0 (the

default), then a dialog box is displayed in which the user can decide

to overwrite the existing node or to create a new node. If 1, then

existing nodes are always overwritten. If 2, then all imported cases

and datasets will result in new nodes in the tree.

Return value:

The procedure returns 1 on success. If the user canceled the operation,

then the procedure returns 0. If any other error occurs then the procedure

returns −1 and CurrentErrorMessage will contain a proper error message.

Remarks:

� This function is only applicable if the project option

Data Management style is set to Single Data Manager file.

See also:

The procedure DataManagerExport.

Chapter 49

Deprecated AIMMS 220 Functions

Aimms supports the following deprecated functions originating from

Aimms 220.

� ListingFileCopy

� ListingFileDelete

Chapter 49. Deprecated AIMMS 220 Functions 1352

ListingFileCopy

With the procedure ListingFileCopy you can copy the current contents of the

listing file to a given file.

ListingFileCopy(

toFileName, ! (input) string expression

overwrite ! (optional) default 1.

)

Arguments:

toFileName

The file name of the file to which the contents of the listing file must

be copied.

overwrite

if equal to 0 then do not overwrite an existing file, otherwise

overwrite an existing file when needed.

Return value:

The procedure returns 1 on success, or 0 otherwise.

See also:

The procedure ListingFileDelete.

Chapter 49. Deprecated AIMMS 220 Functions 1353

ListingFileDelete

The function ListingFileDelete deletes the current contents of the listing file

associated with an Aimms project.

ListingFileDelete()

Return value:

The function returns 1 on success, or 0 otherwise.

See also:

The function ListingFileCopy.

Part XI

Appendices

Index

A

Abs, 4

ActiveCard, 41

Aggregate, 87

AggregationTypes, 989

AimmsRevisionString, 922

AimmsStringConstants, 986

AllAbbrMonths, 1082

AllAbbrWeekdays, 1083

AllAimmsStringConstantElements, 985

AllAssertions, 1025

AllAttributeNames, 990

AllAuthorizationLevels, 965

AllAvailableCharacterEncodings, 966

AllBasicValues, 991

AllCaseComparisonModes, 992

AllCaseFileContentTypes, 1079

AllCases, 1068

AllCaseTypes, 1070

AllCharacterEncodings, 970

AllColors, 973

AllColumnTypes, 993

AllConstraintProgrammingRowTypes, 1008

AllConstraints, 1026

AllConventions, 1027

AllDatabaseTables, 1028

AllDataCategories, 1071

AllDataColumnCharacteristics, 994

AllDataFiles, 1072

AllDataSets, 1073

AllDataSourceProperties, 995

AllDefinedParameters, 1029

AllDefinedSets, 1030

AllDifferencingModes, 996

AllExecutionStatuses, 997

AllFileAttributes, 1002

AllFiles, 1031

AllFunctions, 1032

AllGeneratedMathematicalPrograms, 1054

AllGMPEvents, 1033

AllGMPExtensions, 998

AllIdentifiers, 1034

AllIdentifierTypes, 999

AllIndices, 1035

AllIntegerVariables, 1036

AllIntrinsics, 974

AllIsolationLevels, 1001

AllKeywords, 975

AllMacros, 1037

AllMathematicalProgrammingRowTypes, 1009

AllMathematicalProgrammingTypes, 1003

AllMathematicalPrograms, 1038

AllMatrixManipulationDirections, 1004

AllMatrixManipulationProgrammingTypes,

1005

AllMonths, 1084

AllNonLinearConstraints, 1039

AllOptions, 976

AllParameters, 1040

AllPredeclaredIdentifiers, 977

AllProcedures, 1041

AllProfilerTypes, 1006

AllProgressCategories, 1055

AllQuantities, 1042

AllRowTypes, 1007

AllSections, 1043

AllSets, 1044

AllSolutionStates, 1010

AllSolverInterrupts, 1011

AllSolvers, 978

AllSolverSessionCompletionObjects, 1045

AllSolverSessions, 1046

AllStochasticConstraints, 1047

AllStochasticGenerationModes, 1012

AllStochasticParameters, 1048

AllStochasticScenarios, 1056

AllStochasticVariables, 1049

AllSuffixNames, 1013

AllSymbols, 979

AllTimeZones, 1085

AllUpdatableIdentifiers, 1050

AllValueKeywords, 1014

AllVariables, 1051

AllVariablesConstraints, 1052

AllViolationTypes, 1015

AllWeekdays, 1086

Ap, 1183

ArcCos, 5

ArcCosh, 6

ArcSin, 7

ArcSinh, 8

ArcTan, 9

ArcTanh, 10

ASCIICharacterEncodings, 967

ASCIIUnicodeCharacterEncodings, 968

Index 1356

AtomicUnit, 81

AttributeToString, 672

B

Basic, 1113

BestBound, 1161

Beta, 213

beyond, 1111

Binomial, 208

blank zeros, 1184

BodyCurrentColumn, 1193

BodyCurrentRow, 1194

BodySize, 1195

BottomMargin, 1192

bratio, 1145

C

CallbackAddCut, 1180

CallbackAOA, 1179

CallbackIncumbent, 1177

CallbackIterations, 1174

CallbackProcedure, 1173

CallbackReturnStatus, 1178

CallbackStatusChange, 1176

CallbackTime, 1175

CallerAttribute, 673

CallerLine, 674

CallerNode, 675

CallerNumberOfLocations, 676

Card, 42

case, 1185

CaseCommandLoadAsActive, 733

CaseCommandLoadIntoActive, 734

CaseCommandMergeIntoActive, 735

CaseCommandNew, 736

CaseCommandSave, 737

CaseCommandSaveAs, 738

CaseCompareIdentifier, 720

CaseCreate, 1287

CaseCreateDifferenceFile, 721

CaseDelete, 1288

CaseDialogConfirmAndSave, 739

CaseDialogSelectForLoad, 740

CaseDialogSelectForSave, 741

CaseDialogSelectMultiple, 742

CaseFileGetContentType, 723

CaseFileLoad, 717

CaseFileMerge, 718

CaseFileSave, 719

CaseFileSectionExists, 724

CaseFileSectionGetContentType, 725

CaseFileSectionLoad, 726

CaseFileSectionMerge, 727

CaseFileSectionRemove, 728

CaseFileSectionSave, 729

CaseFileSetCurrent, 732

CaseFileURL, 1080

CaseFileURLtoElement, 730

CaseFind, 1289

CaseGetChangedStatus, 1290

CaseGetDatasetReference, 1291

CaseGetType, 1292

CaseLoadCurrent, 1293

CaseLoadIntoCurrent, 1295

CaseMerge, 1297

CaseNew, 1299

CaseReadFromSingleFile, 1308

CaseSave, 1300

CaseSaveAll, 1301

CaseSaveAs, 1302

CaseSelect, 1303

CaseSelectMultiple, 1304

CaseSelectNew, 1305

CaseSetChangedStatus, 1306

CaseSetCurrent, 1307

CaseTypeCategories, 1328

CaseTypeContents, 1329

CaseWriteToSingleFile, 1309

Ceil, 11

Character, 62

CharacterNumber, 63

CloneElement, 44

CloseDataSource, 751

Combination, 233

CommitTransaction, 752

Complement, 1125

ConstraintVariables, 677

ContinueAbort, 1016

ConvertReferenceDate, 88

ConvertUnit, 82

Convex, 1136

Cos, 12

Cosh, 13

cp::ActivityBegin, 306

cp::ActivityEnd, 307

cp::ActivityLength, 308

cp::ActivitySize, 309

cp::AllDifferent, 282

cp::Alternative, 310

cp::BeginAtBegin, 312

cp::BeginAtEnd, 313

cp::BeginBeforeBegin, 314

cp::BeginBeforeEnd, 315

cp::BeginOfNext, 316

cp::BeginOfPrevious, 317

cp::BinPacking, 284

cp::Cardinality, 288

cp::Channel, 290

cp::Count, 292

cp::EndAtBegin, 318

cp::EndAtEnd, 319

cp::EndBeforeBegin, 320

cp::EndBeforeEnd, 321

cp::EndOfNext, 322

Index 1357

cp::EndOfPrevious, 323

cp::GroupOfNext, 324

cp::GroupOfPrevious, 325

cp::LengthOfNext, 326

cp::LengthOfPrevious, 327

cp::Lexicographic, 294

cp::ParallelSchedule, 297

cp::Sequence, 299

cp::SequentialSchedule, 302

cp::SizeOfNext, 328

cp::SizeOfPrevious, 329

cp::Span, 330

cp::Synchronize, 331

CreateTimeTable, 89

Cube, 14

CurrentAuthorizationLevel, 981

CurrentAutoUpdatedDefinitions, 1057

CurrentCase, 1074

CurrentCaseFileContentType, 1078

CurrentCaseSelection, 1075

CurrentDataSet, 1076

CurrentDefaultCaseType, 1077

CurrentErrorMessage, 1058

CurrentFile, 1059

CurrentFileName, 1060

CurrentGeneratedMathematicalProgram, 1054

CurrentGroup, 982

CurrentInputs, 1061

CurrentMatrixBlockSizes, 1062

CurrentMatrixColumnCount, 1063

CurrentMatrixRowCount, 1064

CurrentPageNumber, 1065

CurrentSolver, 983

CurrentToMoment, 90

CurrentToString, 91

CurrentToTimeSlot, 92

CurrentUser, 984

cutoff, 1146

D

DataCategoryContents, 1330

DataChangeMonitorCreate, 745

DataChangeMonitorDelete, 747

DataChangeMonitorHasChanged, 748

DataChangeMonitorReset, 749

DataFileCopy, 1331

DataFileExists, 1332

DataFileGetAcronym, 1333

DataFileGetComment, 1334

DataFileGetDescription, 1335

DataFileGetGroup, 1336

DataFileGetName, 1337

DataFileGetOwner, 1338

DataFileGetPath, 1339

DataFileGetTime, 1340

DataFileReadPermitted, 1341

DataFileSetAcronym, 1342

DataFileSetComment, 1343

DataFileWritePermitted, 1344

DataImport220, 1345

DataManagementExit, 743

DataManagerExport, 1349

DataManagerFileGetCurrent, 1348

DataManagerFileNew, 1346

DataManagerFileOpen, 1347

DataManagerImport, 1350

DatasetCreate, 1311

DatasetDelete, 1312

DatasetFind, 1313

DatasetGetCategory, 1314

DatasetGetChangedStatus, 1315

DatasetLoadCurrent, 1316

DatasetLoadIntoCurrent, 1317

DatasetMerge, 1318

DatasetNew, 1319

DatasetSave, 1320

DatasetSaveAll, 1321

DatasetSaveAs, 1322

DatasetSelect, 1323

DatasetSelectNew, 1324

DatasetSetChangedStatus, 1325

DatasetSetCurrent, 1326

DateDifferenceDays, 114

DateDifferenceYearFraction, 115

DaylightSavingEndDate, 93

DaylightSavingStartDate, 94

DebuggerBreakPoint, 868

DeclaredSubset, 679

DefinitionViolation, 1126

Degrees, 15

Delay, 930

DepreciationLinearLife, 118

DepreciationLinearRate, 120

DepreciationNonLinearFactor, 126

DepreciationNonLinearLife, 124

DepreciationNonLinearRate, 128

DepreciationNonLinearSumOfYear, 122

DepreciationSum, 130

Derivative, 1127

DialogAsk, 814

DialogError, 815

DialogGetColor, 816

DialogGetDate, 817

DialogGetElement, 819

DialogGetElementByData, 818

DialogGetElementByText, 820

DialogGetNumber, 821

DialogGetPassword, 822

DialogGetString, 823

DialogMessage, 824

DialogProgress, 825

dim, 1104

DirectoryCopy, 937

DirectoryCreate, 938

DirectoryDelete, 939

Index 1358

DirectoryExists, 940

DirectoryGetCurrent, 941

DirectoryGetFiles, 942

DirectoryGetSubdirectories, 944

DirectoryMove, 946

DirectorySelect, 947

DirectSQL, 753

DisAggregate, 95

DiskWindowVoid, 1017

DistributionCumulative, 224

DistributionDensity, 226

DistributionDeviation, 229

DistributionInverseCumulative, 225

DistributionInverseDensity, 227

DistributionKurtosis, 232

DistributionMean, 228

DistributionSkewness, 231

DistributionVariance, 230

Div, 16

DomainIndex, 681

domlim, 1147

E

Element, 47

ElementCast, 48

ElementRange, 49

EnvironmentGetString, 923

EnvironmentSetString, 925

errh::Adapt, 887

errh::AllErrorCategories, 1099

errh::AllErrorSeverities, 1101

errh::Attribute, 888

errh::Category, 889

errh::Code, 890

errh::Column, 891

errh::CreationTime, 892

errh::ErrorCodes, 1098

errh::Filename, 893

errh::InsideCategory, 894

errh::IsMarkedAsHandled, 895

errh::Line, 896

errh::MarkAsHandled, 898

errh::Message, 897

errh::Multiplicity, 899

errh::Node, 900

errh::NumberOfLocations, 901

errh::PendingErrors, 1097

errh::Severity, 902

ErrorF, 17

EvaluateUnit, 83

Execute, 931

ExitAimms, 932

Exp, 18

Exponential, 214

ExtendedConstraint, 1119

ExtendedVariable, 1120

ExtremeValue, 215

F

Factorial, 234

FileAppend, 948

FileCopy, 949

FileDelete, 950

FileEdit, 951

FileExists, 952

FileGetSize, 953

FileMove, 954

FilePrint, 955

FileRead, 956

FileSelect, 957

FileSelectNew, 958

FileTime, 960

FileTouch, 961

FileView, 962

FindNthString, 64

FindReplaceNthString, 66

FindReplaceStrings, 68

FindString, 69

FindUsedElements, 50

First, 51

Floor, 19

FooterCurrentColumn, 1196

FooterCurrentRow, 1197

FooterSize, 1198

forecasting::ExponentialSmoothing, 259

forecasting::ExponentialSmoothingTrend, 262

forecasting::ExponentialSmoothingTrendSeasonality,

265

forecasting::ExponentialSmoothingTrendSeasonalityTune,

271

forecasting::ExponentialSmoothingTrendTune,

269

forecasting::ExponentialSmoothingTune, 268

forecasting::MovingAverage, 253

forecasting::SimpleLinearRegression, 276

forecasting::WeightedMovingAverage, 256

FormatString, 70

G

Gamma, 216

GarbageCollectStrings, 71

GenerateCut, 1243

GenerateXML, 808

GenTime, 1163

GeoFindCoordinates, 926

Geometric, 209

GetDataSourceProperty, 761

GMP::Benders::AddFeasibilityCut, 334

GMP::Benders::AddOptimalityCut, 337

GMP::Benders::CreateMasterProblem, 339

GMP::Benders::CreateSubProblem, 341

GMP::Benders::UpdateSubProblem, 343

GMP::Coefficient::Get, 346

GMP::Coefficient::GetQuadratic, 347

Index 1359

GMP::Coefficient::Set, 348

GMP::Coefficient::SetMulti, 350

GMP::Coefficient::SetQuadratic, 352

GMP::Column::Add, 354

GMP::Column::Delete, 355

GMP::Column::Freeze, 356

GMP::Column::FreezeMulti, 357

GMP::Column::GetLowerBound, 359

GMP::Column::GetName, 361

GMP::Column::GetScale, 362

GMP::Column::GetStatus, 363

GMP::Column::GetType, 364

GMP::Column::GetUpperBound, 365

GMP::Column::SetAsMultiObjective, 367

GMP::Column::SetAsObjective, 369

GMP::Column::SetDecomposition, 370

GMP::Column::SetDecompositionMulti, 373

GMP::Column::SetLowerBound, 375

GMP::Column::SetLowerBoundMulti, 377

GMP::Column::SetType, 379

GMP::Column::SetUpperBound, 380

GMP::Column::SetUpperBoundMulti, 382

GMP::Column::Unfreeze, 384

GMP::Column::UnfreezeMulti, 385

GMP::Event::Create, 388

GMP::Event::Delete, 389

GMP::Event::Reset, 390

GMP::Event::Set, 391

GMP::Instance::AddIntegerEliminationRows,

394

GMP::Instance::CalculateSubGradient, 397

GMP::Instance::Copy, 399

GMP::Instance::CreateDual, 400

GMP::Instance::CreateFeasibility, 403

GMP::Instance::CreateMasterMIP, 406

GMP::Instance::CreatePresolved, 407

GMP::Instance::CreateProgressCategory, 409

GMP::Instance::CreateSolverSession, 410

GMP::Instance::Delete, 411

GMP::Instance::DeleteIntegerEliminationRows,

412

GMP::Instance::DeleteMultiObjectives, 413

GMP::Instance::DeleteSolverSession, 414

GMP::Instance::FindApproximately-

FeasibleSolution, 415

GMP::Instance::FixColumns, 418

GMP::Instance::Generate, 420

GMP::Instance::GenerateRobustCounterpart,

422

GMP::Instance::GenerateStochasticProgram,

424

GMP::Instance::GetBestBound, 426

GMP::Instance::GetColumnNumbers, 427

GMP::Instance::GetDirection, 429

GMP::Instance::GetMathematical-

ProgrammingType, 430

GMP::Instance::GetMemoryUsed, 431

GMP::Instance::GetNumberOfColumns, 432

GMP::Instance::GetNumberOfIndicatorRows,

433

GMP::Instance::GetNumberOfIntegerColumns,

434

GMP::Instance::GetNumberOfNonlinear-

Columns, 435

GMP::Instance::GetNumberOfNonlinear-

Nonzeros, 436

GMP::Instance::GetNumberOfNonlinearRows,

437

GMP::Instance::GetNumberOfNonzeros, 438

GMP::Instance::GetNumberOfRows, 439

GMP::Instance::GetNumberOfSOS1Rows, 440

GMP::Instance::GetNumberOfSOS2Rows, 441

GMP::Instance::GetObjective, 442

GMP::Instance::GetObjectiveColumnNumber,

443

GMP::Instance::GetObjectiveRowNumber, 444

GMP::Instance::GetOptionValue, 445

GMP::Instance::GetRowNumbers, 447

GMP::Instance::GetSolver, 449

GMP::Instance::GetSymbolicMathematical-

Program, 450

GMP::Instance::MemoryStatistics, 451

GMP::Instance::Rename, 453

GMP::Instance::SetCallbackAddCut, 454

GMP::Instance::SetCallbackAddLazyConstraint,

455

GMP::Instance::SetCallbackBranch, 457

GMP::Instance::SetCallbackCandidate, 459

GMP::Instance::SetCallbackHeuristic, 461

GMP::Instance::SetCallbackIncumbent, 462

GMP::Instance::SetCallbackIterations, 463

GMP::Instance::SetCallbackStatusChange, 465

GMP::Instance::SetCallbackTime, 466

GMP::Instance::SetCutoff, 468

GMP::Instance::SetDirection, 469

GMP::Instance::SetIterationLimit, 470

GMP::Instance::SetMathematical-

ProgrammingType, 471

GMP::Instance::SetMemoryLimit, 472

GMP::Instance::SetOptionValue, 473

GMP::Instance::SetSolver, 475

GMP::Instance::SetStartingPointSelection, 476

GMP::Instance::SetTimeLimit, 477

GMP::Instance::Solve, 478

GMP::Linearization::Add, 480

GMP::Linearization::AddSingle, 482

GMP::Linearization::Delete, 485

GMP::Linearization::GetDeviation, 486

GMP::Linearization::GetDeviationBound, 487

GMP::Linearization::GetLagrangeMultiplier,

488

GMP::Linearization::GetType, 489

GMP::Linearization::GetWeight, 490

GMP::Linearization::RemoveDeviation, 491

GMP::Linearization::SetDeviationBound, 492

GMP::Linearization::SetType, 493

Index 1360

GMP::Linearization::SetWeight, 494

GMP::ProgressWindow::DeleteCategory, 496

GMP::ProgressWindow::DisplayLine, 497

GMP::ProgressWindow::DisplayProgramStatus,

498

GMP::ProgressWindow::DisplaySolver, 499

GMP::ProgressWindow::DisplaySolverStatus,

500

GMP::ProgressWindow::FreezeLine, 501

GMP::ProgressWindow::Transfer, 502

GMP::ProgressWindow::UnfreezeLine, 504

GMP::QuadraticCoefficient::Get, 506

GMP::QuadraticCoefficient::Set, 507

GMP::Robust::EvaluateAdjustableVariables,

509

GMP::Row::Activate, 512

GMP::Row::Add, 513

GMP::Row::Deactivate, 514

GMP::Row::Delete, 515

GMP::Row::DeleteIndicatorCondition, 516

GMP::Row::Generate, 517

GMP::Row::GetConvex, 519

GMP::Row::GetIndicatorColumn, 520

GMP::Row::GetIndicatorCondition, 521

GMP::Row::GetLeftHandSide, 522

GMP::Row::GetName, 524

GMP::Row::GetRelaxationOnly, 525

GMP::Row::GetRightHandSide, 526

GMP::Row::GetScale, 528

GMP::Row::GetStatus, 529

GMP::Row::GetType, 530

GMP::Row::SetConvex, 531

GMP::Row::SetIndicatorCondition, 532

GMP::Row::SetLeftHandSide, 533

GMP::Row::SetPoolType, 535

GMP::Row::SetPoolTypeMulti, 537

GMP::Row::SetRelaxationOnly, 539

GMP::Row::SetRightHandSide, 540

GMP::Row::SetRightHandSideMulti, 542

GMP::Row::SetType, 544

GMP::Solution::Check, 547

GMP::Solution::ConstraintListing, 548

GMP::Solution::ConstructMean, 553

GMP::Solution::Copy, 554

GMP::Solution::Count, 555

GMP::Solution::Delete, 556

GMP::Solution::DeleteAll, 557

GMP::Solution::GetBestBound, 558

GMP::Solution::GetColumnValue, 559

GMP::Solution::GetDistance, 560

GMP::Solution::GetFirstOrderDerivative, 561

GMP::Solution::GetIterationsUsed, 562

GMP::Solution::GetMemoryUsed, 563

GMP::Solution::GetNodesUsed, 564

GMP::Solution::GetObjective, 565

GMP::Solution::GetPenalizedObjective, 566

GMP::Solution::GetProgramStatus, 568

GMP::Solution::GetRowValue, 569

GMP::Solution::GetSolutionsSet, 570

GMP::Solution::GetSolverStatus, 571

GMP::Solution::GetTimeUsed, 572

GMP::Solution::IsDualDegenerated, 573

GMP::Solution::IsInteger, 574

GMP::Solution::IsPrimalDegenerated, 575

GMP::Solution::Move, 576

GMP::Solution::RandomlyGenerate, 577

GMP::Solution::RetrieveFromModel, 579

GMP::Solution::RetrieveFromSolverSession,

580

GMP::Solution::SendToModel, 581

GMP::Solution::SendToModelSelection, 582

GMP::Solution::SendToSolverSession, 584

GMP::Solution::SetColumnValue, 585

GMP::Solution::SetIterationCount, 587

GMP::Solution::SetMIPStartFlag, 588

GMP::Solution::SetObjective, 590

GMP::Solution::SetProgramStatus, 591

GMP::Solution::SetRowValue, 592

GMP::Solution::SetSolverStatus, 594

GMP::Solution::UpdatePenaltyWeights, 595

GMP::Solver::FreeEnvironment, 597

GMP::Solver::GetAsynchronousSessionsLimit,

599

GMP::Solver::InitializeEnvironment, 601

GMP::SolverSession::AddBenders-

FeasibilityCut, 604

GMP::SolverSession::AddBenders-

OptimalityCut, 607

GMP::SolverSession::AddLinearization, 610

GMP::SolverSession::AsynchronousExecute,

612

GMP::SolverSession::CreateProgressCategory,

614

GMP::SolverSession::Execute, 616

GMP::SolverSession::ExecutionStatus, 617

GMP::SolverSession::GenerateBinary-

EliminationRow, 618

GMP::SolverSession::GenerateBranch-

LowerBound, 620

GMP::SolverSession::GenerateBranch-

UpperBound, 622

GMP::SolverSession::GenerateBranchRow, 621

GMP::SolverSession::GenerateCut, 623

GMP::SolverSession::GetBestBound, 625

GMP::SolverSession::GetCallback-

InterruptStatus, 626

GMP::SolverSession::GetCandidateObjective,

627

GMP::SolverSession::GetInstance, 628

GMP::SolverSession::GetIterationsUsed, 629

GMP::SolverSession::GetMemoryUsed, 630

GMP::SolverSession::GetNodeNumber, 631

GMP::SolverSession::GetNodeObjective, 632

GMP::SolverSession::GetNodesLeft, 633

GMP::SolverSession::GetNodesUsed, 634

Index 1361

GMP::SolverSession::GetNumberOf-

BranchNodes, 635

GMP::SolverSession::GetObjective, 636

GMP::SolverSession::GetOptionValue, 637

GMP::SolverSession::GetProgramStatus, 638

GMP::SolverSession::GetSolver, 639

GMP::SolverSession::GetSolverStatus, 640

GMP::SolverSession::GetTimeUsed, 641

GMP::SolverSession::Interrupt, 642

GMP::SolverSession::RejectIncumbent, 643

GMP::SolverSession::SetObjective, 644

GMP::SolverSession::SetOptionValue, 645

GMP::SolverSession::Transfer, 647

GMP::SolverSession::WaitForCompletion, 648

GMP::SolverSession::WaitForSingleCompletion,

649

GMP::Stochastic::AddBendersFeasibilityCut,

651

GMP::Stochastic::AddBendersOptimalityCut,

652

GMP::Stochastic::BendersFindFeasibility-

Reference, 654

GMP::Stochastic::BendersFindReference, 655

GMP::Stochastic::CreateBendersRootproblem,

656

GMP::Stochastic::GetObjectiveBound, 657

GMP::Stochastic::GetRelativeWeight, 658

GMP::Stochastic::GetRepresentativeScenario,

659

GMP::Stochastic::MergeSolution, 660

GMP::Stochastic::UpdateBendersSubproblem,

661

GMP::Tuning::SolveSingleMPS, 663

GMP::Tuning::TuneMultipleMPS, 665

GMP::Tuning::TuneSingleGMP, 667

H

HeaderCurrentColumn, 1199

HeaderCurrentRow, 1200

HeaderSize, 1201

HistogramAddObservation, 237

HistogramAddObservations, 238

HistogramCreate, 239

HistogramDelete, 240

HistogramGetAverage, 241

HistogramGetBounds, 242

HistogramGetDeviation, 243

HistogramGetFrequencies, 244

HistogramGetKurtosis, 245

HistogramGetObservationCount, 246

HistogramGetSkewness, 247

HistogramSetDomain, 248

HyperGeometric, 210

I

IdentifierAttributes, 682

IdentifierDimension, 683

IdentifierElementRange, 686

IdentifierGetUsedInformation, 876

IdentifierMemory, 877

IdentifierMemoryStatistics, 878

IdentifierShowAttributes, 684

IdentifierShowTreeLocation, 685

IdentifierText, 687

IdentifierType, 688

IdentifierUnit, 689

Incumbent, 1160

IndexAbbrMonths, 1082

IndexAbbrWeekdays, 1083

IndexAggregationTypes, 989

IndexAimmsStringConstantElements, 985

IndexASCIICharacterEncodings, 967

IndexASCIIUnicodeCharacterEncodings, 968

IndexAssertions, 1025

IndexAttributeNames, 990

IndexAuthorizationLevels, 965

IndexAvailableCharacterEncodings, 966

IndexBasicValues, 991

IndexCaseComparisonModes, 992

IndexCaseFileContentTypes, 1079

IndexCases, 1068

IndexCaseTypes, 1070

IndexCharacterEncodings, 970

IndexColors, 973

IndexColumnTypes, 993

IndexConstraintProgrammingRowTypes, 1008

IndexConstraints, 1026

IndexContinueAbort, 1016

IndexConventions, 1027

IndexCurrentAutoUpdatedDefinitions, 1057

IndexCurrentCaseSelection, 1075

IndexCurrentInputs, 1061

IndexDatabaseTables, 1028

IndexDataCategories, 1071

IndexDataColumnCharacteristics, 994

IndexDataFiles, 1072

IndexDataSets, 1073

IndexDataSourceProperties, 995

IndexDefinedParameters, 1029

IndexDefinedSets, 1030

IndexDifferencingModes, 996

IndexDiskWindowVoid, 1017

IndexExecutionStatus, 997

IndexFiles, 1031

IndexFunctions, 1032

IndexGeneratedMathematicalPrograms, 1054

IndexGMPEvents, 1033

IndexGMPExtensions, 998

IndexIdentifiers, 1034

IndexIdentifierTypes, 999

IndexIndices, 1035

IndexIntegers, 1018

IndexIntegerVariables, 1036

IndexIntrinsics, 974

Index 1362

IndexIsolationLevels, 1001, 1002

IndexKeywords, 975

IndexMacros, 1037

IndexMathematicalProgrammingRowTypes,

1009

IndexMathematicalProgrammingTypes, 1003

IndexMathematicalPrograms, 1038

IndexMatrixManipulationDirections, 1004

IndexMatrixManipulationProgrammingTypes,

1005

IndexMaximizingMinimizing, 1019

IndexMergeReplace, 1020

IndexMonths, 1084

IndexNonLinearConstraints, 1039

IndexOnOff, 1021

IndexOptions, 976

IndexParameters, 1040

IndexPredeclaredIdentifiers, 977

IndexProcedure, 1041

IndexprofilerTypes, 1006

IndexProgressCategories, 1055

IndexQuantities, 1042

IndexRange, 690

IndexRowTypes, 1007

IndexSections, 1043

IndexSets, 1044

IndexSolutionStates, 1010

IndexSolverInterrupts, 1011

IndexSolvers, 978

IndexSolverSessionCompletionObjects, 1045

IndexSolverSessions, 1046

IndexStochasticConstraints, 1047

IndexStochasticGenerationModes, 1012

IndexStochasticParameters, 1048

IndexStochasticScenarios, 1056

IndexStochasticVariables, 1049

IndexSuffixNames, 1013

IndexSymbols, 979

IndexTimeSlotCharacteristics, 1022

IndexTimeZones, 1085

IndexUnicodeCharacterEncodings, 969

IndexUpdatableIdentifiers, 1050

IndexValueKeywords, 1014

IndexVariables, 1051

IndexVariablesConstraints, 1052

IndexViolationTypes, 1015

IndexWeekdays, 1086

IndexYesNo, 1023

Integers, 1018

InvestmentConstantCumulative-

InterestPayment, 142

InvestmentConstantCumulative-

PrincipalPayment, 144

InvestmentConstantFutureValue, 135

InvestmentConstantInterestPayment, 138

InvestmentConstantNumberPeriods, 146

InvestmentConstantPeriodicPayment, 136

InvestmentConstantPresentValue, 134

InvestmentConstantPrincipalPayment, 140

InvestmentConstantRate, 149

InvestmentConstantRateAll, 147

InvestmentSingleFutureValue, 155

InvestmentVariableInternalRateReturn, 158

InvestmentVariableInternalRateReturn-

InPeriodic, 162

InvestmentVariableInternalRateReturn-

InPeriodicAll, 160

InvestmentVariableInternalRateReturn-

Modified, 164

InvestmentVariableInternalRateReturnAll, 156

InvestmentVariablePresentValue, 151

InvestmentVariablePresentValueInPeriodic,

153

IsRuntimeIdentifier, 691

Iterations, 1165

iterlim, 1148

L

LargestCoefficient, 1131

LargestRightHandSide, 1142

LargestShadowPrice, 1139

LargestValue, 1133

Last, 52

LeftMargin, 1191

Level, 1114

LicenseExpirationDate, 911

LicenseMaintenanceExpirationDate, 912

LicenseNumber, 913

LicenseStartDate, 914

LicenseType, 915

limrow, 1149

ListExpressionSubstitutions, 880

ListingFileCopy, 1352

ListingFileDelete, 1353

lj, 1202

LoadDatabaseStructure, 754

LocaleAllAbbrMonths, 1087

LocaleAllAbbrWeekdays, 1088

LocaleAllMonths, 1089

LocaleAllWeekdays, 1090

LocaleIndexAbbrMonths, 1087

LocaleIndexAbbrWeekdays, 1088

LocaleIndexMonths, 1089

LocaleIndexWeekdays, 1090

LocaleLongDateFormat, 1091

LocaleShortDateFormat, 1092

LocaleTimeFormat, 1093

LocaleTimeZoneName, 1094

LocaleTimeZoneNameDST, 1095

Log, 20

Log10, 21

Logistic, 217

LogNormal, 218

Lower, 1115

lw, 1203

Index 1363

M

MapVal, 22

MasterMIPAddLinearizations, 1246

MasterMIPDeleteIntegerEliminationCut, 1247

MasterMIPDeleteLinearizations, 1248

MasterMIPEliminateIntegerSolution, 1249

MasterMIPGetCPUTime, 1250

MasterMIPGetIterationCount, 1251

MasterMIPGetNumberOfColumns, 1252

MasterMIPGetNumberOfNonZeros, 1253

MasterMIPGetNumberOfRows, 1254

MasterMIPGetObjectiveValue, 1255

MasterMIPGetProgramStatus, 1256

MasterMIPGetSolverStatus, 1257

MasterMIPGetSumOfPenalties, 1258

MasterMIPIsFeasible, 1259

MasterMIPLinearizationCommand, 1260

MasterMIPSetCallback, 1262

MasterMIPSolve, 1263

MatrixActivateRow, 1222

MatrixActivateRow procedure, 1221

MatrixAddColumn, 1223

MatrixAddColumn procedure, 1221

MatrixAddRow, 1224

MatrixAddRow procedure, 1221

MatrixDeactivateRow, 1225

MatrixDeactivateRow procedure, 1221

MatrixFreezeColumn, 1226

MatrixFreezeColumn procedure, 1221

MatrixGenerate, 1227

MatrixGenerate procedure, 1221

MatrixModifyCoefficient, 1228

MatrixModifyCoefficient procedure, 1221

MatrixModifyColumnType, 1229

MatrixModifyColumnType procedure, 1221

MatrixModifyDirection, 1230

MatrixModifyDirection procedure, 1221

MatrixModifyLeftHandSide, 1231

MatrixModifyLeftHandSide procedure, 1221

MatrixModifyLowerBound, 1232

MatrixModifyLowerBound procedure, 1221

MatrixModifyQuadraticCoefficient, 1233

MatrixModifyQuadraticCoefficient procedure,

1221

MatrixModifyRightHandSide, 1234

MatrixModifyRightHandSide procedure, 1221

MatrixModifyRowType, 1235

MatrixModifyRowType procedure, 1221

MatrixModifyType, 1236

MatrixModifyType procedure, 1221

MatrixModifyUpperBound, 1237

MatrixModifyUpperBound procedure, 1221

MatrixRegenerateRow, 1238

MatrixRegenerateRow procedure, 1221

MatrixRestoreState, 1239

MatrixRestoreState procedure, 1221

MatrixSaveState, 1240

MatrixSaveState procedure, 1221

MatrixSolve, 1241

MatrixSolve procedure, 1221

MatrixUnfreezeColumn, 1242

MatrixUnfreezeColumn procedure, 1221

Max, 23

MaximizingMinimizing, 1019

me::AllowedAttribute, 696

me::ChangeType, 697

me::ChangeTypeAllowed, 698

me::Children, 700

me::ChildTypeAllowed, 699

me::Compile, 701

me::Create, 702

me::CreateLibrary, 703

me::Delete, 704

me::ExportNode, 705

me::GetAttribute, 706

me::ImportLibrary, 707

me::ImportNode, 708

me::IsRunnable, 709

me::Move, 710

me::Parent, 711

me::Rename, 712

me::SetAttribute, 713

MemoryInUse, 881

MemoryStatistics, 882

MergeReplace, 1020

Min, 24

MINLPGetIncumbentObjectiveValue, 1264

MINLPGetOptimizationDirection, 1265

MINLPIncumbentIsFeasible, 1266

MINLPIncumbentSolutionHasBeenFound, 1267

MINLPSetIncumbentSolution, 1268

MINLPSetIterationCount, 1269

MINLPSetProgramStatus, 1270

MINLPSolutionDelete, 1271

MINLPSolutionRetrieve, 1272

MINLPSolutionSave, 1273

Mod, 25

MomentToString, 96

MomentToTimeSlot, 97

N

nd, 1204

NegativeBinomial, 211

nj, 1205

NLPGetCPUTime, 1274

NLPGetIterationCount, 1275

NLPGetNumberOfColumns, 1276

NLPGetNumberOfNonZeros, 1277

NLPGetNumberOfRows, 1278

NLPGetObjectiveValue, 1279

NLPGetProgramStatus, 1280

NLPGetSolverStatus, 1281

NLPIsFeasible, 1282

NLPLinearizationPointHasBeenFound, 1283

Index 1364

NLPSolutionIsInteger, 1284

NLPSolve, 1285

Nodes, 1162

nodlim, 1150

NominalCoefficient, 1130

NominalRightHandSide, 1141

Nonvar, 1123

Normal, 219

nr, 1206

NumberOfBranches, 1166

NumberOfConstraints, 1167

NumberOfFails, 1168

NumberOfInfeasibilities, 1171

NumberOfNonzeros, 1169

NumberOfVariables, 1170

nw, 1207

nz, 1208

O

objective, 1159

ODBCDateTimeFormat, 1066

OnOff, 1021

OpenDocument, 933

optca, 1151

optcr, 1152

OptionGetDefaultString, 904

OptionGetKeywords, 905

OptionGetString, 906

OptionGetValue, 907

OptionSetString, 908

OptionSetValue, 909

Ord, 53

P

PageClose, 828

PageCopyTableToClipboard, 829

PageCopyTableToExcel, 830

PageGetActive, 832

PageGetAll, 833

PageGetChild, 834

PageGetFocus, 835

PageGetNext, 836

PageGetNextInTreeWalk, 837

PageGetParent, 838

PageGetPrevious, 839

PageGetTitle, 840

PageGetUsedIdentifiers, 841

PageMode, 1187

PageNumber, 1186

PageOpen, 842

PageOpenSingle, 843

PageRefreshAll, 844

PageSetCursor, 845

PageSetFocus, 846

PageSize, 1188

PageWidth, 1189

Pareto, 220

past, 1109

PeriodToString, 98

Permutation, 235

PivotTableDeleteState, 847

PivotTableReloadState, 848

PivotTableSaveState, 850

planning, 1110

Poisson, 212

Power, 26

Precision, 27

PriceDecimal, 108

PriceFractional, 109

PrintEndReport, 852

PrinterGetCurrentName, 857

PrinterSetupDialog, 858

PrintPage, 853

PrintPageCount, 855

PrintStartReport, 856

Priority, 1128

procedure

MatrixActivateRow, 1221

MatrixAddColumn, 1221

MatrixAddRow, 1221

MatrixDeactivateRow, 1221

MatrixFreezeColumn, 1221

MatrixGenerate, 1221

MatrixModifyCoefficient, 1221

MatrixModifyColumnType, 1221

MatrixModifyDirection, 1221

MatrixModifyLeftHandSide, 1221

MatrixModifyLowerBound, 1221

MatrixModifyQuadraticCoefficient, 1221

MatrixModifyRightHandSide, 1221

MatrixModifyRowType, 1221

MatrixModifyType, 1221

MatrixModifyUpperBound, 1221

MatrixRegenerateRow, 1221

MatrixRestoreState, 1221

MatrixSaveState, 1221

MatrixSolve, 1221

MatrixUnfreezeColumn, 1221

ProfilerCollectAllData, 873

ProfilerContinue, 871

ProfilerData, 980

ProfilerPause, 870

ProfilerRestart, 872

ProfilerStart, 869

ProgramStatus, 1157

ProjectDeveloperMode, 916

R

Radians, 28

RateEffective, 110

RateNominal, 111

ReadGeneratedXML, 809

ReadXML, 810

Index 1365

ReducedCost, 1122

ReferencedIdentifiers, 692

RegexSearch, 72

Relax, 1124

RelaxationOnly, 1137

reslim, 1153

RestoreInactiveElements, 54

RetrieveCurrentVariableValues, 55

RollbackTransaction, 755

Round, 29

S

SaveDatabaseStructure, 756

ScalarValue, 30

ScheduleAt, 934

SectionIdentifiers, 693

SecurityCouponDays, 187

SecurityCouponDaysPostSettlement, 189

SecurityCouponDaysPreSettlement, 188

SecurityCouponNextDate, 186

SecurityCouponNumber, 184

SecurityCouponPreviousDate, 185

SecurityDiscountedPrice, 170

SecurityDiscountedRate, 173

SecurityDiscountedRedemption, 171

SecurityDiscountedYield, 172

SecurityGetGroups, 917

SecurityGetUsers, 918

SecurityMaturityAccruedInterest, 183

SecurityMaturityCouponRate, 179

SecurityMaturityPrice, 177

SecurityMaturityYield, 181

SecurityPeriodicAccruedInterest, 200

SecurityPeriodicCouponRate, 194

SecurityPeriodicDuration, 202

SecurityPeriodicDurationModified, 204

SecurityPeriodicPrice, 190

SecurityPeriodicRedemption, 192

SecurityPeriodicYield, 198

SecurityPeriodicYieldAll, 196

SessionArgument, 935

SetAddRecursive, 56

SetElementAdd, 57

SetElementRename, 58

ShadowPrice, 1135

ShowHelpTopic, 884

ShowMessageWindow, 859

ShowProgressWindow, 860

Sign, 31

Sin, 32

Sinh, 33

sj, 1209

Sleep, see Delay

SmallestCoefficient, 1129

SmallestRightHandSide, 1140

SmallestShadowPrice, 1138

SmallestValue, 1132

SolutionTime, 1164

SolverCalls, 1158

SolverGetControl, 919

SolverReleaseControl, 920

SolverStatus, 1156

Spreadsheet::AddNewSheet, 797

Spreadsheet::AssignParameter, 785

Spreadsheet::AssignSet, 783

Spreadsheet::AssignTable, 789

Spreadsheet::AssignValue, 781

Spreadsheet::ClearRange, 794

Spreadsheet::CloseWorkbook, 804

Spreadsheet::ColumnName, 774

Spreadsheet::ColumnNumber, 775

Spreadsheet::CopyRange, 795

Spreadsheet::CreateWorkbook, 802

Spreadsheet::DeleteSheet, 798

Spreadsheet::GetAllSheets, 799

Spreadsheet::Print, 805

Spreadsheet::RetrieveParameter, 787

Spreadsheet::RetrieveSet, 784

Spreadsheet::RetrieveTable, 792

Spreadsheet::RetrieveValue, 782

Spreadsheet::RunMacro, 800

Spreadsheet::SaveWorkbook, 803

Spreadsheet::SetActiveSheet, 777

Spreadsheet::SetOption, 780

Spreadsheet::SetUpdateLinksBehavior, 778

Spreadsheet::SetVisibility, 776

SQLColumnData, 766

SQLCreateConnectionString, 771

SQLDriverName, 768

SQLNumberOfColumns, 762

SQLNumberOfDrivers, 763

SQLNumberOfTables, 764

SQLNumberOfViews, 765

SQLTableName, 769

SQLViewName, 770

Sqr, 34

Sqrt, 35

StartTransaction, 757

StatusMessage, 826

Stochastic, 1116

StringCapitalize, 74

StringLength, 75

StringOccurrences, 76

StringToElement, 59

StringToLower, 77

StringToMoment, 99

StringToTimeSlot, 100

StringToUnit, 84

StringToUpper, 78

SubRange, 60

SubString, 79

SumOfInfeasibilities, 1172

sw, 1210

Index 1366

T

Tan, 36

Tanh, 37

TestDatabaseColumn, 760

TestDatabaseTable, 759

TestDataSource, 758

TestDate, 101

TestInternetConnection, 928

tf, 1211

TimeSlotCharacteristic, 102

TimeSlotCharacteristics, 1022

TimeSlotToMoment, 103

TimeSlotToString, 104

TimeZoneOffSet, 105

tj, 1212

tolinfrep, 1154

TopMargin, 1190

TreasuryBillBondEquivalent, 176

TreasuryBillPrice, 174

TreasuryBillYield, 175

Triangular, 221

Trunc, 38

tw, 1213

txt, 1105

type, 1106

U

UnicodeCharacterEncodings, 969

Uniform, 222

Unit, 85

unit, 1107

Upper, 1117

UserColorAdd, 862

UserColorDelete, 863

UserColorGetRGB, 864

UserColorModify, 865

V

Val, 39

VariableConstraints, 694

Violation, 1118

W

Wait, see Delay

Weibull, 223

workspace, 1155

WriteXML, 811

Y

YesNo, 1023

	Contents
	 Elementary Computational Operations
	Arithmetic Functions
	Abs
	ArcCos
	ArcCosh
	ArcSin
	ArcSinh
	ArcTan
	ArcTanh
	Ceil
	Cos
	Cosh
	Cube
	Degrees
	Div
	ErrorF
	Exp
	Floor
	Log
	Log10
	MapVal
	Max
	Min
	Mod
	Power
	Precision
	Radians
	Round
	ScalarValue
	Sign
	Sin
	Sinh
	Sqr
	Sqrt
	Tan
	Tanh
	Trunc
	Val

	Set Related Functions
	ActiveCard
	Card
	CloneElement
	Element
	ElementCast
	ElementRange
	FindUsedElements
	First
	Last
	Ord
	RestoreInactiveElements
	RetrieveCurrentVariableValues
	SetAddRecursive
	SetElementAdd
	SetElementRename
	StringToElement
	SubRange

	String Manipulation Functions
	Character
	CharacterNumber
	FindNthString
	FindReplaceNthString
	FindReplaceStrings
	FindString
	FormatString
	GarbageCollectStrings
	RegexSearch
	StringCapitalize
	StringLength
	StringOccurrences
	StringToLower
	StringToUpper
	SubString

	Unit Functions
	AtomicUnit
	ConvertUnit
	EvaluateUnit
	StringToUnit
	Unit

	Time Functions
	Aggregate
	ConvertReferenceDate
	CreateTimeTable
	CurrentToMoment
	CurrentToString
	CurrentToTimeSlot
	DaylightSavingEndDate
	DaylightSavingStartDate
	DisAggregate
	MomentToString
	MomentToTimeSlot
	PeriodToString
	StringToMoment
	StringToTimeSlot
	TestDate
	TimeSlotCharacteristic
	TimeSlotToMoment
	TimeSlotToString
	TimeZoneOffSet

	Financial Functions
	General Conversions
	PriceDecimal
	PriceFractional
	RateEffective
	RateNominal

	Day Count Bases and Dates
	Format of date arguments
	Day count bases
	Date differences
	DateDifferenceDays
	DateDifferenceYearFraction

	Depreciations
	DepreciationLinearLife
	DepreciationLinearRate
	DepreciationNonLinearSumOfYear
	DepreciationNonLinearLife
	DepreciationNonLinearFactor
	DepreciationNonLinearRate
	DepreciationSum

	Investments
	InvestmentConstantPresentValue
	InvestmentConstantFutureValue
	InvestmentConstantPeriodicPayment
	InvestmentConstantInterestPayment
	InvestmentConstantPrincipalPayment
	InvestmentConstantCumulativeInterestPayment
	InvestmentConstantCumulativePrincipalPayment
	InvestmentConstantNumberPeriods
	InvestmentConstantRateAll
	InvestmentConstantRate
	InvestmentVariablePresentValue
	InvestmentVariablePresentValueInPeriodic
	InvestmentSingleFutureValue
	InvestmentVariableInternalRateReturnAll
	InvestmentVariableInternalRateReturn
	InvestmentVariableInternalRateReturnInPeriodicAll
	InvestmentVariableInternalRateReturnInPeriodic
	InvestmentVariableInternalRateReturnModified

	Securities
	SecurityDiscountedPrice
	SecurityDiscountedRedemption
	SecurityDiscountedYield
	SecurityDiscountedRate
	TreasuryBillPrice
	TreasuryBillYield
	TreasuryBillBondEquivalent
	SecurityMaturityPrice
	SecurityMaturityCouponRate
	SecurityMaturityYield
	SecurityMaturityAccruedInterest
	SecurityCouponNumber
	SecurityCouponPreviousDate
	SecurityCouponNextDate
	SecurityCouponDays
	SecurityCouponDaysPreSettlement
	SecurityCouponDaysPostSettlement
	SecurityPeriodicPrice
	SecurityPeriodicRedemption
	SecurityPeriodicCouponRate
	SecurityPeriodicYieldAll
	SecurityPeriodicYield
	SecurityPeriodicAccruedInterest
	SecurityPeriodicDuration
	SecurityPeriodicDurationModified

	Distribution and Combinatoric Functions
	Binomial
	Geometric
	HyperGeometric
	NegativeBinomial
	Poisson
	Beta
	Exponential
	ExtremeValue
	Gamma
	Logistic
	LogNormal
	Normal
	Pareto
	Triangular
	Uniform
	Weibull
	DistributionCumulative
	DistributionInverseCumulative
	DistributionDensity
	DistributionInverseDensity
	DistributionMean
	DistributionDeviation
	DistributionVariance
	DistributionSkewness
	DistributionKurtosis
	Combination
	Factorial
	Permutation

	Histogram Functions
	HistogramAddObservation
	HistogramAddObservations
	HistogramCreate
	HistogramDelete
	HistogramGetAverage
	HistogramGetBounds
	HistogramGetDeviation
	HistogramGetFrequencies
	HistogramGetKurtosis
	HistogramGetObservationCount
	HistogramGetSkewness
	HistogramSetDomain

	Forecasting Functions
	Introduction
	Time series forecasting
	Notational conventions time series forecasting
	forecasting::MovingAverage
	forecasting::WeightedMovingAverage
	forecasting::ExponentialSmoothing
	forecasting::ExponentialSmoothingTrend
	forecasting::ExponentialSmoothingTrendSeasonality
	forecasting::ExponentialSmoothingTune
	forecasting::ExponentialSmoothingTrendTune
	forecasting::ExponentialSmoothingTrendSeasonalityTune

	Simple Linear Regression
	Notational conventions for simple linear regression
	forecasting::SimpleLinearRegression

	 Algorithmic Capabilities
	Constraint Programming Functions
	cp::AllDifferent
	cp::BinPacking
	cp::Cardinality
	cp::Channel
	cp::Count
	cp::Lexicographic
	cp::ParallelSchedule
	cp::Sequence
	cp::SequentialSchedule

	Scheduling Functions
	cp::ActivityBegin
	cp::ActivityEnd
	cp::ActivityLength
	cp::ActivitySize
	cp::Alternative
	cp::BeginAtBegin
	cp::BeginAtEnd
	cp::BeginBeforeBegin
	cp::BeginBeforeEnd
	cp::BeginOfNext
	cp::BeginOfPrevious
	cp::EndAtBegin
	cp::EndAtEnd
	cp::EndBeforeBegin
	cp::EndBeforeEnd
	cp::EndOfNext
	cp::EndOfPrevious
	cp::GroupOfNext
	cp::GroupOfPrevious
	cp::LengthOfNext
	cp::LengthOfPrevious
	cp::SizeOfNext
	cp::SizeOfPrevious
	cp::Span
	cp::Synchronize

	The GMP library
	GMP::Benders Procedures and Functions
	GMP::Benders::AddFeasibilityCut
	GMP::Benders::AddOptimalityCut
	GMP::Benders::CreateMasterProblem
	GMP::Benders::CreateSubProblem
	GMP::Benders::UpdateSubProblem

	GMP::Coefficient Procedures and Functions
	GMP::Coefficient::Get
	GMP::Coefficient::GetQuadratic
	GMP::Coefficient::Set
	GMP::Coefficient::SetMulti
	GMP::Coefficient::SetQuadratic

	GMP::Column Procedures and Functions
	GMP::Column::Add
	GMP::Column::Delete
	GMP::Column::Freeze
	GMP::Column::FreezeMulti
	GMP::Column::GetLowerBound
	GMP::Column::GetName
	GMP::Column::GetScale
	GMP::Column::GetStatus
	GMP::Column::GetType
	GMP::Column::GetUpperBound
	GMP::Column::SetAsMultiObjective
	GMP::Column::SetAsObjective
	GMP::Column::SetDecomposition
	GMP::Column::SetDecompositionMulti
	GMP::Column::SetLowerBound
	GMP::Column::SetLowerBoundMulti
	GMP::Column::SetType
	GMP::Column::SetUpperBound
	GMP::Column::SetUpperBoundMulti
	GMP::Column::Unfreeze
	GMP::Column::UnfreezeMulti

	GMP::Event Procedures and Functions
	GMP::Event::Create
	GMP::Event::Delete
	GMP::Event::Reset
	GMP::Event::Set

	GMP::Instance Procedures and Functions
	GMP::Instance::AddIntegerEliminationRows
	GMP::Instance::CalculateSubGradient
	GMP::Instance::Copy
	GMP::Instance::CreateDual
	GMP::Instance::CreateFeasibility
	GMP::Instance::CreateMasterMIP
	GMP::Instance::CreatePresolved
	GMP::Instance::CreateProgressCategory
	GMP::Instance::CreateSolverSession
	GMP::Instance::Delete
	GMP::Instance::DeleteIntegerEliminationRows
	GMP::Instance::DeleteMultiObjectives
	GMP::Instance::DeleteSolverSession
	GMP::Instance::FindApproximatelyFeasibleSolution
	GMP::Instance::FixColumns
	GMP::Instance::Generate
	GMP::Instance::GenerateRobustCounterpart
	GMP::Instance::GenerateStochasticProgram
	GMP::Instance::GetBestBound
	GMP::Instance::GetColumnNumbers
	GMP::Instance::GetDirection
	GMP::Instance::GetMathematicalProgrammingType
	GMP::Instance::GetMemoryUsed
	GMP::Instance::GetNumberOfColumns
	GMP::Instance::GetNumberOfIndicatorRows
	GMP::Instance::GetNumberOfIntegerColumns
	GMP::Instance::GetNumberOfNonlinearColumns
	GMP::Instance::GetNumberOfNonlinearNonzeros
	GMP::Instance::GetNumberOfNonlinearRows
	GMP::Instance::GetNumberOfNonzeros
	GMP::Instance::GetNumberOfRows
	GMP::Instance::GetNumberOfSOS1Rows
	GMP::Instance::GetNumberOfSOS2Rows
	GMP::Instance::GetObjective
	GMP::Instance::GetObjectiveColumnNumber
	GMP::Instance::GetObjectiveRowNumber
	GMP::Instance::GetOptionValue
	GMP::Instance::GetRowNumbers
	GMP::Instance::GetSolver
	GMP::Instance::GetSymbolicMathematicalProgram
	GMP::Instance::MemoryStatistics
	GMP::Instance::Rename
	GMP::Instance::SetCallbackAddCut
	GMP::Instance::SetCallbackAddLazyConstraint
	GMP::Instance::SetCallbackBranch
	GMP::Instance::SetCallbackCandidate
	GMP::Instance::SetCallbackHeuristic
	GMP::Instance::SetCallbackIncumbent
	GMP::Instance::SetCallbackIterations
	GMP::Instance::SetCallbackStatusChange
	GMP::Instance::SetCallbackTime
	GMP::Instance::SetCutoff
	GMP::Instance::SetDirection
	GMP::Instance::SetIterationLimit
	GMP::Instance::SetMathematicalProgrammingType
	GMP::Instance::SetMemoryLimit
	GMP::Instance::SetOptionValue
	GMP::Instance::SetSolver
	GMP::Instance::SetStartingPointSelection
	GMP::Instance::SetTimeLimit
	GMP::Instance::Solve

	GMP::Linearization Procedures and Functions
	GMP::Linearization::Add
	GMP::Linearization::AddSingle
	GMP::Linearization::Delete
	GMP::Linearization::GetDeviation
	GMP::Linearization::GetDeviationBound
	GMP::Linearization::GetLagrangeMultiplier
	GMP::Linearization::GetType
	GMP::Linearization::GetWeight
	GMP::Linearization::RemoveDeviation
	GMP::Linearization::SetDeviationBound
	GMP::Linearization::SetType
	GMP::Linearization::SetWeight

	GMP::ProgressWindow Procedures and Functions
	GMP::ProgressWindow::DeleteCategory
	GMP::ProgressWindow::DisplayLine
	GMP::ProgressWindow::DisplayProgramStatus
	GMP::ProgressWindow::DisplaySolver
	GMP::ProgressWindow::DisplaySolverStatus
	GMP::ProgressWindow::FreezeLine
	GMP::ProgressWindow::Transfer
	GMP::ProgressWindow::UnfreezeLine

	GMP::QuadraticCoefficient Procedures and Functions
	GMP::QuadraticCoefficient::Get
	GMP::QuadraticCoefficient::Set

	GMP::Robust Procedures and Functions
	GMP::Robust::EvaluateAdjustableVariables

	GMP::Row Procedures and Functions
	GMP::Row::Activate
	GMP::Row::Add
	GMP::Row::Deactivate
	GMP::Row::Delete
	GMP::Row::DeleteIndicatorCondition
	GMP::Row::Generate
	GMP::Row::GetConvex
	GMP::Row::GetIndicatorColumn
	GMP::Row::GetIndicatorCondition
	GMP::Row::GetLeftHandSide
	GMP::Row::GetName
	GMP::Row::GetRelaxationOnly
	GMP::Row::GetRightHandSide
	GMP::Row::GetScale
	GMP::Row::GetStatus
	GMP::Row::GetType
	GMP::Row::SetConvex
	GMP::Row::SetIndicatorCondition
	GMP::Row::SetLeftHandSide
	GMP::Row::SetPoolType
	GMP::Row::SetPoolTypeMulti
	GMP::Row::SetRelaxationOnly
	GMP::Row::SetRightHandSide
	GMP::Row::SetRightHandSideMulti
	GMP::Row::SetType

	GMP::Solution Procedures and Functions
	GMP::Solution::Check
	GMP::Solution::ConstraintListing
	GMP::Solution::ConstructMean
	GMP::Solution::Copy
	GMP::Solution::Count
	GMP::Solution::Delete
	GMP::Solution::DeleteAll
	GMP::Solution::GetBestBound
	GMP::Solution::GetColumnValue
	GMP::Solution::GetDistance
	GMP::Solution::GetFirstOrderDerivative
	GMP::Solution::GetIterationsUsed
	GMP::Solution::GetMemoryUsed
	GMP::Solution::GetNodesUsed
	GMP::Solution::GetObjective
	GMP::Solution::GetPenalizedObjective
	GMP::Solution::GetProgramStatus
	GMP::Solution::GetRowValue
	GMP::Solution::GetSolutionsSet
	GMP::Solution::GetSolverStatus
	GMP::Solution::GetTimeUsed
	GMP::Solution::IsDualDegenerated
	GMP::Solution::IsInteger
	GMP::Solution::IsPrimalDegenerated
	GMP::Solution::Move
	GMP::Solution::RandomlyGenerate
	GMP::Solution::RetrieveFromModel
	GMP::Solution::RetrieveFromSolverSession
	GMP::Solution::SendToModel
	GMP::Solution::SendToModelSelection
	GMP::Solution::SendToSolverSession
	GMP::Solution::SetColumnValue
	GMP::Solution::SetIterationCount
	GMP::Solution::SetMIPStartFlag
	GMP::Solution::SetObjective
	GMP::Solution::SetProgramStatus
	GMP::Solution::SetRowValue
	GMP::Solution::SetSolverStatus
	GMP::Solution::UpdatePenaltyWeights

	GMP::Solver Procedures and Functions
	GMP::Solver::FreeEnvironment
	GMP::Solver::GetAsynchronousSessionsLimit
	GMP::Solver::InitializeEnvironment

	GMP::SolverSession Procedures and Functions
	GMP::SolverSession::AddBendersFeasibilityCut
	GMP::SolverSession::AddBendersOptimalityCut
	GMP::SolverSession::AddLinearization
	GMP::SolverSession::AsynchronousExecute
	GMP::SolverSession::CreateProgressCategory
	GMP::SolverSession::Execute
	GMP::SolverSession::ExecutionStatus
	GMP::SolverSession::GenerateBinaryEliminationRow
	GMP::SolverSession::GenerateBranchLowerBound
	GMP::SolverSession::GenerateBranchRow
	GMP::SolverSession::GenerateBranchUpperBound
	GMP::SolverSession::GenerateCut
	GMP::SolverSession::GetBestBound
	GMP::SolverSession::GetCallbackInterruptStatus
	GMP::SolverSession::GetCandidateObjective
	GMP::SolverSession::GetInstance
	GMP::SolverSession::GetIterationsUsed
	GMP::SolverSession::GetMemoryUsed
	GMP::SolverSession::GetNodeNumber
	GMP::SolverSession::GetNodeObjective
	GMP::SolverSession::GetNodesLeft
	GMP::SolverSession::GetNodesUsed
	GMP::SolverSession::GetNumberOfBranchNodes
	GMP::SolverSession::GetObjective
	GMP::SolverSession::GetOptionValue
	GMP::SolverSession::GetProgramStatus
	GMP::SolverSession::GetSolver
	GMP::SolverSession::GetSolverStatus
	GMP::SolverSession::GetTimeUsed
	GMP::SolverSession::Interrupt
	GMP::SolverSession::RejectIncumbent
	GMP::SolverSession::SetObjective
	GMP::SolverSession::SetOptionValue
	GMP::SolverSession::Transfer
	GMP::SolverSession::WaitForCompletion
	GMP::SolverSession::WaitForSingleCompletion

	GMP::Stochastic Procedures and Functions
	GMP::Stochastic::AddBendersFeasibilityCut
	GMP::Stochastic::AddBendersOptimalityCut
	GMP::Stochastic::BendersFindFeasibilityReference
	GMP::Stochastic::BendersFindReference
	GMP::Stochastic::CreateBendersRootproblem
	GMP::Stochastic::GetObjectiveBound
	GMP::Stochastic::GetRelativeWeight
	GMP::Stochastic::GetRepresentativeScenario
	GMP::Stochastic::MergeSolution
	GMP::Stochastic::UpdateBendersSubproblem

	GMP::Tuning Procedures and Functions
	GMP::Tuning::SolveSingleMPS
	GMP::Tuning::TuneMultipleMPS
	GMP::Tuning::TuneSingleGMP

	 Model Handling
	Model Query Functions
	AttributeToString
	CallerAttribute
	CallerLine
	CallerNode
	CallerNumberOfLocations
	ConstraintVariables
	DeclaredSubset
	DomainIndex
	IdentifierAttributes
	IdentifierDimension
	IdentifierShowAttributes
	IdentifierShowTreeLocation
	IdentifierElementRange
	IdentifierText
	IdentifierType
	IdentifierUnit
	IndexRange
	IsRuntimeIdentifier
	ReferencedIdentifiers
	SectionIdentifiers
	VariableConstraints

	Model Edit Functions
	me::AllowedAttribute
	me::ChangeType
	me::ChangeTypeAllowed
	me::ChildTypeAllowed
	me::Children
	me::Compile
	me::Create
	me::CreateLibrary
	me::Delete
	me::ExportNode
	me::GetAttribute
	me::ImportLibrary
	me::ImportNode
	me::IsRunnable
	me::Move
	me::Parent
	me::Rename
	me::SetAttribute

	 Data Management
	Case management
	CaseFileLoad
	CaseFileMerge
	CaseFileSave
	CaseCompareIdentifier
	CaseCreateDifferenceFile
	CaseFileGetContentType
	CaseFileSectionExists
	CaseFileSectionGetContentType
	CaseFileSectionLoad
	CaseFileSectionMerge
	CaseFileSectionRemove
	CaseFileSectionSave
	CaseFileURLtoElement
	CaseFileSetCurrent
	CaseCommandLoadAsActive
	CaseCommandLoadIntoActive
	CaseCommandMergeIntoActive
	CaseCommandNew
	CaseCommandSave
	CaseCommandSaveAs
	CaseDialogConfirmAndSave
	CaseDialogSelectForLoad
	CaseDialogSelectForSave
	CaseDialogSelectMultiple
	DataManagementExit

	Data Change Monitor Functions
	DataChangeMonitorCreate
	DataChangeMonitorDelete
	DataChangeMonitorHasChanged
	DataChangeMonitorReset

	Database Functions
	CloseDataSource
	CommitTransaction
	DirectSQL
	LoadDatabaseStructure
	RollbackTransaction
	SaveDatabaseStructure
	StartTransaction
	TestDataSource
	TestDatabaseTable
	TestDatabaseColumn
	GetDataSourceProperty
	SQLNumberOfColumns
	SQLNumberOfDrivers
	SQLNumberOfTables
	SQLNumberOfViews
	SQLColumnData
	SQLDriverName
	SQLTableName
	SQLViewName
	SQLCreateConnectionString

	Spreadsheet Functions
	Spreadsheet::ColumnName
	Spreadsheet::ColumnNumber
	Spreadsheet::SetVisibility
	Spreadsheet::SetActiveSheet
	Spreadsheet::SetUpdateLinksBehavior
	Spreadsheet::SetOption
	Spreadsheet::AssignValue
	Spreadsheet::RetrieveValue
	Spreadsheet::AssignSet
	Spreadsheet::RetrieveSet
	Spreadsheet::AssignParameter
	Spreadsheet::RetrieveParameter
	Spreadsheet::AssignTable
	Spreadsheet::RetrieveTable
	Spreadsheet::ClearRange
	Spreadsheet::CopyRange
	Spreadsheet::AddNewSheet
	Spreadsheet::DeleteSheet
	Spreadsheet::GetAllSheets
	Spreadsheet::RunMacro
	Spreadsheet::CreateWorkbook
	Spreadsheet::SaveWorkbook
	Spreadsheet::CloseWorkbook
	Spreadsheet::Print

	XML Functions
	GenerateXML
	ReadGeneratedXML
	ReadXML
	WriteXML

	 User Interface Related Functions
	Dialog Functions
	DialogAsk
	DialogError
	DialogGetColor
	DialogGetDate
	DialogGetElementByData
	DialogGetElement
	DialogGetElementByText
	DialogGetNumber
	DialogGetPassword
	DialogGetString
	DialogMessage
	DialogProgress
	StatusMessage

	Page Functions
	PageClose
	PageCopyTableToClipboard
	PageCopyTableToExcel
	PageGetActive
	PageGetAll
	PageGetChild
	PageGetFocus
	PageGetNext
	PageGetNextInTreeWalk
	PageGetParent
	PageGetPrevious
	PageGetTitle
	PageGetUsedIdentifiers
	PageOpen
	PageOpenSingle
	PageRefreshAll
	PageSetCursor
	PageSetFocus
	PivotTableDeleteState
	PivotTableReloadState
	PivotTableSaveState
	PrintEndReport
	PrintPage
	PrintPageCount
	PrintStartReport
	PrinterGetCurrentName
	PrinterSetupDialog
	ShowMessageWindow
	ShowProgressWindow

	User colors
	UserColorAdd
	UserColorDelete
	UserColorGetRGB
	UserColorModify

	 Development Support
	Profiler and Debugger
	DebuggerBreakPoint
	ProfilerStart
	ProfilerPause
	ProfilerContinue
	ProfilerRestart
	ProfilerCollectAllData

	Application Information
	IdentifierGetUsedInformation
	IdentifierMemory
	IdentifierMemoryStatistics
	ListExpressionSubstitutions
	MemoryInUse
	MemoryStatistics
	ShowHelpTopic

	 System Interaction
	Error Handling Functions
	errh::Adapt
	errh::Attribute
	errh::Category
	errh::Code
	errh::Column
	errh::CreationTime
	errh::Filename
	errh::InsideCategory
	errh::IsMarkedAsHandled
	errh::Line
	errh::Message
	errh::MarkAsHandled
	errh::Multiplicity
	errh::Node
	errh::NumberOfLocations
	errh::Severity

	Option manipulation
	OptionGetDefaultString
	OptionGetKeywords
	OptionGetString
	OptionGetValue
	OptionSetString
	OptionSetValue

	Licensing Functions
	LicenseExpirationDate
	LicenseMaintenanceExpirationDate
	LicenseNumber
	LicenseStartDate
	LicenseType
	ProjectDeveloperMode
	SecurityGetGroups
	SecurityGetUsers
	SolverGetControl
	SolverReleaseControl

	Environment Functions
	AimmsRevisionString
	EnvironmentGetString
	EnvironmentSetString
	GeoFindCoordinates
	TestInternetConnection

	Invoking actions
	Delay
	Execute
	ExitAimms
	OpenDocument
	ScheduleAt
	SessionArgument

	File and Directory Functions
	DirectoryCopy
	DirectoryCreate
	DirectoryDelete
	DirectoryExists
	DirectoryGetCurrent
	DirectoryGetFiles
	DirectoryGetSubdirectories
	DirectoryMove
	DirectorySelect
	FileAppend
	FileCopy
	FileDelete
	FileEdit
	FileExists
	FileGetSize
	FileMove
	FilePrint
	FileRead
	FileSelect
	FileSelectNew
	FileTime
	FileTouch
	FileView

	 Predefined Identifiers
	System Settings Related Identifiers
	AllAuthorizationLevels
	AllAvailableCharacterEncodings
	ASCIICharacterEncodings
	ASCIIUnicodeCharacterEncodings
	UnicodeCharacterEncodings
	AllCharacterEncodings
	AllColors
	AllIntrinsics
	AllKeywords
	AllOptions
	AllPredeclaredIdentifiers
	AllSolvers
	AllSymbols
	ProfilerData
	CurrentAuthorizationLevel
	CurrentGroup
	CurrentSolver
	CurrentUser
	AllAimmsStringConstantElements
	AimmsStringConstants

	Language Related Identifiers
	AggregationTypes
	AllAttributeNames
	AllBasicValues
	AllCaseComparisonModes
	AllColumnTypes
	AllDataColumnCharacteristics
	AllDataSourceProperties
	AllDifferencingModes
	AllExecutionStatuses
	AllGMPExtensions
	AllIdentifierTypes
	AllIsolationLevels
	AllFileAttributes
	AllMathematicalProgrammingTypes
	AllMatrixManipulationDirections
	AllMatrixManipulationProgrammingTypes
	AllProfilerTypes
	AllRowTypes
	AllConstraintProgrammingRowTypes
	AllMathematicalProgrammingRowTypes
	AllSolutionStates
	AllSolverInterrupts
	AllStochasticGenerationModes
	AllSuffixNames
	AllValueKeywords
	AllViolationTypes
	ContinueAbort
	DiskWindowVoid
	Integers
	MaximizingMinimizing
	MergeReplace
	OnOff
	TimeSlotCharacteristics
	YesNo

	Model Related Identifiers
	AllAssertions
	AllConstraints
	AllConventions
	AllDatabaseTables
	AllDefinedParameters
	AllDefinedSets
	AllFiles
	AllFunctions
	AllGMPEvents
	AllIdentifiers
	AllIndices
	AllIntegerVariables
	AllMacros
	AllMathematicalPrograms
	AllNonLinearConstraints
	AllParameters
	AllProcedures
	AllQuantities
	AllSections
	AllSets
	AllSolverSessionCompletionObjects
	AllSolverSessions
	AllStochasticConstraints
	AllStochasticParameters
	AllStochasticVariables
	AllUpdatableIdentifiers
	AllVariables
	AllVariablesConstraints

	Execution State Related Identifiers
	AllGeneratedMathematicalPrograms
	AllProgressCategories
	AllStochasticScenarios
	CurrentAutoUpdatedDefinitions
	CurrentErrorMessage
	CurrentFile
	CurrentFileName
	CurrentInputs
	CurrentMatrixBlockSizes
	CurrentMatrixColumnCount
	CurrentMatrixRowCount
	CurrentPageNumber
	ODBCDateTimeFormat

	Case Management Related Identifiers
	AllCases
	AllCaseTypes
	AllDataCategories
	AllDataFiles
	AllDataSets
	CurrentCase
	CurrentCaseSelection
	CurrentDataSet
	CurrentDefaultCaseType
	CurrentCaseFileContentType
	AllCaseFileContentTypes
	CaseFileURL

	Date-Time Related Identifiers
	AllAbbrMonths
	AllAbbrWeekdays
	AllMonths
	AllTimeZones
	AllWeekdays
	LocaleAllAbbrMonths
	LocaleAllAbbrWeekdays
	LocaleAllMonths
	LocaleAllWeekdays
	LocaleLongDateFormat
	LocaleShortDateFormat
	LocaleTimeFormat
	LocaleTimeZoneName
	LocaleTimeZoneNameDST

	Error Handling Related Identifiers
	errh::PendingErrors
	errh::ErrorCodes
	errh::AllErrorCategories
	errh::AllErrorSeverities

	 Suffices
	Common Suffices
	Example
	.dim
	.txt
	.type
	.unit

	Horizon Suffices
	.past
	.planning
	.beyond

	Variable and Constraint Suffices
	.Basic
	.Level
	.Lower
	.Stochastic
	.Upper
	.Violation
	.ExtendedConstraint
	.ExtendedVariable

	Variable Suffices
	.ReducedCost
	.Nonvar
	.Relax
	.Complement
	.DefinitionViolation
	.Derivative
	.Priority
	.SmallestCoefficient
	.NominalCoefficient
	.LargestCoefficient
	.SmallestValue
	.LargestValue

	Constraint Suffices
	.ShadowPrice
	.Convex
	.RelaxationOnly
	.SmallestShadowPrice
	.LargestShadowPrice
	.SmallestRightHandSide
	.NominalRightHandSide
	.LargestRightHandSide

	Mathematical Program Suffices
	.bratio
	.cutoff
	.domlim
	.iterlim
	.limrow
	.nodlim
	.optca
	.optcr
	.reslim
	.tolinfrep
	.workspace
	.SolverStatus
	.ProgramStatus
	.SolverCalls
	.objective
	.Incumbent
	.BestBound
	.Nodes
	.GenTime
	.SolutionTime
	.Iterations
	.NumberOfBranches
	.NumberOfConstraints
	.NumberOfFails
	.NumberOfNonzeros
	.NumberOfVariables
	.NumberOfInfeasibilities
	.SumOfInfeasibilities
	.CallbackProcedure
	.CallbackIterations
	.CallbackTime
	.CallbackStatusChange
	.CallbackIncumbent
	.CallbackReturnStatus
	.CallbackAOA
	.CallbackAddCut

	File Suffices
	.Ap
	.blank zeros
	.case
	.PageNumber
	.PageMode
	.PageSize
	.PageWidth
	.TopMargin
	.LeftMargin
	.BottomMargin
	.BodyCurrentColumn
	.BodyCurrentRow
	.BodySize
	.FooterCurrentColumn
	.FooterCurrentRow
	.FooterSize
	.HeaderCurrentColumn
	.HeaderCurrentRow
	.HeaderSize
	.lj
	.lw
	.nd
	.nj
	.nr
	.nw
	.nz
	.sj
	.sw
	.tf
	.tj
	.tw

	 Deprecated
	Deprecated Language Elements
	Deprecated keywords
	The deprecated keyword abort
	The deprecated keywords yes and no
	The deprecated keyword system

	Deprecated intrinsic procedures and functions
	Deprecated suffixes

	Matrix Manipulation Functions
	MatrixActivateRow
	MatrixAddColumn
	MatrixAddRow
	MatrixDeactivateRow
	MatrixFreezeColumn
	MatrixGenerate
	MatrixModifyCoefficient
	MatrixModifyColumnType
	MatrixModifyDirection
	MatrixModifyLeftHandSide
	MatrixModifyLowerBound
	MatrixModifyQuadraticCoefficient
	MatrixModifyRightHandSide
	MatrixModifyRowType
	MatrixModifyType
	MatrixModifyUpperBound
	MatrixRegenerateRow
	MatrixRestoreState
	MatrixSaveState
	MatrixSolve
	MatrixUnfreezeColumn
	GenerateCut

	Outer Approximation Functions
	MasterMIPAddLinearizations
	MasterMIPDeleteIntegerEliminationCut
	MasterMIPDeleteLinearizations
	MasterMIPEliminateIntegerSolution
	MasterMIPGetCPUTime
	MasterMIPGetIterationCount
	MasterMIPGetNumberOfColumns
	MasterMIPGetNumberOfNonZeros
	MasterMIPGetNumberOfRows
	MasterMIPGetObjectiveValue
	MasterMIPGetProgramStatus
	MasterMIPGetSolverStatus
	MasterMIPGetSumOfPenalties
	MasterMIPIsFeasible
	MasterMIPLinearizationCommand
	MasterMIPSetCallback
	MasterMIPSolve
	MINLPGetIncumbentObjectiveValue
	MINLPGetOptimizationDirection
	MINLPIncumbentIsFeasible
	MINLPIncumbentSolutionHasBeenFound
	MINLPSetIncumbentSolution
	MINLPSetIterationCount
	MINLPSetProgramStatus
	MINLPSolutionDelete
	MINLPSolutionRetrieve
	MINLPSolutionSave
	NLPGetCPUTime
	NLPGetIterationCount
	NLPGetNumberOfColumns
	NLPGetNumberOfNonZeros
	NLPGetNumberOfRows
	NLPGetObjectiveValue
	NLPGetProgramStatus
	NLPGetSolverStatus
	NLPIsFeasible
	NLPLinearizationPointHasBeenFound
	NLPSolutionIsInteger
	NLPSolve

	Data management via a single data manager file
	Cases
	CaseCreate
	CaseDelete
	CaseFind
	CaseGetChangedStatus
	CaseGetDatasetReference
	CaseGetType
	CaseLoadCurrent
	CaseLoadIntoCurrent
	CaseMerge
	CaseNew
	CaseSave
	CaseSaveAll
	CaseSaveAs
	CaseSelect
	CaseSelectMultiple
	CaseSelectNew
	CaseSetChangedStatus
	CaseSetCurrent
	CaseReadFromSingleFile
	CaseWriteToSingleFile

	Datasets
	DatasetCreate
	DatasetDelete
	DatasetFind
	DatasetGetCategory
	DatasetGetChangedStatus
	DatasetLoadCurrent
	DatasetLoadIntoCurrent
	DatasetMerge
	DatasetNew
	DatasetSave
	DatasetSaveAll
	DatasetSaveAs
	DatasetSelect
	DatasetSelectNew
	DatasetSetChangedStatus
	DatasetSetCurrent

	Data Manager files
	CaseTypeCategories
	CaseTypeContents
	DataCategoryContents
	DataFileCopy
	DataFileExists
	DataFileGetAcronym
	DataFileGetComment
	DataFileGetDescription
	DataFileGetGroup
	DataFileGetName
	DataFileGetOwner
	DataFileGetPath
	DataFileGetTime
	DataFileReadPermitted
	DataFileSetAcronym
	DataFileSetComment
	DataFileWritePermitted
	DataImport220
	DataManagerFileNew
	DataManagerFileOpen
	DataManagerFileGetCurrent
	DataManagerExport
	DataManagerImport

	Deprecated AIMMS 220 Functions
	ListingFileCopy
	ListingFileDelete

	 Appendices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

